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Higer spin theories

o Broad definition: interacting theories of gravity coupled to a finite (or
infinite) number of massless fields of spin s > 2.

o Motivation from holography: explore AdS/CFT in a regime where the
bulk theory is not just classical (super-)gravity, and the dual theory is
not necessarily strongly-coupled:

» Critical O(N) vector models in 3d in the large-N limit dual to higher

spin theories of Fradkin-Vasiliev type in AdSs (Klebanov, Polyakov
2002; Giombi, Yin 2010-12; Maldacena, Zhiboedov 2011-12)

» Two-dimensional CFTs with extended (W-)symmetries in the large-N
limit dual to higher spin theories in AdS3 (Gaberdiel, Gopakumar 2010)

@ Motivation from GR: singularities, black hole horizons, etc are not
invariant under the higher spin gauge symmetries = one must
reconsider traditional geometric notions in these setups.
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Higer spin theories in AdS;3

[+

In 3d it is possible to truncate the tower of higher spin fields to
s < N. The bulk theory reduces to SL(N,R) x SL(N,R)
Chern-Simons theory.

Generalizes the formulation of AdS3 gravity as an SL(2,R) x SL(2,R)
Chern-Simons theory (Achucarro, Townsend 1986; Witten 1988)

In the N = 2 case, many universal results recovered from AdS;/CFT»:
Cardy entropy formula, entanglement entropy, etc.

Challenge: extend the holographic dictionary to the N > 2 case. The
asymptotic symmetry algebra is of Wy type (Henneaux, Rey 2010;
Campoleoni et. al. 2010). Black holes, matter probes, partition
functions (Gutperle, Kraus 2011; Ammon et. al. 2011; Castro et. al.
2011-12; Gaberdiel, Hartman, Jin 2011-12; Kraus, Perlmutter 2011-12)
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Motivation

Universal results in standard AdS3/CFT,

o The BTZ black hole entropy (via Bekenstein-Hawking) and
holographic entanglement entropy (via Ryu-Takayanagi) match
universal CFT results:

Cardy entropy formula

s=2nE(a= ) + o5 (0 )

(Single interval) Entanglement entropy at finite temperature T = 571

Sa= %Iog <£ sinh <7T‘#>>

where ¢ is the central charge and a the UV cutoff.

o Question: How do we compute (entanglement) entropy in the
presence of higher spin charges?
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AdS3 Gravity as a Chern-Simons theory

AdS3 Gravity as a Chern-Simons theory

o Take 3d gravity with a negative cosmological constant A = —1//2 .
Combine dreibein e? and (dual) spin connection w? = (1/2!)e?>¢wy,c
into SL(2,R) connections

A:AaJa:w+%’ A:Aa-}a:w_%
where the J, satisfy the so(2,1) ~ s/(2,R) algebra [J,, Jp] = €,,° Jc .

o Defining CS(A) = AAdA+2AAAA A one finds (k = (/(4G3))

Fur = 27|53

s = % /M Tr| CS(A) - CS(A)]

1 2
— d3 <\ a
167 Gs3 [/M xVlel (R " £2> /alww : ea]
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AdS3 Gravity as a Chern-Simons theory
o Take 3d gravity with a negative cosmological constant A = —1//2 .

Combine dreibein e and (dual) spin connection w? = (1/2!)e?*°w,.
into SL(2,R) connections

A:AaJa:w+%’ A:Aa-}a:w_%

where the J, satisfy the so(2,1) ~ s/(2,R) algebra [J,, Jp] = €,,° Jc .

o Defining CS(A) = AAdA+2AAAA A one finds (k = (/(4G3))

Einstein’s equations < Flatness
F=dA+ANA=0
F=dA+ANA=0
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AdS3 Gravity as a Chern-Simons theory

Boundary conditions in Chern-Simons theory

o Consider a radial coordinate p (boundary at p — o0) and boundary
coordinates x* = £ £+ ¢

o In the Chern-Simons formulation, the Brown-Henneaux b.c. amount
to (Coussaert, Henneaux, van Driel 1995):

Q Impose A_|,,, — 0, A+’0M — 0. The asymptotic symmetries are
generated by two copies of an affine algebra

(S5, Jp] =i fh U+ %k&abaﬂm,o

Q Further demand A — Aags, — O(1) (Drinfeld-Sokolov reduction),
p—ro0

the asymptotic symmetries reduce to two copies of the Virasoro algebra
with central charge ¢ = 6k = 3¢/(2Gs)

Cc
[Ln, Lm] = (n — m)Lm+n + En (n2 — 1) 5n+m,0
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o Let us denote the s/(2, R) generators by A*, A®. Fix radial gauge:
A=blta(xT,x )b+ btdb, A=ba(xt,x" )b 1+ bdb!
with b = b(p) = e?\°.

@ The space of asymptotically anti-de Sitter solutions with a flat
boundary metric can be then parameterized as

+
(A TN g s (oA s TOO ) g
k k
with corresponding metrics

ds® 1 =y T(xHT(x™) _
= :dp2+;(T(X+)dX+2+T(X ) dx 2)—(&”—1—% 2”)dx*’dx

T, T correspond to the stress tensor. E.g. under a residual gauge
transformation that preserves the D-S boundary conditions,

1
6T =2Td e+€0, T+ 583_6
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o Let us denote the s/(2, R) generators by A*, A®. Fix radial gauge:
A=blta(xT,x )b+ btdb, A=ba(xt,x" )b 1+ bdb!
with b = b(p) = e?\°.

@ The space of asymptotically anti-de Sitter solutions with a flat
boundary metric can be then parameterized as

+
= /\+7M/\* dx", a=|-N" +T( )/\+ dx—
k k
with corresponding metrics

2 _
%:dp2+%(T(X+)dX+2+7_-(X_)dX_z)—<62p 77—()() () _2p)dx+dx

Examples: global AdS3 has Tags, = 7_'Ad53 = —k/4 and BTZ has

262

Terz = (Mf J) = k——— /62 TBTZ = (Mg + J) = k

N~
N[~

pt
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Generalizing to N > 2: embeddings

@ When N > 2 one needs to choose an embedding of the "gravitational"
s/(2) factor into s/(N). The field content in the bulk and the
spectrum of the dual CFT depend on this choice.

o Different embeddings are characterized by the way the fundamental
representation of s/(/N) decomposes into s/(2) representations
(classified by integer partitions of ).

o For concreteness, we will focus on the so-called principal embeddings:
the fundamental representation becomes an irreducible rep. of the
embedded algebra.

@ In the principal embedding, the bulk theory consists of the metric and
higher spin fields with s =3,..., N. E.g. ¢, ~ Trle, e, The
dual CFT has, in addition to the stress tensor, conformal primaries of
weight 3,..., N = Irrelevant operators
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AdS3 Gravity as a Chern-Simons theory

Wy algebras

@ One can apply Drinfeld-Sokolov boundary conditions in the higher spin
theory as well. The Virasoro symmetries are retained, but the full
asymptotic algebra is extended by the higher spin currents.

o In the principal embedding, the resulting asymptotic symmetry algebra
is a non-linear extension of the Virasoro algebra known as W)y, algebra
(Henneaux, Rey 2010; Campoleoni et. al. 2010). E.g. Wh:

. c
i{Lp, Lq} = (P—q)Lpsqg + E(Pa_l’)ap+q,0
i{Lp, Wa} = (2p — q) Wpiq
96
{(p— 9)(2p" +24" = pg = 8) Lytrg + — (P — 9) Aoig

5 g
’{WPqu} = _§

C
t p(p* — 1)(p* — 4) p+q0
Wlth Ap = E £p+q£—q

qEZ

Juan |. Jottar (Amsterdam) Holograv workshop 2013 Helsinki ~ March 7th, 2013




Higher spin black holes

Turning on sources

@ Black hole solutions carrying higher spin charges have been
constructed (Ammon, Gutperle, Kraus, Perlmutter 2011; Castro, Hijano,
Lepage-Jutier, Maloney 2011)

o Since black holes represent states in thermodynamic equilibrium, they
must carry chemical potentials which are the thermodynamic
conjugate of the higher spin charges.

o The structure of the solutions is

5 = (A++Q)dx++ (M—l—...)dx_

[A=,Q] =0, Q: VEVs
[/\+, I\/I] =0, M : sources
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Turning on sources

@ Black hole solutions carrying higher spin charges have been
constructed (Ammon, Gutperle, Kraus, Perlmutter 2011; Castro, Hijano,
Lepage-Jutier, Maloney 2011)

o Since black holes represent states in thermodynamic equilibrium, they
must carry chemical potentials which are the thermodynamic
conjugate of the higher spin charges.

o The structure of the solutions is

5 = (A++Q)dx++ (M—l—...)dx_

N

2
0 2 Qs —43Q2 4202 4 13Qs  pp Qs + —#3402
a=(1 0 £ |+ 2 —“3302 12 4 3Qs | dx”
01 0 M3 M2 = ”3Toz
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Ward identities

o Momentarily going back to N = 2 for simplicity:

1 1
4 < 0 Tyt >dx+ " ( —5041 MT+1L — 303 > dx—
1 0 K §a+/i

Flatness (bulk EOM) is equivalent to

1
O-T14 =2T1 4 01 p+p0p Ty — 533 7
which is the stress tensor Ward identity in the presence of a coupling

f d2X/LT++ .

@ Important subtlety: 1 corresponds to a non-trivial boundary metric; in
the Euclidean formulation, globally-defined black hole solutions have
constant T, and (a constant) u can be incorporated via the
modular parameter of the boundary torus instead = for N = 2 we can
still have black hole solutions with a_ = 0. For N > 2 we source
irrelevant operators and a_ # 0.
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Euclidean continuation: smoothness conditions

o Consider the analytical continuation x™ — z, x~ — —Z. In the
Euclidean formulation the topology of the bulk manifold is that of a
solid torus, and the boundary torus is defined by the identifications
z~z 421 ~z+ 277 (e.g. TBTZ = iB(1 4+ Q)/(27))

e
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Euclidean continuation: smoothness conditions

o Consider the analytical continuation x™ — z, x~ — —Z. In the
Euclidean formulation the topology of the bulk manifold is that of a
solid torus, and the boundary torus is defined by the identifications
z~z 421 ~z+ 277 (e.g. TBTZ = iB(1 4+ Q)/(27))

@ The holonomy under z >~ z + 277 is
Hol,z(A) = b~le" b,  Hol,7(A) = beb?
where the matrices h and h are defined as
h=2r(ra,+ Taz) , h=2rn (ra; +7az).

o Demanding that the holonomy around the contractible cycle is trivial
provides a gauge-invariant characterization of a smooth black hole
horizon (Gutperle, Kraus 2011).

Juan |. Jottar (Amsterdam) Holograv workshop 2013 _



Thermodynamics of higher spin black holes

Entropy from Euclidean variational principle

o In the saddle-point approximation (large T and c) the CFT partition
function is obtained from the Euclidean on-shell action as

nZ =1 = - (1 +1%)

oS
where "
(E) _ Mes — CS(A
18 === /M Tr[CS(A) CS(A)]
and /gy, is a boundary term chosen such that
N
§InZ ~ Tor — To7 + > (Qdp; — Qdf))
j=3
@ The entropy can then be obtained by performing a Legendre
transform. As a function of the charges, S satisfies
- N -
08 ~ —76T + 70T + > (—16Q; + 16 Q;)
j=3
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Higher spin black hole entropy

o We constructed boundary terms suited to black hole solutions in
Drinfeld-Sokolov form.

o Evaluating the on-shell action (free energy) and Legendre-transforming
we found (de Boer, J.I.J., 2013)

6 = ol T [(az + a7) (ra, + 7az) — (3, + 52) (75, + %52)} J

o In the BTZ branch the smoothness conditions can be encoded as
spec (277 (raz + 7"32)) = spec (2miA%). Using this it is easy to prove
that our entropy formula satisfies the first law (integrability).

@ Moreover, it is valid for both static and rotating higher spin black
holes, in any embedding (generalizes (Canto, Bafiados, Theisen, 2012))
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More fun with the entropy

o For constant connections, a, = (a, + az) and (7a; + Taz) commute
by the e.o.m. Together with (7a, + 7az) = u~! (i/\o) u from the
holonomy conditions this implies

S= 27chsTr[()‘so =) AO} J

where A\, and ), are the diagonal matrices whose entries contain the
eigenvalues of a, and 3, .

o This is the higher-spin generalization of the Cardy formula for the pure
gravity case. Recall:

T
_ - 0
I | VE
SBTZ—27T< 6T—|— 6T> a,=u 0 _\/E u
k
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Entanglement

o Consider a quantum system in a pure (or mixed) state, with density
operator p = |W)(W| (or p = e PH).

o If we partition the Hilbert space as H = Ha ® Hp (B = A°), the
reduced density matrix for subsystem A is defined as py = Trgp.

@ The entanglement entropy S, associated with A is then given by the
Von Neumann entropy of pa: Sa = —Trapalogpa.

o ltisa measure of the correlation between subsystems A and
B, and can be defined at T = 0 (as opposed to Sipermar)-

o It can be useful to characterize different phases in the absence of
spontaneous symmetry breaking and classical order parameters.
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Ryu and Takayanagi (2006)
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Spin Chain Quantum Field Theory
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Entanglement entropy for higher spin theories

@ Our starting observation is that the geodesic distance in AdS3 can be
written as

coshd(P, Q) = %TrR [Pexp (/QP Z\) P exp </PQ A)]

@ Since ent ent in AdS3 is related to the geodesic distance via the
Ryu-Takayanagi prescription, we propose
)] J
PP=PQ=P0

W(P,Q) = Trr [77 exp </QP A) Pexp </PQ A>] J
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Test 1: Recover known CFT results in the absence of higher
spin charges

o For N =2 we get:

C Xp — X
Spads; = 3 log [%]

log {ﬁ;’f sinh [Eﬂ (pp — wo)] sinh [ﬁiﬂ (pp — soo)] }

in agreement with CFT results (Holzhey, Larsen, Wilczek 1994; Calabrese,
Cardy 2004) and holographic calculations (Ryu, Takayanagi, 2006;
Hubeny, Rangamani, Takayanagi, 2007)
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Entanglement entropy proposal

Test 2: Thermal entropy

o At finite T, when system A grows and approaches the full system one
should recover the thermal entropy.

o In R-T this result is recovered because the geodesic then wraps the
horizon, effectively computing its area.

@ In our proposal the Wilson lines become loops in the ¢ direction, and

SEE — kcs |Og |: lim Tr (Pe_fA‘P dy PefAﬂo d‘ﬁ)‘ :|
pP=po

PO—00

= ks log [Po“g]oo Tr(HOISa(A)HOlw(A)) ‘p=P }

o For constant connections Hol,(A) = b=1e*™# b, and (choosing the
representation appropriately) we recover

S = 2kesTr| (A = Xp) ]
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Test 3: Strong subadditivity

@ An important property of entanglement entropy is that it is strongly
subadditive

SEE(A) == SEE(B) > SEE(A U B) ol SEE(A N B) J

@ We do not have a generic proof that our prescription satisfies this
property, but we have verified it numerically in different examples,
including the spin-3 black hole.
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Outlook

o Higher spin theories are an interesting arena to explore holography,
and may offer a window into the dynamics of string theories in certain
limits.

o Many simplifications in three dimensions: truncation to finite number
of higher spin fields, Chern-Simons formulation, some concrete checks
possible with 2d CFT machinery.

o Usual AdS3/CFT, recovers several universal results such as Cardy
entropy formula, entanglement entropy at finite and zero temperature,
etc. We have discussed the generalization of these results to higher
spins in AdSs.

o It would be interesting to have a first principles (field-theoretical)
derivation of entaglement entropy in CFTs deformed by higher spin
operators.
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