

Magnetic Czochralski silicon as detector material

J. Härkönen, E. Tuovinen, P. Luukka, H.K. Nordlund and E. Tuominen

Helsinki Institute of Physics Gustaf Hallstrominkatu 2 00014 University of Helsinki Finland

Jaakko.haerkoenen@cern.ch

Outline

- Motivation to use Czochralski silicon (Cz-Si).
- Why not before ?
- Crystal growth.
- Processing issues.
- Thermal Donors (TD) in Cz-Si
- P-type magnetic Cz-Si
- Radiation Hardness
- Summary

Esa Tuovinen loading MCz-Si wafers into oxidation furnace at the Microelectronics Center of Helsinki University of Technoly, Finland.

Why Cz-Si?

- Cz-Si available in larger diameters
- Lower wafer cost
- Better compatibility with advanced CMOS processes
- Oxygen brings significant improvement in thermal slip resistance
- Oxygen gives significant radiation hardness advantage.

Why not before ?

* No demand for high resistivity Cz-Si -> No availability * Price for custom specified ingot 15,000 € - 20,000 €

* Now RF-IC industry shows intrest on high resistivity Cz-Si (=lower substrate losses of RF-signal)

Olli Anttila, Okmetic Ltd., 6th RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity colliders Helsinki, 2-4 June, 2005. http://rd50.web.cern.ch/rd50/6th-workshop/default.htm

Requirements for detector applications

- High resistivity ٠
- Oxygen concentration 5-10×10¹⁷ cm⁻³ •
- Homogeneity ٠ Oxygen donor compensation
- High minority carrier lifetime •

Oxygen concentration in MCz-Si

•O concentration from FTIR measurements

- Thick reference wafer
- •Center 4,95*10¹⁷ cm⁻³
- •Right 4,89*10¹⁷ cm⁻³
- •Left 4,93*10¹⁷ cm⁻³
- •Right 4,93*10¹⁷ cm⁻³

Strip detector processing

The devices were processed at Helsinki University of Technology Microelectronics Center

Processing of Cz-Si Detectors

•Basically no difference from standard Fz-Si detector process, except...

•High O content leads to Thermal Donor (TD) formation at temperatures $400^{\circ}C - 600^{\circ}C$.

•TD formation can be enhanced if H is present.

```
•Typical process steps at 400^{\circ}C - 600^{\circ}C

- Aluminum sintering

(e.g. 30min @ 450°C)

- Passivation insulators over metals

(LTO,TEOS etc ~600°C

+ H<sub>2</sub> from Si<sub>3</sub>H<sub>4</sub> process gas)
```


Thermal Donors in Cz-Si

 TDs are oxygen complexes that form shallow states in Si band gap below the conduction band.

•High O content leads to Thermal Donor (TD) formation temperatures $400^{\circ}C - 600^{\circ}C$.

•TD formation can be enhanced if H is present.

•Effective resistivity can be adjusted in p-type MCz-Si 500 Ωcm < σ < ~10 k Ωcm

•With this method it is possible to engineer the V_{fd} of p-type MCz-Si n+/p-/p+ detectors

TDD0

TDD3

Thermal Donor generation (experimental results)

One data point is average of 10 diodes over the wafer diameter
Error bars represent standard deviation

Fitting of the Model II

Homogeneity

Full Depletion Voltage with respect of distance from wafer center

Homogeneity

Leakage current with respect of distance from wafer center

Radiation hardness of MCz-Si

Proton radiation: Less prone for V_{fd} increase than std Fz-Si or Diffusion oxygenated Fz-Si Neutron radiation: No significant difference Z.Li, J. Härkönen, E. Tuovinen, P. Luukka *et al.*, Radiation hardness of high resistivity Cz-Si detectors after gamma, neutron and proton radiations, IEEE Trans. Nucl. Sci., **51** (4) (2004) 1901-1908.

Gamma radiation: Increase of positive space charge. Beneficial for Linear Collider applications?

Summary

•MCz-Si is commercially available in large quantities with resistivity 1000Ω cm (n-type) and 2 k Ω cm (p-type).

•MCz-Si shows better radiation hardeness againsta protons than Fz-Si materials. No improvment against neutron and no difference in leakage current.

•Thermal Donors can be introduced into MCz-Si detectors at 430°C during the aluminum sintering, i.e. b low cost process, no additional process complexity.

 Leakage current and V_{fd} in p-type MCz-Si n+/p-/p+ and p⁺/n⁻/n⁺ detectors is homogenous over the wafer diameter.

