#### **Current Injected Detectors (CID) for very harsh radiation environment**

Jaakko Härkönen on behalf of RD39 Collaboration

http://www.hip.fi/research/cms/tracker/RD39/php/home.php



Short introduction on operation principle of Charge Injected Detector (CID)
CID performance with test beams
Future directions and applications

#### Charge Injected Detector (CID) – Operational Principle

The electric field is controlled by charge injection, i.e. charge is trapped but not detrapped at "low" temperature



Jaakko Härkönen, Vertex 2011, 23 June, Rust, Austria

### Test Beam set up





- CMS readout and DAQ
- Operated at CERN H2 area and FNAL
- Nominal resolution 4µm, 10 reference planes, effective area 4×4 cm<sup>2</sup>.
- Detector module can be cooled ≈-53°C by Peltier elements
- Test beam setup gradually developed since past ≈10yrs

## Test Beam experiment on CID detectors 2008-2011

- Sensors investigated
  - 2×10<sup>15</sup> n<sub>e q</sub>/cm<sup>2</sup> n<sup>+</sup>/p<sup>-</sup>/p<sup>+</sup> MCz-Si
  - $5 \times 10^{15} n_{e q}^{2}/cm^{2} p^{+}/n^{-}/n^{+} MCz-Si$  (in 2008  $3 \times 10^{15} n_{e q}^{2}/cm^{2} p^{+}/n^{-}/n^{+} MCz-Si$ )



Jaakko Härkönen, Vertex 2011, 23 June, Rust, Austria

#### **IV** characteristics



When V<sub>frw</sub> is increased, at some point all deep levels will be filled >sharp current increase

With given  $V_{frw}$  e.g. 400V the current decreases with respect of irradiation

Jaakko Härkönen, Vertex 2011, 23 June, Rust, Austria

#### 5×10<sup>15</sup> n /cm<sup>2</sup> results -Collected charge vs V CID mode



Jaakko Härkönen, Vertex 2011, 23 June, Rust, Austria

# 5×10<sup>15</sup> n<sub>e q</sub>/cm<sup>2</sup> results -Collected charge vs non-irrad



Jaakko Härkönen, Vertex 2011, 23 June, Rust, Austria

## 5×10<sup>15</sup> n<sub>e d</sub>/cm<sup>2</sup> results -Noise



Jaakko Härkönen, Vertex 2011, 23 June, Rust, Austria

## 2×10<sup>15</sup> n<sub>e q</sub>/cm<sup>2</sup> results -Collected Charge CID mode



Jaakko Härkönen, Vertex 2011, 23 June, Rust, Austria

# 2×10<sup>15</sup> n<sub>e q</sub>/cm<sup>2</sup> results -Noise



Jaakko Härkönen, Vertex 2011, 23 June, Rust, Austria

#### Comparison of CID vs reverse bias -Collected charge



Jaakko Härkönen, Vertex 2011, 23 June, Rust, Austria

## Comparison of CID vs reverse bias -Noise



Same detector module (CMS APV25) operated as CID and normal reverse bias. Both measurements resulted in same collected charge. This is still feasible at  $2 \times 10^{15} n_{eq}/cm^2$  fluence, but higher because trapping kills reverse biased detector.

Jaakko Härkönen, Vertex 2011, 23 June, Rust, Austria

#### **Cluster size**



Jaakko Härkönen, Vertex 2011, 23 June, Rust, Austria

## Possible applications -LHC Beam Loss Monitor



- LHC upgrade will require BLM to be located inside of LHe cryostat.
- BLM will receive radiation load comparable with S-LHC pixel sensors
- At 1.8K radiation defects will trap >50% of signal
- Polarization makes normal reverse bias operation impossible

Jaakko Härkönen, Vertex 2011, 23 June, Rust, Austria

# Summary

- CID detectors are operational at -50°C. That's feasible with CO<sub>2</sub> cooling
- n and p-type full size CID detectors were beam tested in 2009.
- $2 \times 10^{15} n_{eq}^{2}/cm^{2}$  and  $5 \times 10^{15} n_{eq}^{2}/cm^{2}$  irradiated CID detectors show  $\approx 35\%$  charge collection efficiency.
- S/N were 8 and 10.
- Measurements were done at -50°C.
- One needs 2× reverse bias in n on p sensor to gain same CCE.
- Average noise (1.6ADC) of a  $5 \times 10^{15} n_{eq}^{2}/cm^{2}$  irradiated CID is about 960e<sup>-</sup> at -50°C/600V. Injected forward current is about 20µA for 4cm × 4cm sensor at this operating point.

## Publications on CID detectors

- Current injected detectors (CID) a new approach for detector operation in very high radiation environment, Eremin, V.; Ilyashenko, I.; Verbitskaya, E.; Egorov, N.; Golubkov, S.; Konkov, K.; Sidorov, A.; Li, Z.; Smith, K.M.; Niinikoski, T.; Härkönen, J.; Nuclear Science Symposium Conference Record, 2004 IEEE Volume 3, October 2004, Pages 2003 - 2006.
- V. Eremin, J. Härkönen, P. Luukka, Z. Li, E. Verbitskaya, S. Väyrynen and I. Kassamakov, The operation and performance of Current Injected Detector (CID), Nuclear Instruments and Methods in Physics Research Section A 581 (2007) 356-360.
- V. Eremin, J. Härkönen, Z. Li and E. Verbitskaya, Current injected detectors at super-LHC program, Nuclear Instruments and Methods in Physics Research Section A 583 (2007) 91-98.
- Härkönen, P. Anbinderis, T. Anbinderis, R. Bates, W. de Boer, E. Borchi, M. Bruzzi, C. Buttar, W. Chen, V. Cindro, S. Czellar, V. Eremin, A. Furgeri, E. Gaubas, E. Heijne, I. Ilyashenko, V. Kalesinskas, M. Krause, Z. Li, P. Luukka, et al., Development of cryogenic tracking detectors for very high luminosity experiments, Nuclear Instruments and Methods in Physics Research A607 (2009) 41-44.
- E. Tuominen et al., Recent progress in CERN RD39: radiation hard cryogenic silicon detectors for applications in LHC experiments and their future upgrades, IEEE Transactions on Nuclear Science 56 (2009) 2119-2123.
- J. Härkönen, V. Eremin, P. Luukka, S. Czellar, T. Mäenpää, A. Dierlamm, M. Frey, Z. Li, M.J. Kortelainen, T. Lampén, H. Moilanen, E. Tuovinen, E. Verbitskaya, E. Tuominen, Test beam results of a heavily irradiated Current Injected Detector (CID), Nuclear Instruments and Methods in Physics Research A612 (2010) 488-492.