(Entanglement) Entropy in three-dimensional higher spin theories

Juan I. Jottar

Based on:

arXiv:1302.0816 + to appear with Jan de Boer

Juan I. Jottar (Amsterdam)

Holograv workshop 2013

Helsinki March 7th, 2013

Higer spin theories

- Broad definition: interacting theories of gravity coupled to a finite (or infinite) number of massless fields of spin s > 2.
- Motivation from holography: explore AdS/CFT in a regime where the bulk theory is not just classical (super-)gravity, and the dual theory is not necessarily strongly-coupled:
 - Critical O(N) vector models in 3d in the large-N limit dual to higher spin theories of Fradkin-Vasiliev type in AdS₄ (Klebanov, Polyakov 2002; Giombi, Yin 2010-12; Maldacena, Zhiboedov 2011-12)
 - ► Two-dimensional CFTs with extended (*W*-)symmetries in the large-*N* limit dual to higher spin theories in AdS₃ (Gaberdiel, Gopakumar 2010)
- Motivation from GR: singularities, black hole horizons, etc are not invariant under the higher spin gauge symmetries ⇒ one must reconsider traditional geometric notions in these setups.

Juan I. Jottar (Amsterdam)

Holograv workshop 2013

Higer spin theories in AdS₃

- In 3d it is possible to truncate the tower of higher spin fields to s ≤ N. The bulk theory reduces to SL(N, ℝ) × SL(N, ℝ) Chern-Simons theory.
- Generalizes the formulation of AdS_3 gravity as an $SL(2, \mathbb{R}) \times SL(2, \mathbb{R})$ Chern-Simons theory (Achucarro, Townsend 1986; Witten 1988)
- In the N = 2 case, many universal results recovered from AdS₃/CFT₂: Cardy entropy formula, entanglement entropy, etc.
- Challenge: extend the holographic dictionary to the N > 2 case. The asymptotic symmetry algebra is of W_N type (Henneaux, Rey 2010; Campoleoni et. al. 2010). Black holes, matter probes, partition functions (Gutperle, Kraus 2011; Ammon et. al. 2011; Castro et. al. 2011-12; Gaberdiel, Hartman, Jin 2011-12; Kraus, Perlmutter 2011-12)

Universal results in standard AdS_3/CFT_2

 The BTZ black hole entropy (via Bekenstein-Hawking) and holographic entanglement entropy (via Ryu-Takayanagi) match universal CFT results:

Cardy entropy formula

$$S = 2\pi \sqrt{\frac{c}{6} \left(L_0 - \frac{c}{24}\right)} + 2\pi \sqrt{\frac{c}{6} \left(\overline{L}_0 - \frac{c}{24}\right)}$$

(Single interval) Entanglement entropy at finite temperature $T = \beta^{-1}$

$$S_A = \frac{c}{3} \log \left(\frac{\beta}{\pi a} \sinh \left(\frac{\pi \Delta x}{\beta} \right) \right)$$

where c is the central charge and a the UV cutoff.

• Question: How do we compute (entanglement) entropy in the presence of higher spin charges?

Juan I. Jottar (Amsterdam)

Holograv workshop 2013

Helsinki March 7th, 2013

AdS₃ Gravity as a Chern-Simons theory

• Take 3*d* gravity with a negative cosmological constant $\Lambda = -1/\ell^2$. Combine dreibein e^a and (dual) spin connection $\omega^a = (1/2!)\epsilon^{abc}\omega_{bc}$ into $SL(2, \mathbb{R})$ connections

$$A = A^a J_a = \omega + rac{e}{\ell} \,, \qquad ar{A} = ar{A}^a J_a = \omega - rac{e}{\ell}$$

where the J_a satisfy the $\mathit{so}(2,1)\simeq \mathit{sl}(2,\mathbb{R})$ algebra $[J_a,J_b]=\epsilon_{ab}{}^c\,J_c$.

• Defining $CS(A) = A \wedge dA + \frac{2}{3}A \wedge A \wedge A$ one finds $(k \equiv \ell/(4G_3))$

$$g_{\mu\nu} = 2\text{Tr}\left[e_{\mu}e_{\nu}\right]$$
$$I_{CS} \equiv \frac{k}{4\pi} \int_{M} \text{Tr}\left[CS(A) - CS(\bar{A})\right]$$
$$= \frac{1}{16\pi G_{3}} \left[\int_{M} d^{3}x \sqrt{|g|} \left(\mathcal{R} + \frac{2}{\ell^{2}}\right) - \int_{\partial M} \omega^{a} \wedge e_{a}\right]$$

AdS₃ Gravity as a Chern-Simons theory

• Take 3*d* gravity with a negative cosmological constant $\Lambda = -1/\ell^2$. Combine dreibein e^a and (dual) spin connection $\omega^a = (1/2!)\epsilon^{abc}\omega_{bc}$ into $SL(2, \mathbb{R})$ connections

$$A = A^a J_a = \omega + rac{e}{\ell} \,, \qquad ar{A} = ar{A}^a J_a = \omega - rac{e}{\ell}$$

where the J_a satisfy the $\mathit{so}(2,1)\simeq \mathit{sl}(2,\mathbb{R})$ algebra $[J_a,J_b]=\epsilon_{ab}{}^c\,J_c$.

• Defining $CS(A) = A \wedge dA + \frac{2}{3}A \wedge A \wedge A$ one finds $(k \equiv \ell/(4G_3))$

Einstein's equations \Leftrightarrow Flatness $F = dA + A \land A = 0$ $\overline{F} = d\overline{A} + \overline{A} \land \overline{A} = 0$

Boundary conditions in Chern-Simons theory

- Consider a radial coordinate ρ (boundary at $\rho \to \infty$) and boundary coordinates $x^{\pm} = \frac{t}{\ell} \pm \varphi$
- In the Chern-Simons formulation, the Brown-Henneaux b.c. amount to (Coussaert, Henneaux, van Driel 1995):
 - Impose $A_{-}|_{\partial M} \rightarrow 0$, $\bar{A}_{+}|_{\partial M} \rightarrow 0$. The asymptotic symmetries are generated by two copies of an affine algebra

$$\left[J_n^a, J_m^b\right] = i f_c^{ab} J_{n+m}^c + \frac{nk}{2} \delta^{ab} \delta_{n+m,0}$$

⊘ Further demand $A - A_{AdS_3} \xrightarrow{\rho \to \infty} O(1)$ (Drinfeld-Sokolov reduction), the asymptotic symmetries reduce to two copies of the Virasoro algebra with central charge $c = 6k = 3\ell/(2G_3)$

$$[L_n, L_m] = (n-m)L_{m+n} + \frac{c}{12}n(n^2-1)\delta_{n+m,0}$$

• Let us denote the $sl(2, \mathbb{R})$ generators by Λ^{\pm} , Λ^{0} . Fix radial gauge: $A = b^{-1}a(x^{+}, x^{-}) b + b^{-1}db$, $\bar{A} = b \bar{a}(x^{+}, x^{-}) b^{-1} + b db^{-1}$ with $b = b(\rho) = e^{\rho \Lambda^{0}}$.

• The space of asymptotically anti-de Sitter solutions with a flat boundary metric can be then parameterized as

$$a = \left(\Lambda^+ - \frac{T(x^+)}{k}\Lambda^-\right)dx^+, \quad \bar{a} = \left(-\Lambda^- + \frac{\bar{T}(x^-)}{k}\Lambda^+\right)dx^-$$

with corresponding metrics

$$\frac{ds^2}{\ell^2} = d\rho^2 + \frac{1}{k} \left(T(x^+) \, dx^{+\,2} + \bar{T}(x^-) \, dx^{-\,2} \right) - \left(e^{2\rho} + \frac{T(x^+) \, \bar{T}(x^-)}{k^2} \, e^{-2\rho} \right) dx^+ \, dx^-$$

 T, \overline{T} correspond to the stress tensor. E.g. under a residual gauge transformation that preserves the D-S boundary conditions,

$$\delta T = 2T\partial_{+}\epsilon + \epsilon \partial_{+}T + \frac{1}{2}\partial_{+}^{3}\epsilon$$

• Let us denote the $s/(2, \mathbb{R})$ generators by Λ^{\pm} , Λ^{0} . Fix radial gauge: $A = b^{-1}a(x^{+}, x^{-}) b + b^{-1}db$, $\bar{A} = b \bar{a}(x^{+}, x^{-}) b^{-1} + b db^{-1}$ with $b = b(\rho) = e^{\rho \Lambda^{0}}$.

• The space of asymptotically anti-de Sitter solutions with a flat boundary metric can be then parameterized as

$$a = \left(\Lambda^+ - \frac{T(x^+)}{k}\Lambda^-\right)dx^+, \quad \bar{a} = \left(-\Lambda^- + \frac{\bar{T}(x^-)}{k}\Lambda^+\right)dx^-$$

with corresponding metrics

$$\frac{ds^2}{\ell^2} = d\rho^2 + \frac{1}{k} \left(T(x^+) \, dx^{+\,2} + \bar{T}(x^-) \, dx^{-\,2} \right) - \left(e^{2\rho} + \frac{T(x^+) \, \bar{T}(x^-)}{k^2} \, e^{-2\rho} \right) dx^+ \, dx^-$$

Examples: global AdS₃ has $T_{AdS_3} = \overline{T}_{AdS_3} = -k/4$ and BTZ has

$$T_{BTZ} = rac{1}{2} \left(M\ell - J
ight) = k rac{\pi^2 \ell^2}{\beta_-^2} \qquad ar{T}_{BTZ} = rac{1}{2} \left(M\ell + J
ight) = k rac{\pi^2 \ell^2}{\beta_+^2}$$

Generalizing to N > 2: embeddings

- When N > 2 one needs to choose an embedding of the "gravitational" sl(2) factor into sl(N). The field content in the bulk and the spectrum of the dual CFT depend on this choice.
- Different embeddings are characterized by the way the fundamental representation of sl(N) decomposes into sl(2) representations (classified by integer partitions of N).
- For concreteness, we will focus on the so-called principal embeddings: the fundamental representation becomes an irreducible rep. of the embedded algebra.
- In the principal embedding, the bulk theory consists of the metric and higher spin fields with s = 3, ..., N. E.g. $\phi_{\mu\nu\rho} \sim \text{Tr}[e_{(\mu}e_{\nu}e_{\rho})]$. The dual CFT has, in addition to the stress tensor, conformal primaries of weight $3, ..., N \Rightarrow$ Irrelevant operators

W_N algebras

- One can apply Drinfeld-Sokolov boundary conditions in the higher spin theory as well. The Virasoro symmetries are retained, but the full asymptotic algebra is extended by the higher spin currents.
- In the principal embedding, the resulting asymptotic symmetry algebra is a non-linear extension of the Virasoro algebra known as W_N algebra (Henneaux, Rey 2010; Campoleoni et. al. 2010). E.g. W_3 :

$$i \{ \mathcal{L}_{p}, \mathcal{L}_{q} \} = (p-q) \mathcal{L}_{p+q} + \frac{c}{12} (p^{3}-p) \delta_{p+q,0}$$

$$i \{ \mathcal{L}_{p}, \mathcal{W}_{q} \} = (2p-q) \mathcal{W}_{p+q}$$

$$i \{ \mathcal{W}_{p}, \mathcal{W}_{q} \} = -\frac{\sigma}{3} \left[(p-q)(2p^{2}+2q^{2}-pq-8) \mathcal{L}_{p+q} + \frac{96}{c} (p-q) \Lambda_{p+q} + \frac{c}{12} p(p^{2}-1)(p^{2}-4) \delta_{p+q,0} \right]$$
with $\Lambda_{p} \equiv \sum_{q \in \mathbb{Z}} \mathcal{L}_{p+q} \mathcal{L}_{-q}$
Juan I. Jottar (Amsterdam) Hologray workshop 2013 Helsinki March 7th,

9

Turning on sources

- Black hole solutions carrying higher spin charges have been constructed (Ammon, Gutperle, Kraus, Perlmutter 2011; Castro, Hijano, Lepage-Jutier, Maloney 2011)
- Since black holes represent states in thermodynamic equilibrium, they must carry chemical potentials which are the thermodynamic conjugate of the higher spin charges.
- The structure of the solutions is

$$a = (\Lambda^+ + Q)dx^+ + (M + \ldots)dx^-$$

$$\begin{bmatrix} \Lambda^-, Q \end{bmatrix} = 0, \qquad Q : VEVs$$
$$\begin{bmatrix} \Lambda^+, M \end{bmatrix} = 0, \qquad M : \text{ sources}$$

Turning on sources

- Black hole solutions carrying higher spin charges have been constructed (Ammon, Gutperle, Kraus, Perlmutter 2011; Castro, Hijano, Lepage-Jutier, Maloney 2011)
- Since black holes represent states in thermodynamic equilibrium, they must carry chemical potentials which are the thermodynamic conjugate of the higher spin charges.
- The structure of the solutions is

$$a = \left(\Lambda^{+} + Q\right) dx^{+} + \left(M + \dots\right) dx^{-}$$

$$a = \left(\begin{array}{ccc} 0 & \frac{Q_{2}}{2} & Q_{3} \\ 1 & 0 & \frac{Q_{2}}{2} \\ 0 & 1 & 0 \end{array}\right) dx^{+} + \left(\begin{array}{ccc} -\frac{\mu_{3}Q_{2}}{6} & \frac{\mu_{2}Q_{2}}{2} + \mu_{3}Q_{3} & \mu_{2}Q_{3} + \frac{\mu_{3}Q_{2}^{2}}{4} \\ \mu_{2} & \frac{\mu_{3}Q_{2}}{3} & \frac{\mu_{2}Q_{2}}{2} + \mu_{3}Q_{3} \\ \mu_{3} & \mu_{2} & -\frac{\mu_{3}Q_{2}}{6} \end{array}\right) dx^{-}$$

Turning on sources

- Black hole solutions carrying higher spin charges have been constructed (Ammon, Gutperle, Kraus, Perlmutter 2011; Castro, Hijano, Lepage-Jutier, Maloney 2011)
- Since black holes represent states in thermodynamic equilibrium, they must carry chemical potentials which are the thermodynamic conjugate of the higher spin charges.
- The structure of the solutions is

$$a = (\Lambda^+ + Q)dx^+ + (M + \ldots)dx^-$$

$$\begin{bmatrix} \Lambda^-, Q \end{bmatrix} = 0, \qquad Q : VEVs$$
$$\begin{bmatrix} \Lambda^+, M \end{bmatrix} = 0, \qquad M : \text{ sources}$$

Ward identities

• Momentarily going back to N = 2 for simplicity:

$$a = \begin{pmatrix} 0 & T_{++} \\ 1 & 0 \end{pmatrix} dx^{+} + \begin{pmatrix} -\frac{1}{2}\partial_{+}\mu & \mu T_{++} - \frac{1}{2}\partial_{+}^{2}\mu \\ \mu & \frac{1}{2}\partial_{+}\mu \end{pmatrix} dx^{-}$$

Flatness (bulk EOM) is equivalent to

$$\partial_{-} T_{++} = 2 T_{++} \partial_{+} \mu + \mu \partial_{+} T_{++} - \frac{1}{2} \partial_{+}^{3} \mu$$

which is the stress tensor Ward identity in the presence of a coupling $\int d^2x\,\mu\,T_{++}$.

Important subtlety: μ corresponds to a non-trivial boundary metric; in the Euclidean formulation, globally-defined black hole solutions have constant T₊₊, and (a constant) μ can be incorporated via the modular parameter of the boundary torus instead ⇒ for N = 2 we can still have black hole solutions with a₋ = 0. For N > 2 we source irrelevant operators and a₋ ≠ 0.

Euclidean continuation: smoothness conditions

• Consider the analytical continuation $x^+ \to z$, $x^- \to -\bar{z}$. In the Euclidean formulation the topology of the bulk manifold is that of a solid torus, and the boundary torus is defined by the identifications $z \simeq z + 2\pi \simeq z + 2\pi \tau$ (e.g. $\tau_{BTZ} = i\beta(1+\Omega)/(2\pi)$)

Euclidean continuation: smoothness conditions

- Consider the analytical continuation $x^+ \to z$, $x^- \to -\bar{z}$. In the Euclidean formulation the topology of the bulk manifold is that of a solid torus, and the boundary torus is defined by the identifications $z \simeq z + 2\pi \simeq z + 2\pi \tau$ (e.g. $\tau_{BTZ} = i\beta(1+\Omega)/(2\pi)$)
- The holonomy under $z \simeq z + 2\pi\tau$ is

$$\operatorname{Hol}_{\tau,\bar{\tau}}(A) = b^{-1}e^{h}b, \qquad \operatorname{Hol}_{\tau,\bar{\tau}}(\bar{A}) = b e^{\bar{h}}b^{-1}$$

where the matrices h and \bar{h} are defined as

$$h = 2\pi \left(\tau a_z + \overline{\tau} a_{\overline{z}} \right), \qquad \overline{h} = 2\pi \left(\tau \overline{a}_z + \overline{\tau} \overline{a}_{\overline{z}} \right).$$

• Demanding that the holonomy around the contractible cycle is trivial provides a gauge-invariant characterization of a smooth black hole horizon (Gutperle, Kraus 2011).

Juan I. Jottar (Amsterdam)

Holograv workshop 2013

Helsinki March 7th, 2013

Entropy from Euclidean variational principle

• In the saddle-point approximation (large *T* and *c*) the CFT partition function is obtained from the Euclidean on-shell action as

$$\ln Z = -I_{os}^{(E)} = -\left(I_{CS}^{(E)} + I_{Bdy}^{(E)}\right)\Big|_{os}$$

where

$$I_{CS}^{(E)} = \frac{ik_{cs}}{4\pi} \int_{M} \text{Tr}\Big[CS(A) - CS(\bar{A})\Big]$$

and I_{Bby} is a boundary term chosen such that

$$\delta \ln Z \sim T \delta \tau - \bar{T} \delta \bar{\tau} + \sum_{j=3}^{N} \left(Q_j \delta \mu_j - \bar{Q}_j \delta \bar{\mu}_j \right)$$

• The entropy can then be obtained by performing a Legendre transform. As a function of the charges, *S* satisfies

$$\delta S \sim -\tau \delta T + \bar{\tau} \delta \bar{T} + \sum_{j=3}^{N} \left(-\mu_j \delta Q_j + \bar{\mu}_j \delta \bar{Q}_j \right)$$

Juan I. Jottar (Amsterdam)

Holograv workshop 2013

13

Higher spin black hole entropy

- We constructed boundary terms suited to black hole solutions in Drinfeld-Sokolov form.
- Evaluating the on-shell action (free energy) and Legendre-transforming we found (de Boer, J.I.J., 2013)

$$\mathcal{S}=-2\pi i k_{cs} \operatorname{Tr} \left[\left(a_{z}+a_{ar{z}}
ight) \left(au a_{z}+ar{ au} a_{ar{z}}
ight) - \left(ar{a}_{z}+ar{a}_{ar{z}}
ight) \left(au ar{a}_{z}+ar{ au} ar{a}_{ar{z}}
ight)
ight]$$

- In the BTZ branch the smoothness conditions can be encoded as $\operatorname{spec}(2\pi (\tau a_z + \overline{\tau} a_{\overline{z}})) = \operatorname{spec}(2\pi i \Lambda^0)$. Using this it is easy to prove that our entropy formula satisfies the first law (integrability).
- Moreover, it is valid for both static and rotating higher spin black holes, in any embedding (generalizes (Canto, Bañados, Theisen, 2012))

More fun with the entropy

 For constant connections, a_φ = (a_z + a_{z̄}) and (τa_z + τ̄a_{z̄}) commute by the e.o.m. Together with (τa_z + τ̄a_{z̄}) = u⁻¹ (iΛ⁰) u from the holonomy conditions this implies

$$S=2\pi k_{cs} {
m Tr} \Big[ig(\lambda_arphi -ar\lambda_arphi ig) \, {
m \Lambda}^0 \Big]$$

where λ_{φ} and $\bar{\lambda}_{\varphi}$ are the diagonal matrices whose entries contain the eigenvalues of a_{φ} and \bar{a}_{φ} .

• This is the higher-spin generalization of the Cardy formula for the pure gravity case. Recall:

$$S_{BTZ} = 2\pi \left(\sqrt{\frac{c}{6}T} + \sqrt{\frac{c}{6}T} \right) \qquad a_{\varphi} = u^{-1} \left(\sqrt{\frac{T}{k}} \quad 0 \\ 0 \quad -\sqrt{\frac{T}{k}} \right) u$$

$$c = 6k$$

Entanglement

- Consider a quantum system in a pure (or mixed) state, with density operator $\rho = |\Psi\rangle\langle\Psi|$ (or $\rho = e^{-\beta H}$).
- If we partition the Hilbert space as H = H_A ⊗ H_B (B = A^c), the reduced density matrix for subsystem A is defined as ρ_A = Tr_Bρ.
- The entanglement entropy S_A associated with A is then given by the Von Neumann entropy of ρ_A : $S_A = -\text{Tr}_A \rho_A \log \rho_A$.
- It is a non-local measure of the correlation between subsystems A and B, and can be defined at T = 0 (as opposed to $S_{thermal}$).
- It can be useful to characterize different phases in the absence of spontaneous symmetry breaking and classical order parameters.

Ryu and Takayanagi (2006)

Entanglement entropy for higher spin theories

 $\bullet\,$ Our starting observation is that the geodesic distance in AdS_3 can be written as

$$\cosh d(P,Q) = \frac{1}{2} \operatorname{Tr}_{\mathcal{R}} \left[\mathcal{P} \exp \left(\int_{Q}^{P} \bar{A} \right) \, \mathcal{P} \exp \left(\int_{P}^{Q} A \right) \right]$$

 $\bullet\,$ Since ent ent in AdS_3 is related to the geodesic distance via the Ryu-Takayanagi prescription, we propose

$$S_{ent} = k_{cs} \log \left[\lim_{
ho_0 \to \infty} W(P, Q) \Big|_{
ho_P =
ho_Q =
ho_0}
ight]$$

where

$$W(P,Q) \equiv \operatorname{Tr}_{\mathcal{R}}\left[\mathcal{P}\exp\left(\int_{Q}^{P}\bar{A}\right) \mathcal{P}\exp\left(\int_{P}^{Q}A\right)\right]$$

Test 1: Recover known CFT results in the absence of higher spin charges

• For N = 2 we get:

$$S_{PAdS_3} = \frac{c}{3} \log \left[\frac{x_P - x_Q}{a} \right]$$

$$S_{AdS_3} = \frac{c}{3} \log \left[\frac{\ell}{a} \sin \left(\frac{\varphi_P - \varphi_Q}{2} \right) \right]$$

$$S_{BTZ} = \frac{c}{6} \log \left\{ \frac{\beta_+ \beta_-}{\pi^2 a^2} \sinh \left[\frac{\ell}{\beta_+} \pi \left(\varphi_P - \varphi_Q \right) \right] \sinh \left[\frac{\ell}{\beta_-} \pi \left(\varphi_P - \varphi_Q \right) \right] \right\}$$

in agreement with CFT results (Holzhey, Larsen, Wilczek 1994; Calabrese, Cardy 2004) and holographic calculations (Ryu, Takayanagi, 2006; Hubeny, Rangamani, Takayanagi, 2007)

Test 2: Thermal entropy

- At finite *T*, when system *A* grows and approaches the full system one should recover the thermal entropy.
- In R-T this result is recovered because the geodesic then wraps the horizon, effectively computing its area.
- ${\, \bullet \,}$ In our proposal the Wilson lines become loops in the ϕ direction, and

$$\begin{split} S_{EE} &\to k_{cs} \log \left[\lim_{\rho_0 \to \infty} \, \mathrm{Tr} \left(\mathcal{P} e^{-\oint \bar{A}_{\varphi} \, d\varphi} \, \mathcal{P} e^{\oint A_{\varphi} \, d\varphi} \right) \Big|_{\rho = \rho_0} \right] \\ &= k_{cs} \log \left[\lim_{\rho_0 \to \infty} \, \mathrm{Tr} \Big(\mathrm{Hol}_{\varphi}(\bar{A}) \mathrm{Hol}_{\varphi}(A) \Big) \Big|_{\rho = \rho_0} \right] \end{split}$$

• For constant connections $\operatorname{Hol}_{\varphi}(A) = b^{-1}e^{2\pi a_{\varphi}}b$, and (choosing the representation appropriately) we recover

$$S = 2\pi k_{cs} \mathrm{Tr} \Big[\left(\lambda_{\varphi} - \bar{\lambda}_{\varphi}
ight) \Lambda^{0} \Big]$$

Test 3: Strong subadditivity

• An important property of entanglement entropy is that it is strongly subadditive

$$S_{EE}(A) + S_{EE}(B) \ge S_{EE}(A \cup B) + S_{EE}(A \cap B)$$

• We do not have a generic proof that our prescription satisfies this property, but we have verified it numerically in different examples, including the spin-3 black hole.

Outlook

- Higher spin theories are an interesting arena to explore holography, and may offer a window into the dynamics of string theories in certain limits.
- Many simplifications in three dimensions: truncation to finite number of higher spin fields, Chern-Simons formulation, some concrete checks possible with 2d CFT machinery.
- Usual AdS_3/CFT_2 recovers several universal results such as Cardy entropy formula, entanglement entropy at finite and zero temperature, etc. We have discussed the generalization of these results to higher spins in AdS_3 .
- It would be interesting to have a first principles (field-theoretical) derivation of entaglement entropy in CFTs deformed by higher spin operators.