Test beam results of Current Injected Detectors (CID) irradiated up to 5×10¹⁵ n_{eq}/cm²)

J. Härkönen¹), V. Eremin²), E. Tuovinen¹), P. Luukka¹), T. Mäenpää¹), E. Tuovinen¹), E. Tuominen¹), Y. Gotra³), L. Spiegel³), L, Wiik⁴), M. Koehler⁴)

¹⁾Helsinki Institute of Physics, Finland
²⁾Ioffe Polytechnical Institute, Russia
³⁾Fermi National Laboratory, USA
⁴⁾ University of Karlsruhe, Germany

Short introduction on operation principle of Charge Injected Detector (CID)
Samples and test beam setup

•Test beam results

Charge Injected Detector (CID) – Operational Principle

The electric field is controlled by charge injection, i.e. charge is trapped but not detrapped at "low" temperature

Test Beam experiment on CID detectors 2009

- Sensors investigated
 - 2×10¹⁵ n_{e q}/cm² n⁺/p⁻/p⁺ MCz-Si
 - $5 \times 10^{15} n_{e q}^{2}/cm^{2} p^{+}/n^{-}/n^{+} MCz-Si$ (in 2008 $3 \times 10^{15} n_{e q}^{2}/cm^{2} p^{+}/n^{-}/n^{+} MCz-Si$)

IV characteristics

Jaakko Härkönen, 8th International Conference on Radiation Effects on Semiconductor Materials Detectors and Devices 4

$5 \times 10^{15} n_{e q}$ /cm² results -Collected charge vs V CID mode

Jaakko Härkönen, 8th International Conference on Radiation Effects on Semiconductor Materials Detectors and Devices 5

$5 \times 10^{15} n_{e q}$ /cm² results -Collected charge vs non-irrad

5×10¹⁵ n_{e q}/cm² results -Noise

$2 \times 10^{15} n_{eq}$ /cm² results -Collected Charge CID mode

2×10¹⁵ n_{e q}/cm² results -Noise

Comparison of CID vs reverse bias -Collected charge

Comparison of CID vs reverse bias -Noise

Cluster size

Summary

- CID detectors are operational at -50°C. That's feasible with CO_2 cooling
- n and p-type full size CID detectors were beam tested in 2009.
- $2 \times 10^{15} n_{eq}^{2}/cm^{2}$ and $5 \times 10^{15} n_{eq}^{2}/cm^{2}$ irradiated CID detectors show > 30% charge collection efficiency.
- S/N were 8 and 10.
- Measurements were done at -50°C.
- One needs 2× reverse bias in n on p sensor to gain same CCE.
- Average noise (1.6ADC) of a $5 \times 10^{15} n_{eq}^{2}/cm^{2}$ irradiated CID is about 960e⁻ at -50°C/600V. Injected forward current is about 20µA for 4cm × 4cm sensor at this operating point.