SUSY-phenomenology-based models of Higgs inflation

Shinsuke Kawai

Sungkyunkwan University, South Korea

Based on [1512.05861] [1411.5188] [1404.1450] [1212.6828] [1107.4767] [1112.2391] Collaborators: Nobuchika Okada (Alabama), Jinsu Kim (KIAS), Masato Arai (Yamagata)

18 Feb 2016 @HIP

What is the particle physics behind inflation?

String theory

Particle phenomenology

Standard Model of particle physics

or, beyond the Standard Model (+singlets, SUSY, etc.)

Inflaton: origin of everything

- A scalar field where is it from?
- Right handed scalar neutrino?

m ~10¹³ GeV chaotic inflation [Murayama Suzuki Yanagida Yokoyama 1992]

Higgs field?

SM Higgs boson: mass ≈ 125 GeV, $\lambda \approx O(1)$ Chaotic inflation: m $\approx 10^{13}$ GeV or $\lambda \approx 10^{-12}$

- Nonminimal coupling to gravity [Cervantes-Cota, Dehnen 1995] [Bezrukov Shaposhnikov 2008]

- Non canonical kinetic term [Nakayama Takahashi] [Germani Kehagias] [others]
- Curvaton scenario [Langlois Vernizzi] [others]
- RG criticality, ad-hoc modification beyond cutoff [Hamada et al.]

m²φ² chaotic inflation (RHN)

Planck 2015 [1502.02114v1]

Nonminimal Higgs inflation

Confidence level (CL)

1σ: 68% 2σ: 95% 3σ: 99.7% 4σ: 99.994% 5σ: 99.99994%

in collider physics

 $5\sigma \approx 50\%$ in cosmology

- Particle phenomenology-based approach to cosmic inflation: Higgs inflation
- Supersymmetric Higgs inflation
 - Supersymmetric Higgs-lepton inflation
 - Supersymmetric SU(5) GUT inflation
- Summary

Higgs inflation

[Bezrukov Shaposhnikov, PLB 659 (2008) 703]

• Higgs potential: $V = \frac{\lambda}{4}(\phi^2 - v^2)^2$

$$\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{M_P^2}{2}R - \xi H^{\dagger} H R$$

• During inflation $\langle \phi \rangle \gg v$

$$S = \int d^4x \sqrt{-g} \left(-\frac{M_P^2 + \xi \phi^2}{2} R + \frac{1}{2} (\partial_\mu \phi)^2 - \frac{\lambda}{4} \phi^4 \right)$$

• This is in the Jordan frame. Go to the Einstein frame:

$$\hat{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}, \qquad \Omega^2 = 1 + \frac{\xi \phi^2}{M_{\rm P}^2}$$

• In the Einstein frame,

$$S_{E} = \int dx^{4} \sqrt{-\hat{g}} \left(-\frac{M_{P}^{2}}{2} \hat{R} + \frac{1}{2} (\partial_{\mu} \hat{\phi})^{2} - U(\hat{\phi}) \right)$$

$$\frac{d\hat{\phi}}{d\phi} = \Omega^{-2} \sqrt{\Omega^{2} + 6\xi^{2} \phi^{2} M_{P}^{-2}}$$

$$U(\hat{\phi}) = \frac{\lambda}{4} \frac{(\phi^{2} - v^{2})^{2}}{\Omega^{4}}$$

$$U(\hat{\phi})$$

$$\cdot \text{ Inflaton potential}$$

$$\phi \ll M/\xi \Longrightarrow \hat{\phi} \approx \phi$$

$$M/\xi \ll \phi \ll M/\sqrt{\xi} \Longrightarrow \hat{\phi} \approx \sqrt{3/2}\xi \phi^{2}$$

$$\phi \gg M/\sqrt{\xi} \Longrightarrow \hat{\phi} \approx \sqrt{6} \ln \phi$$

$$\lambda M^{4} \xi^{2}/16$$

$$\int_{0}^{\sqrt{\lambda} end} \frac{\lambda \sqrt{4/4}}{\sqrt{\lambda} e^{-\frac{1}{2}}} \hat{\phi}$$

• Inflation at $\phi \gg M/\sqrt{\xi}$

$$\epsilon \equiv \frac{1}{2} \left(\frac{\partial_{\hat{\phi}} U}{U} \right)^2 \approx \frac{4}{3} \frac{M^4}{\xi^2 \phi^4}$$
$$\eta \equiv \frac{\partial_{\hat{\phi}}^2 U}{U} \approx -\frac{4}{3} \frac{M^2}{\xi \phi^2}$$

Curvature perturbation

 $U(\hat{\phi})$

Summary: Higgs inflation

Inflaton identified with a known particle field

Predicted CMB spectrum fits well with the present data

Higgs potential unstable against radiative corrections

GO SUSY!

Nonminimal coupling $\xi \sim 10000.$ This is insanely large

Supersymmetric extension

SM is good, but not perfect

- No good candidate of DM
- Difficulty in baryogenesis
- Hierarchy problem

Supersymmetric extension of the SM

- Gauge coupling unification favours SUSY
- UV completion, e.g. string theory
- SUSY Higgs inflation?

The η -problem

Supergravity with

Canonical Kähler potential

Generic superpotential W

F-term SUSY breaking

gives slow-roll parameter $\eta \sim O(1)$

• Slow roll inflation in supergravity is known to be difficult.

To circumvent the η -problem?

"Compensator formalism" in the Jordan frame e.g. [Ferrara Kallosh Linde Marrani Van Proeyen 2010, 2011]

K, *W*, *fab* and ϕ logically redundant, but useful in practice

Constructing Supersymmetric Higgs inflation

 $G_{IJ}, V(\phi^{I})$: complicated

Models of SUSY Higgs inflation

- Nonminimally coupled Higgs inflation not possible in MSSM
- NMSSM [Einhorn Jones 2009] [Ferrara Kallosh Linde Marrani Van Proeyen 2010]
- Pati-Salam [Pallis Toumbas 2011]
- SUSY seesaw [Arai SK Odaka 2011]
- SUSY GUT [Arai SK Odaka 2011]

focus on these example

SUSY Higgs inflation: generic features

- Noncanonical K\u00e4hler potential
 nonminimal coupling

 (unlike A-term MSSM inflation
 or F-term hybrid inflation)
- Nonminimal coupling not necessarily large
- Tachyonic instability in the singlet direction, removed by further modification of Kähler [Ferrara Kallosh Linde Marrani Van Proeyen]
- Multifield dynamics not studied so far

Single field vs. multi field

	SINGLE FIELD INFLATION	MULTI FIELD INFLATION
BACKGROUND EVOLUTION	Straight trajectory	Curved trajectory in n- dimensional space
DOF OF FLUCTUATIONS	Scalar 1(=2+1-2) Vector 2 Tensor 2	Scalar n (=2+n-2) Vector 2 Tensor 2
EVOLUTION OF FLUCTUATIONS	Adiabatic, freeze outside the Hubble horizon	Adiabatic (curvature) and entropy (isocurvature)
NON-GAUSSIANITY OF SCALAR FLUCTUATIONS	Small	Sou Can be large

Primordial density fluctuations

- Power spectrum $\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \rangle = (2\pi)^3 \delta^3 (\vec{k}_1 + \vec{k}_2) P_{\zeta}(k_1)$
- = Bispectrum $\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = (2\pi)^3 \delta^3 (\vec{k}_1 + \vec{k}_2 + \vec{k}_3) B_{\zeta}(k_1, k_2, k_3)$
- Trispectrum $\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \zeta_{\vec{k}_4} \rangle$ = $(2\pi)^3 \delta^3 (\vec{k}_1 + \vec{k}_2 + \vec{k}_3 + \vec{k}_4) T_{\zeta} (k_1, k_2, k_3, k_4)$
 - Translational invariance $\rightarrow \delta^3(\sum \vec{k_i})$
 - Rotational invariance $\rightarrow P_{\zeta}(k_1), B_{\zeta}(k_1, k_2, k_3), B_{\zeta}(k_1, k_2, k_3, k_4), \text{etc.}$

 K_1

 k_4

 k_2

'Shape' of non-Gaussianities

Non-Gaussianities (bispectrum)

- Different profiles corresponding to different shapes
 - Local:

 $B_{\zeta}^{\text{local}}(k_1, k_2, k_3) = \frac{6}{5} f_{\text{NL}}^{\text{local}} \Big[P_{\zeta}(k_1) P_{\zeta}(k_2) + P_{\zeta}(k_2) P_{\zeta}(k_3) + P_{\zeta}(k_3) P_{\zeta}(k_1) \Big]$ generated at superhorizon in multifield inflation models

- Equilateral
- Orthogonal
- Other types (warm, flat, etc.) $f_{\rm NL}^{\rm local} = 0.8 \pm 5.0, \quad f_{\rm NL}^{\rm equil} = -4 \pm 43, \quad f_{\rm NL}^{\rm ortho} = -26 \pm 21$ [Planck (2015)]

Constructing SUSY Higgs inflation

(example in SUSY seesaw [Arai, SK, Okada, arXiv:1112.2391, 1212.6828]) Superpotential

 $W = \mu H_u H_d + y_u u^c Q H_u + y_d d^c Q H_d + y_e e^c L H_d + y_D N_R^c L H_u + M N_R^c N_R^c$

MSSM

D-flat direction

$$L = \frac{1}{\sqrt{2}} \begin{pmatrix} \varphi \\ 0 \end{pmatrix}, H_u = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \varphi \end{pmatrix}.$$

Kähler potential

 $K = -3 \ln \Phi, \qquad \text{nonminimal coupling } \xi R \varphi^2, \xi = \gamma/4 - \frac{1}{6}$ $\Phi = 1 - \frac{1}{3} (|N_R^c|^2 + |\varphi|^2) + \frac{1}{4} \gamma(\varphi^2 + c.c.) + \frac{1}{3} v |N_R^c|^4$

Seesaw relation

controls tachyonic instability

$$m_{\nu} = \frac{y_D^2 \langle H_u \rangle^2}{M}$$

 $m_{\nu}^2 \approx \Delta_{32}^2 = 2.43 \times 10^{-3} \text{eV}^2 \quad \langle H_u \rangle \approx 174 GeV$

Large enough $v \Rightarrow$ single field inflation

yd can be naturally small

Constructing Supersymmetric Higgs inflation

Economist World politics Business & finance Economic

Cosmology **BICEP** unflexed

ore from The Economist My Subscription

The

One of last year's most talked-about scien Feb 7th 2015 | From the print edition

OW many astronomers does it take to nail a coffin shut? entists—one the masters of Planck, an orbiting telescop ace Agency; the other the team bobind Diorne

Weath

Prediction in the single-field limit & Planck/BICEP2 (2014)

Noncanonical (quartic) term in Kähler \Rightarrow N_R =0 \Rightarrow Single-field inflation

Purpose:

investigate how the multi-field effects (e.g. non-Gaussianity) restricts Kähler potential of the underlying supergravity theory

$$\Phi = 1 - \frac{1}{3}(|N_R^c|^2 + |\varphi|^2) + \frac{1}{4}\gamma(\varphi^2 + c.c.) + \frac{1}{3}v|N_R^c|^4$$

Inflaton trajectories

(2-field SUSY Higgs inflation in SUSY seesaw)

red: Sinit =0, yellow: Sinit = 1.617×10⁻¹¹, orange: Sinit = 10⁻⁵ quantum fluctuations sinit =0 in all cases $\langle (\Delta s)^2 \rangle \approx \frac{H^2}{\langle \Omega \rangle}$

- Seesaw mass M =1TeV, e-folding number N =60
- *h*_{init} set by N = 60 in the single field limit
- Trajectory dep on the parameter *v* and the init cond (sinit, sinit)
- Once trajectory is fixed, observables can be computed

(we used the backward δN [Yokoyama Suyama Tanaka])

Scalar power spectrum As

 $A_s \times 10^9 = 2.23 \pm 0.16$ (Planck)

$$k_0 = 0.05 \,\mathrm{Mpc}^{-1}$$

Quantum fluctuations give $\langle \Delta s \rangle \approx \frac{H}{2\pi} \sim 10^{-5} M_{\rm Pl}$

for the seesaw mass M = 1 TeV, e-folding number N = 60

Non-Gaussianity (nonlinearity) *f*_{NL}

20

15

10

5

0

 $f_{\rm NL}^{(4)}$

 $\langle \zeta_{\boldsymbol{k}_1} \zeta_{\boldsymbol{k}_2} \zeta_{\boldsymbol{k}_3} \rangle = (2\pi)^3 \delta^3 \left(\boldsymbol{k}_1 + \boldsymbol{k}_2 + \boldsymbol{k}_3 \right) B_{\zeta}(k_1, k_2, k_3)$

$$B_{\zeta}(k_1, k_2, k_3) = \frac{6}{5} f_{NL}^{\text{local}} \left\{ P_{\zeta}(k_1) P_{\zeta}(k_2) + 2 \text{ perms} \right\}$$

Observation (Planck 2013):

 $f_{\rm NL}^{\rm local} = 2.7 \pm 5.8$

(68% C.L.)

Scalar spectral index ns

$$\mathcal{P}_S = A_s \left(\frac{k}{k_0}\right)^{n_s - 1 + \frac{1}{2}\frac{dn_s}{d\ln k}\ln\frac{k}{k_0} + \cdots}$$

Observation (Planck 2013):

 $n_s = 0.9603 \pm 0.0073$ (68% C.L.)

Tensor amplitude At and tilt nt

- No effects of multi-field on the tensor mode
- This is expected: tensor mode generated quantum mechanically at subhorizon, decouple from scalar mode
- Gravitational waves are same as in the single-field case

Tensor/scalar ratio r = At/As

- Multi-field: As enhanced, whereas At stays constant
- The ratio r = At /As suppressed by the multifield effects

Sinit

As, fNL and ns

• Planck (2013):

$A_s = (2.23 \pm 0.16) \times 10^{-9}$	(68% C.L.),
$n_s = 0.9603 \pm 0.0073$	(68% C.L.),
r < 0.12	(95% C.L.),
$f_{ m NL}^{ m local} = 2.7 \pm 5.8$	(68% C.L.).

 Recall: quantum fluctuation gives Δs ~ 10⁻⁵

 4.5×10^{-9}

 $4. \times 10^{-9}$

 3.5×10^{-9}

 2.5×10^{-9}

 $2. \times 10^{-9}$

 1.5×10^{-9} L _ _ _ _ _ _ 0.060

20

15

10

5

 $f_{\rm NL}^{(4)}$

0.062 0.064

0.066 0.068

υ

₹ 3.×10⁻⁹

 $s_{\text{init}}=0$

- $s_{init} = 10^{-7}$

- $s_{\text{init}} = 10^{-6}$

 $s_{init} = 10^{-5}$

0.070 0.072 0.074

 $s_{\text{init}}=0$

 $s_{\text{init}}=10^{-7}$

 $- s_{init} = 10^{-6}$

• $s_{\text{init}} = 10^{-5}$

Inflation in SUSY-seesaw

- Multi-field dynamics potentially important
- Planck constraints on non-Gaussianities restricts Kähler potential of supergravity
- NMSSM inflation model is similar

Higgs inflation in GUT

- Inflation ~ GUT scale \gg SM (EW) scale
- Hierarchy problem, gauge coupling unification ⇒ super GUT
- Simplest: SU(5)
- This is a revival of inflation models in the 80s, now with nonminimal coupling
- Enough e-folding number? Spectral index? Scalar-tensor ratio?
- SM after the inflation? Phenomenological consistency (DM, baryogenesis, gravitino problem...)?

SU(5) grand unification

Gauge field

$$\begin{array}{cccc} \mathbf{24} = (\mathbf{8}, \mathbf{1}, 0) + (\mathbf{1}, \mathbf{3}, 0) + (\mathbf{1}, \mathbf{1}, 0) + (\mathbf{3}, \mathbf{2}, \frac{5}{3}) + (\overline{\mathbf{3}}, \mathbf{2}, -\frac{5}{3}) \\ g & A^a_\mu \to W^a_\mu & B_\mu & X_{\alpha\mu}, Y_{\alpha\mu} & \overline{X}_{\alpha\mu}, \overline{Y}_{\alpha\mu} \end{array}$$

• Fermion fields

$$\begin{array}{c|c} \mathbf{10} = (\mathbf{1}, \mathbf{1}) + (\mathbf{\bar{3}}, \mathbf{1}) + (\mathbf{3}, \mathbf{2}) \\ \hline e & \overline{u} & Q = (u_L, d_L) \\ \hline \mathbf{\bar{5}} = (\mathbf{\bar{3}}, \mathbf{1}) + (\mathbf{1}, \mathbf{2}) \\ \hline d & L = (e, \nu_e) \\ \hline \cdot \text{ Scalar fields} \end{array}$$

 $\begin{array}{lll} \textbf{24} & \text{GUT Higgs} & SU(5) \rightarrow SU(3) \times SU(2) \times U(1) \\ \textbf{5} = (\textbf{3}, \textbf{1}, -\frac{2}{3}) + (\textbf{1}, \textbf{2}, 1) & \text{Colour Higgs} + \text{SM Higgs} \end{array}$

Minimal SUSY SU(5) model

• Vector multiplet

24 of SU(5)

Chiral multiplets

Higgs inflation of minimal SUSY SU(5) GUT

• The superpotential

$$W = \overline{H} \left(\mu + \rho \Sigma \right) H + \frac{m}{2} \operatorname{Tr}(\Sigma^2) + \frac{\lambda}{3} \operatorname{Tr}(\Sigma^3)$$

The Kähler potential

$$\Phi = 1 - \frac{1}{3} \left(\operatorname{Tr} \Sigma^{\dagger} \Sigma + |H|^{2} + |\overline{H}|^{2} \right) - \frac{\gamma}{2} \left(\overline{H}H + H^{\dagger} \overline{H}^{\dagger} \right)$$
$$+ \frac{\tilde{\omega}}{3} \left(\operatorname{Tr} \Sigma^{\dagger} \Sigma^{2} + \operatorname{Tr} \Sigma^{\dagger 2} \Sigma \right) + \frac{\zeta}{3} \left(\operatorname{Tr} \Sigma^{\dagger} \Sigma \right)^{2}$$

Phenomenological constraints

Gauge symmetry broken to SU(3) x SU(2) x U(1)

$$\Sigma = \sqrt{\frac{2}{15}} S \operatorname{diag}\left(1, 1, 1, -\frac{3}{2}, -\frac{3}{2}\right)$$

• The superpotential is

Colour unbroken $\Rightarrow \langle H_c \rangle = \langle \overline{H}_c \rangle = 0$

$$M_{H_u}, M_{H_d} \ll M_{\rm GUT} \Rightarrow \mu = \sqrt{\frac{3}{10}} \rho \langle S \rangle$$

 $\sqrt{30}$

$$W = \left(\mu + \sqrt{\frac{2}{15}}\rho S\right)\overline{H}_cH_c + \left(\mu - \sqrt{\frac{3}{10}}\rho S\right)H_uH_d + \frac{m}{2}S^2 - \frac{\lambda}{3\sqrt{30}}S^3.$$

 δS

SU(5) broken $\Rightarrow \langle S \rangle \equiv v = 2 \times 10^{16} \text{ GeV}$

The SU(5) super GUT model [M.Arai, S.K. N.Okada 2011]

- Cubic + quartic terms in Kähler necessary
- Stable trajectory, SM vacuum
- No cosmological constant problem

Prediction of the SU(5) GUT Higgs inflation

SU(5) GUT Higgs inflation

... is identical to the single-field case. No large non-Gaussianities

Why the SU(5) case different?

- Multifield effects (non-Gaussianity, isocurvature modes) arise from nontrivial nonlinear dynamics outside the horizon
- This is possible only when the inflaton trajectory stays on a ridge for long enough e-folds and then swerve off
- The potential of the SU(5) model needs to be asymmetric and such a trajectory is unlikely, even with fine-tuned initial conditions

- It's good time to think about the origin of the inflaton within "beyond the Standard Model" physics.
- Higgs inflation interesting. SUSY Higgs inflation perhaps more interesting.
- Avoid the η problem: non-canonical Kähler potential
- Multi-field signatures (e.g. non-Gaussianities) may be a clue to understand supergravity embedding of BSM.
- Analysed a concrete model based on SUSY seesaw & SU(5) GUT

Summary

- It seems that that symmetries of the inflaton potential are crucial for the multifield effects
- In generic multifield inflation (e.g. in string landscape), no particular symmetries are expected, thus a single-field analysis is likely to be sufficient.

Thank you for your attention.