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Motivation

Higer spin theories

Broad definition: interacting theories of gravity coupled to a finite (or
infinite) number of massless fields of spin s > 2 .

Motivation from holography: explore AdS/CFT in a regime where the
bulk theory is not just classical (super-)gravity, and the dual theory is
not necessarily strongly-coupled:

◮ Critical O(N) vector models in 3d in the large-N limit dual to higher
spin theories of Fradkin-Vasiliev type in AdS4 (Klebanov, Polyakov
2002; Giombi, Yin 2010-12; Maldacena, Zhiboedov 2011-12)

◮ Two-dimensional CFTs with extended (W -)symmetries in the large-N
limit dual to higher spin theories in AdS3 (Gaberdiel, Gopakumar 2010)

Motivation from GR: singularities, black hole horizons, etc are not
invariant under the higher spin gauge symmetries ⇒ one must
reconsider traditional geometric notions in these setups.
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Motivation

Higer spin theories in AdS3

In 3d it is possible to truncate the tower of higher spin fields to
s ≤ N . The bulk theory reduces to SL(N,R) × SL(N,R)
Chern-Simons theory.

Generalizes the formulation of AdS3 gravity as an SL(2,R)× SL(2,R)
Chern-Simons theory (Achucarro, Townsend 1986; Witten 1988)

In the N = 2 case, many universal results recovered from AdS3/CFT2:
Cardy entropy formula, entanglement entropy, etc.

Challenge: extend the holographic dictionary to the N > 2 case. The
asymptotic symmetry algebra is of WN type (Henneaux, Rey 2010;

Campoleoni et. al. 2010). Black holes, matter probes, partition
functions (Gutperle, Kraus 2011; Ammon et. al. 2011; Castro et. al.

2011-12; Gaberdiel, Hartman, Jin 2011-12; Kraus, Perlmutter 2011-12)
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Motivation

Universal results in standard AdS3/CFT2

The BTZ black hole entropy (via Bekenstein-Hawking) and
holographic entanglement entropy (via Ryu-Takayanagi) match
universal CFT results:

Cardy entropy formula

S = 2π
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(
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(Single interval) Entanglement entropy at finite temperature T = β−1

SA =
c

3
log

(

β

πa
sinh

(

π∆x

β

))

where c is the central charge and a the UV cutoff.

Question: How do we compute (entanglement) entropy in the
presence of higher spin charges?
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AdS3 Gravity as a Chern-Simons theory

AdS3 Gravity as a Chern-Simons theory

Take 3d gravity with a negative cosmological constant Λ = −1/ℓ2 .
Combine dreibein ea and (dual) spin connection ωa = (1/2!)ǫabcωbc

into SL(2,R) connections

A = AaJa = ω +
e

ℓ
, Ā = ĀaJa = ω −

e

ℓ

where the Ja satisfy the so(2, 1) ≃ sl(2,R) algebra [Ja, Jb] = ǫ c
ab Jc .

Defining CS(A) = A ∧ dA+ 2

3
A ∧ A ∧ A one finds (k ≡ ℓ/(4G3))

ICS ≡
k

4π

∫

M

Tr
[

CS(A)− CS(Ā)
]

=
1

16πG3

[∫

M

d3x
√

|g |

(

R+
2

ℓ2

)

−

∫

∂M

ωa ∧ ea

]

gµν = 2Tr [eµeν ]
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AdS3 Gravity as a Chern-Simons theory

AdS3 Gravity as a Chern-Simons theory

Take 3d gravity with a negative cosmological constant Λ = −1/ℓ2 .
Combine dreibein ea and (dual) spin connection ωa = (1/2!)ǫabcωbc

into SL(2,R) connections

A = AaJa = ω +
e

ℓ
, Ā = ĀaJa = ω −

e

ℓ

where the Ja satisfy the so(2, 1) ≃ sl(2,R) algebra [Ja, Jb] = ǫ c
ab Jc .

Defining CS(A) = A ∧ dA+ 2

3
A ∧ A ∧ A one finds (k ≡ ℓ/(4G3))

Einstein’s equations ⇔ Flatness

F = dA+ A ∧ A = 0

F̄ = dĀ+ Ā ∧ Ā = 0
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AdS3 Gravity as a Chern-Simons theory

Boundary conditions in Chern-Simons theory

Consider a radial coordinate ρ (boundary at ρ → ∞) and boundary
coordinates x± = t

ℓ
± ϕ

In the Chern-Simons formulation, the Brown-Henneaux b.c. amount
to (Coussaert, Henneaux, van Driel 1995):

1 Impose A−|∂M → 0, Ā+

∣

∣

∂M
→ 0 . The asymptotic symmetries are

generated by two copies of an affine algebra

[

Jan , J
b
m

]

= i f abc J
c
n+m +

nk

2
δabδn+m,0

2 Further demand A− AAdS3
−−−→
ρ→∞

O(1) (Drinfeld-Sokolov reduction),

the asymptotic symmetries reduce to two copies of the Virasoro algebra
with central charge c = 6k = 3ℓ/(2G3)

[Ln, Lm] = (n −m)Lm+n +
c

12
n
(

n2 − 1
)

δn+m,0
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AdS3 Gravity as a Chern-Simons theory

Let us denote the sl(2,R) generators by Λ±, Λ0 . Fix radial gauge:

A = b−1a(x+, x−) b + b−1db , Ā = b ā(x+, x−) b−1 + b db−1

with b = b(ρ) = eρΛ
0
.

The space of asymptotically anti-de Sitter solutions with a flat
boundary metric can be then parameterized as

a =

(

Λ+ −
T (x+)

k
Λ−

)

dx
+
, ā =

(

−Λ− +
T̄ (x−)

k
Λ+

)

dx
−

with corresponding metrics

ds2

ℓ2
= dρ

2+
1

k

(

T (x+) dx+ 2+T̄ (x−) dx− 2

)

−

(

e
2ρ+

T (x+)T̄ (x−)

k2
e
−2ρ

)

dx
+
dx

−

T , T̄ correspond to the stress tensor. E.g. under a residual gauge
transformation that preserves the D-S boundary conditions,

δT = 2T∂+ǫ+ ǫ ∂+T +
1

2
∂3

+ǫ
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AdS3 Gravity as a Chern-Simons theory
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Examples: global AdS3 has TAdS3
= T̄AdS3

= −k/4 and BTZ has

TBTZ =
1

2
(Mℓ− J) = k

π2ℓ2

β2
−

T̄BTZ =
1

2
(Mℓ+ J) = k

π2ℓ2

β2
+
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AdS3 Gravity as a Chern-Simons theory

Generalizing to N > 2: embeddings

When N > 2 one needs to choose an embedding of the "gravitational"
sl(2) factor into sl(N). The field content in the bulk and the
spectrum of the dual CFT depend on this choice.

Different embeddings are characterized by the way the fundamental
representation of sl(N) decomposes into sl(2) representations
(classified by integer partitions of N).

For concreteness, we will focus on the so-called principal embeddings:
the fundamental representation becomes an irreducible rep. of the
embedded algebra.

In the principal embedding, the bulk theory consists of the metric and
higher spin fields with s = 3, . . . ,N . E.g. φµνρ ∼ Tr[e(µeνeρ)]. The
dual CFT has, in addition to the stress tensor, conformal primaries of
weight 3, . . . ,N ⇒ Irrelevant operators
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AdS3 Gravity as a Chern-Simons theory

WN algebras

One can apply Drinfeld-Sokolov boundary conditions in the higher spin
theory as well. The Virasoro symmetries are retained, but the full
asymptotic algebra is extended by the higher spin currents.

In the principal embedding, the resulting asymptotic symmetry algebra
is a non-linear extension of the Virasoro algebra known as WN algebra
(Henneaux, Rey 2010; Campoleoni et. al. 2010). E.g. W3:

i {Lp , Lq } = (p − q)Lp+q +
c

12
(p3 − p) δp+q,0

i {Lp , Wq } = (2p − q)Wp+q

i {Wp , Wq } = −
σ

3

[

(p − q)(2p2 + 2q2 − pq − 8)Lp+q +
96

c
(p − q) Λp+q

+
c

12
p(p2 − 1)(p2 − 4) δp+q,0

]

with Λp ≡
∑

q∈Z

Lp+qL−q
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Higher spin black holes

Turning on sources

Black hole solutions carrying higher spin charges have been
constructed (Ammon, Gutperle, Kraus, Perlmutter 2011; Castro, Hijano,

Lepage-Jutier, Maloney 2011)

Since black holes represent states in thermodynamic equilibrium, they
must carry chemical potentials which are the thermodynamic
conjugate of the higher spin charges.

The structure of the solutions is

a =
(

Λ+ + Q
)

dx+ +
(

M + . . .
)

dx−

[

Λ−,Q
]

= 0 , Q : VEVs
[

Λ+,M
]

= 0 , M : sources
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Higher spin black holes

Turning on sources

Black hole solutions carrying higher spin charges have been
constructed (Ammon, Gutperle, Kraus, Perlmutter 2011; Castro, Hijano,

Lepage-Jutier, Maloney 2011)

Since black holes represent states in thermodynamic equilibrium, they
must carry chemical potentials which are the thermodynamic
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)
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+ +
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dx

−

We are relaxing the AAdS boundary conditions (a = 0) by sourcing
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Higher spin black holes

Ward identities

Momentarily going back to N = 2 for simplicity:

a =

(

0 T++

1 0

)

dx+ +

(

−1

2
∂+µ µT++ − 1

2
∂2
+µ

µ 1

2
∂+µ

)

dx−

Flatness (bulk EOM) is equivalent to

∂−T++ = 2T++ ∂+µ+ µ∂+T++ −
1

2
∂3

+µ

which is the stress tensor Ward identity in the presence of a coupling
∫

d2x µT++ .

Important subtlety: µ corresponds to a non-trivial boundary metric; in
the Euclidean formulation, globally-defined black hole solutions have
constant T++ , and (a constant) µ can be incorporated via the
modular parameter of the boundary torus instead ⇒ for N = 2 we can
still have black hole solutions with a− = 0 . For N > 2 we source
irrelevant operators and a− 6= 0 .
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Higher spin black holes

Euclidean continuation: smoothness conditions

Consider the analytical continuation x+ → z , x− → −z̄ . In the
Euclidean formulation the topology of the bulk manifold is that of a
solid torus, and the boundary torus is defined by the identifications
z ≃ z + 2π ≃ z + 2πτ (e.g. τBTZ = iβ(1 +Ω)/(2π))

tE

φ

ρ
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Higher spin black holes

Euclidean continuation: smoothness conditions

Consider the analytical continuation x+ → z , x− → −z̄ . In the
Euclidean formulation the topology of the bulk manifold is that of a
solid torus, and the boundary torus is defined by the identifications
z ≃ z + 2π ≃ z + 2πτ (e.g. τBTZ = iβ(1 +Ω)/(2π))

The holonomy under z ≃ z + 2πτ is

Holτ,τ̄ (A) = b−1eh b , Holτ,τ̄ (Ā) = b e h̄b−1

where the matrices h and h̄ are defined as

h = 2π (τaz + τ̄az̄) , h̄ = 2π (τ āz + τ̄ āz̄) .

Demanding that the holonomy around the contractible cycle is trivial
provides a gauge-invariant characterization of a smooth black hole
horizon (Gutperle, Kraus 2011).
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Thermodynamics of higher spin black holes

Entropy from Euclidean variational principle

In the saddle-point approximation (large T and c) the CFT partition
function is obtained from the Euclidean on-shell action as

lnZ = −I
(E)
os = −

(

I
(E)
CS + I

(E)
Bdy

)∣

∣

∣

os

where

I
(E)
CS =

ikcs

4π

∫

M

Tr
[

CS(A)− CS(Ā)
]

and IBby is a boundary term chosen such that

δ lnZ ∼ T δτ − T̄ δτ̄ +

N
∑

j=3

(

Qjδµj − Q̄jδµ̄j

)

The entropy can then be obtained by performing a Legendre
transform. As a function of the charges, S satisfies

δS ∼ −τδT + τ̄ δT̄ +

N
∑

j=3

(

−µjδQj + µ̄jδQ̄j

)
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Thermodynamics of higher spin black holes

Higher spin black hole entropy

We constructed boundary terms suited to black hole solutions in
Drinfeld-Sokolov form.

Evaluating the on-shell action (free energy) and Legendre-transforming
we found (de Boer, J.I.J., 2013)

S = −2πikcs Tr
[

(az + az̄) (τaz + τ̄az̄)− (āz + āz̄) (τ āz + τ̄ āz̄)
]

In the BTZ branch the smoothness conditions can be encoded as
spec

(

2π (τaz + τ̄az̄)
)

= spec
(

2πiΛ0
)

. Using this it is easy to prove

that our entropy formula satisfies the first law (integrability).

Moreover, it is valid for both static and rotating higher spin black
holes, in any embedding (generalizes (Canto, Bañados, Theisen, 2012))
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Thermodynamics of higher spin black holes

More fun with the entropy

For constant connections, aϕ = (az + az̄) and (τaz + τ̄az̄) commute
by the e.o.m. Together with (τaz + τ̄az̄) = u−1

(

iΛ0
)

u from the
holonomy conditions this implies

S = 2πkcsTr
[

(

λϕ − λ̄ϕ

)

Λ0

]

where λϕ and λ̄ϕ are the diagonal matrices whose entries contain the
eigenvalues of aϕ and āϕ .

This is the higher-spin generalization of the Cardy formula for the pure
gravity case. Recall:

SBTZ = 2π

(
√

c

6
T +

√

c

6
T̄

)

aϕ = u−1





√

T
k

0

0 −
√

T
k



 u

c = 6k
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Entanglement entropy proposal

Entanglement

Consider a quantum system in a pure (or mixed) state, with density
operator ρ = |Ψ〉〈Ψ| (or ρ = e−βH).

If we partition the Hilbert space as H = HA ⊗HB (B = Ac), the
reduced density matrix for subsystem A is defined as ρA = TrBρ.

The entanglement entropy SA associated with A is then given by the
Von Neumann entropy of ρA: SA = −TrA ρA log ρA.

It is a non-local measure of the correlation between subsystems A and
B , and can be defined at T = 0 (as opposed to Sthermal ).

It can be useful to characterize different phases in the absence of
spontaneous symmetry breaking and classical order parameters.
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Ryu and Takayanagi (2006)

SA =

Area(γA)
4GN

≡ γA



Entanglement entropy proposal

Entanglement entropy for higher spin theories

Our starting observation is that the geodesic distance in AdS3 can be
written as

cosh d(P ,Q) =
1

2
TrR

[

P exp

(
∫ P

Q

Ā

)

P exp

(
∫ Q

P

A

)]

Since ent ent in AdS3 is related to the geodesic distance via the
Ryu-Takayanagi prescription, we propose

Sent = kcs log

[

limρ0→∞ W (P ,Q)
∣

∣

∣

ρP=ρQ=ρ0

]

where

W (P ,Q) ≡ TrR

[

P exp

(∫ P

Q

Ā

)

P exp

(∫ Q

P

A

)]
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Entanglement entropy proposal

Test 1: Recover known CFT results in the absence of higher

spin charges

For N = 2 we get:

SPAdS3
=

c

3
log

[

xP − xQ

a

]

SAdS3
=

c

3
log

[

ℓ

a
sin

(

ϕP − ϕQ

2

)]

SBTZ =
c

6
log

{

β+β−
π2a2

sinh

[

ℓ

β+
π (ϕP − ϕQ)

]

sinh

[

ℓ

β−
π (ϕP − ϕQ)

]}

in agreement with CFT results (Holzhey, Larsen, Wilczek 1994; Calabrese,

Cardy 2004) and holographic calculations (Ryu,Takayanagi, 2006;

Hubeny, Rangamani, Takayanagi, 2007)
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Entanglement entropy proposal

Test 2: Thermal entropy

At finite T , when system A grows and approaches the full system one
should recover the thermal entropy.

In R-T this result is recovered because the geodesic then wraps the
horizon, effectively computing its area.

In our proposal the Wilson lines become loops in the φ direction, and

SEE → kcs log

[

lim
ρ0→∞

Tr
(

Pe−
∮
Āϕ dϕ Pe

∮
Aϕ dϕ

)∣

∣

∣

ρ=ρ0

]

= kcs log

[

lim
ρ0→∞

Tr
(

Holϕ(Ā)Holϕ(A)
)∣

∣

∣

ρ=ρ0

]

For constant connections Holϕ(A) = b−1e2πaϕb, and (choosing the
representation appropriately) we recover

S = 2πkcsTr
[

(

λϕ − λ̄ϕ

)

Λ0

]
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Entanglement entropy proposal

Test 3: Strong subadditivity

An important property of entanglement entropy is that it is strongly
subadditive

SEE (A) + SEE (B) ≥ SEE (A ∪ B) + SEE (A ∩ B)

We do not have a generic proof that our prescription satisfies this
property, but we have verified it numerically in different examples,
including the spin-3 black hole.
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Outlook

Outlook

Higher spin theories are an interesting arena to explore holography,
and may offer a window into the dynamics of string theories in certain
limits.

Many simplifications in three dimensions: truncation to finite number
of higher spin fields, Chern-Simons formulation, some concrete checks
possible with 2d CFT machinery.

Usual AdS3/CFT2 recovers several universal results such as Cardy
entropy formula, entanglement entropy at finite and zero temperature,
etc. We have discussed the generalization of these results to higher
spins in AdS3.

It would be interesting to have a first principles (field-theoretical)
derivation of entaglement entropy in CFTs deformed by higher spin
operators.
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