Thermal donor generation in Czochralski silicon particle detectors

M.Bruzzi¹⁾, J.Härkönen²⁾, Z. Li³⁾, P.Luukka²⁾, D. Menichelli¹⁾, E. Tuovinen¹⁾

¹⁾ University of Florence ²⁾Helsinki Institute of Physics, CERN/PH, Switzerland ³⁾Brookhaven National Laboratory, Upton, NY11973-5000, USA

In Framework of CERN RD50 Collaboration

OUTLINE

- Motivation
- •Thermal Donors (TD) in oxygen rich silicon
- Processing of MCz-Si detectors with TDs
- Introduction of TDs
- •DLTS spectra
- Annealing of p-type MCz-Si with TDs
- Conclusions

Motivation

 n+/p-/p+ detector signal comes from electrons having three times higher mobility than the holes

•The detectors used in particle tracking systems must be fully depleted at reasonably low operating voltage

 $\boldsymbol{\cdot}$ By introduction of TDs, the $V_{\rm fd}$ of detectors can be adjusted in wide range

Thermal Donors in Cz-Si

•TDs are oxygen complexes that form shallow states in Si band gap below the conduction band.

•High O content leads to Thermal Donor (TD) formation at temperatures 400°C - 600°C.

•TD formation can be enhanced if H is present.

```
•Typical process steps at 400^{\circ}C - 600^{\circ}C

- Aluminum sintering

(e.g. 30min @ 450^{\circ}C)

- Passivation insulators over metals

(LTO,TEOS etc ~600^{\circ}C)

+ H<sub>2</sub> from Si<sub>3</sub>H<sub>4</sub> process gas)
```

(b) Si ll o o o o o o o o

D.J. Chadi, Phys. Rev. Lett. 77, 861-864 (1996)

Thermal Donor generation

- TD formation depends on
 - O concentration in silicon
 - Temperature
 - Amount of H in detector processing

Sample processing

n⁺/p⁻/p⁺ diodes with p-stops
TD generation 35 and 45 minutes
5 mask levels

•p⁺/p⁻/p⁺ diodes

- •TD generation 60,70 and 80 minutes
- •4 mask levels
- TD induced type-inversion

Thermal Donor generation (experimental results)

•O concentration from FTIR measurements •Thick reference wefer

- Thick reference wafer
- •Center 4,95*1017 cm-3
- •Right 4,89*10¹⁷ cm⁻³
- •Left 4,93*10¹⁷ cm⁻³
- •Right 4,93*10¹⁷ cm⁻³

Thermal Donor generation (experimental results)

Thermal Donor generation (experimental results)

Leakage current

Deep Level Transient Spectroscopy

Annealing of proton irradiated detectors

•1,5*10¹⁴ cm⁻² 1MeV neutron equivalent.

Conclusions

•Thermal Donors can be introduced into MCz-Si detectors at 430° C during the aluminum sintering.

•It is low temperature, low cost process, no additional process complexity >> feasible solution for large scale experiments ?

·Effective resistivity range is very wide in TD-process 500 Ωcm < σ < ~10 k\Omega cm

•No increase of leakage current

•With this method it is possible to adjust the V_{fd} of p-type MCz-Si n+/p-/p+ detectors

