

IVI33 rotation curve

Simplified Models for DM searches

Thomas Jacques arXiv:1502.05721, Nordstrom, TDJ arXiv:1603.01366, Brennan, McDonald, Gramling, TDJ arXiv:1603.XXXXX, De Simone, TDJ arXiv:160X.XXXX, Katz, TDJ, Morgante, Racco, Riotto

> 2016-03-16 Helsinki

Dark matter searches

What exactly are we constraining?

ATLAS SUSY Searches* - 95% CL Lower Limits

full data

partial data

full data

Sta	atus: ICHEP 2014						\sqrt{s} = 7, 8 TeV
	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	Reference
Inclusive Searches	MSUGRA/CMSSM MSUGRA/CMSSM MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{\pm} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell v / v v) \tilde{\chi}_{1}^{0}$ GMSB (ℓ NLSP) GMSB (ℓ NLSP) GGM (bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP)	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau + 0 - 1 \ \ell \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 20.3 4.8 4.8 5.8 10.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 1407.0603 ATLAS-CONF-2012-001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
3 rd gen. ẽ med.	$ \begin{split} \tilde{g} &\to b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} &\to t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} &\to t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} &\to b \bar{t} \tilde{\chi}_{1}^{+} \end{split} $	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	\tilde{g} 1.25 TeV $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ \tilde{g} 1.1 TeV $m(\tilde{\chi}_1^0) < 350 \text{ GeV}$ \tilde{g} 1.34 TeV $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ \tilde{g} 1.3 TeV $m(\tilde{\chi}_1^0) < 300 \text{ GeV}$	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \ \tilde{t}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \ \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{netural GMSB}) \\ \tilde{t}_2 \tilde{t}_2, \ \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{split} $	$\begin{array}{c} 0 \\ 2 e, \mu (\text{SS}) \\ 1-2 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 0 \\ 1 e, \mu \\ 0 \\ 0 \\ m \\ 2 e, \mu (Z) \\ 3 e, \mu (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-t 1 b 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.1 20.1 20.1 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1308.2631 1404.2500 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 1407.0583 1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \end{array} $	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ 1 e,μ 4 e,μ	0 0 - 0 2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093 1405.5086
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \tilde{\mu})$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 27.9 15.9 4.7 20.3	$ \begin{array}{c cccc} \tilde{x}_{1}^{\pm} & 270 \ \text{GeV} & & & & & & & & & & & & & & & & & & &$	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \widetilde{\chi}_{1}^{+} \widetilde{\chi}_{1}^{-}, \widetilde{\chi}_{1}^{+} \rightarrow W \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow ee \widetilde{v}_{\mu}, e\mu \widetilde{v}_{e} \\ \widetilde{\chi}_{1}^{+} \widetilde{\chi}_{1}^{-}, \widetilde{\chi}_{1}^{+} \rightarrow W \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \tau \tau \widetilde{v}_{e}, e\tau \widetilde{v}_{\tau} \\ \widetilde{g} \rightarrow qqq \\ \widetilde{g} \rightarrow \widetilde{t}_{1} t, \ \widetilde{t}_{1} \rightarrow bs \end{array} $	2 e, μ 1 $e, \mu + \tau$ 2 e, μ (SS) 4 e, μ 3 $e, \mu + \tau$ 0 2 e, μ (SS)	0-3 <i>b</i> - - 6-7 jets 0-3 <i>b</i>	- Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	$\frac{0}{2 e, \mu (SS)}$	4 jets 2 b mono-jet $\sqrt{s} =$	- Yes Yes 8 TeV	4.6 14.3 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 sgluon 350-800 GeV m(χ)<80 GeV, limit of <687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147

Mass scale [TeV]

ATLAS Preliminary

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

- Integrate out the mediator
- Reduce parameters to m_{χ}, M_{\star} for each operator

Effective operators

- Left with a small 'basis' set of operators
- Most common operators are for Dirac fermion WIMPs:
 - scalar mediator-like coupling
 - vector coupling
 - axial-vector coupling
 - gluon initial state

$$D1 = \frac{m_q}{M_\star^3} (\bar{\chi}\chi)(\bar{q}q)$$

$$D5 = \frac{1}{M_\star^2} (\bar{\chi}\gamma^\mu \chi)(\bar{q}\gamma_\mu q)$$

$$D8 = \frac{1}{M_\star^2} (\bar{\chi}\gamma^\mu \gamma^5 \chi)(\bar{q}\gamma_\mu \gamma^5 q)$$

$$D11 = \frac{i\alpha_S}{4M_\star^3} (\bar{\chi}\chi)(G_{\mu\nu}\tilde{G}^{\mu\nu})$$

Search channels

 The most generic search channel is missing energy + jet(s): DM production inferred by non-zero transverse momentum sum

 Other channels can be important but they are more model-dependent

Effective operators for direct detection

• Note that the 'usual' direct detection constraints on σ_{SI} and σ_{SD} are a constraint on some, not all effective operators

Effective operators

Rescaling operator constraints

Nevents

• For a given choice of $\sqrt{g_q g_{\chi}}$, only use events that satisfy

$$M \equiv \sqrt{g_q g_\chi} M^* \ge Q_{\rm tr}$$

 $Q_{tr} = (g_q g_x)^{\frac{1}{2}} M^*$

M^{*}cut

Rescaling operator constraints

• For a given choice of $\sqrt{g_q g_{\chi}}$, only use events that satisfy

$$M \equiv \sqrt{g_q g_\chi} M^* \ge Q_{\rm tr}$$

Rescaling operator constraints

Eur. Phys. J. C (2015) 75:299 ATLAS + Busoni, De Simone, TDJ, Morgante, Riotto

Classification of simplified models

 There are many simplified models to choose from and they can be organized in a logical way. The most important features are

If DM is neutral, this defines most features of the model

The usual suspects

Each is associated with a particular UV-completion

Simplicity

 Even then there are choices to make - for example, for 1s¹/₂, there is a choice of vector or axial-vector couplings

$$\mathcal{L} \supset g_{\chi} Z'_{\mu} (c_{V}^{\chi} \bar{\chi} \gamma^{\mu} \chi + c_{A}^{\chi} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi) + \sum_{q} g_{q} Z'_{\mu} (c_{V}^{q} \bar{q} \gamma^{\mu} q + c_{A}^{q} \bar{q} \gamma^{\mu} \gamma^{5} q) + \sum_{l} g_{l} Z'_{\mu} (c_{V}^{l} \bar{l} \gamma^{\mu} l + c_{A}^{l} \bar{l} \gamma^{\mu} \gamma^{5} l) We ctor Axial-vector$$

- Including couplings to both quarks and leptons, up to 28 free parameters, even in such a simple model!
- Necessary to make simplifying assumptions to keep the number of parameters small

Simplicity

For 1s¹/₂ (Z'):

I. Direct detection constraints: $c^{q}v = c^{\chi}v = 0$

II. Dilepton constraints: $g_1 = 0$

III. Minimal Flavor Violation: g_{q} equal for each quark $\left\{m_{\rm DM}, M_{\rm med}, g_{\rm DM}, g_{\rm SM}\right\} \rightarrow \left\{m_{\rm DM}, M_{\rm med}, g_{\rm DM}.g_{\rm SM}, g_{\rm DM}/g_{\rm SM}\right\}$

$$\begin{split} \mathcal{L} \supset g_{\chi} Z'_{\mu} (c^{\chi}_{Y} \bar{\chi} \tau^{\mu} \chi + c^{\chi}_{A} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi) \\ + \sum_{q} g_{q} Z'_{\mu} (c^{q}_{Y} \bar{q} \tau^{\mu} q + c^{q}_{A} \bar{q} \gamma^{\mu} \gamma^{5} q) \\ + \sum_{q} g_{l} Z'_{\mu} (c^{l}_{Y} \bar{l} \gamma^{\mu} l + c^{l}_{A} \bar{l} \tau^{\mu} \gamma^{5} l) \\ \frac{1}{Vector} \quad \text{Axial-vector} \end{split}$$

Even with these simplifying assumptions, a full scan over the 4D parameter space can be computationally prohibitive

Parameter space

 $m_{\rm DM}$ [GeV]

X Difficult to compare results

Rescaling relations

 $\{m_{\rm DM}, M_{\rm med}, g_{\rm DM}, g_{\rm SM}\} \rightarrow \{m_{\rm DM}, M_{\rm med}, g_{\rm DM}, g_{\rm DM}, g_{\rm DM}/g_{\rm SM}\}$ For each $\{m_{\rm DM}, M_{\rm med}, g_{\rm q}/g_{\rm DM}\}$, simulate signal cross section $\sigma_{\rm sim}$ for a range of $g_{\rm q}.g_{\rm DM}$, compare with the experimental limit $\sigma_{\rm lim}$.

Value of $g_{q.}g_{DM}$ where $\sigma_{sim} = \sigma_{lim}$ defines the constraint on $g_{q.}g_{DM}$.

Rescaling relations

If we know how σ_{sim} varies with $g_q.g_{DM}$, we can simulate for one value of $g_q.g_{DM}$, avoiding the full scan

Rescaling relations

 $\sigma \propto \begin{cases} g_q^2 g_{\rm DM}^2 / \Gamma_{\rm OS} & \text{if } M > 2m_{\rm DM} \\ g_q^2 g_{\rm DM}^2 & \text{if } M < 2m_{\rm DM} \end{cases}$

How well does this approximation hold?

1s¹/₂ JHEP 1506 (2015) 142 TDJ, Nordstrom

Problems with the width

 The standard Breit-Wigner propagator with on-shell width,

$$\Delta_{BW} = \frac{1}{s - M^2 + iM\Gamma_{\rm OS}}$$

as used by generators, only valid for $\Gamma \ll M$.

 Restrict parameter space to regions where Γ < M. Current strength of constraints give Γ/M ~ 0.5; In the transition region, rescale by the ratio of the BW and kinetic propagators after convolution with the PDF

$$\frac{\int_{x_1,x_2} \text{PDF} \times \Delta_{\text{Kinetic}}}{\int_{x_1,x_2} \text{PDF} \times \Delta_{BW}}$$

Search channels

To be comprehensive, study other search channels

1s¹/₂ (axial) - Similar results for 1s¹/₂ (vector)

Testing the approximation

Does the rescaling relation still hold?

$$\sigma \propto \begin{cases} g_q^2 g_{\rm DM}^2 / \Gamma_{\rm OS} & \text{if } M > 2m_{\rm DM} \\ g_q^2 g_{\rm DM}^2 & \text{if } M < 2m_{\rm DM} \end{cases}$$

 Only if the kinematic distribution of missing energy is independent of the width

$$\sigma \propto \frac{g_{\rm DM}^2 g_q^2}{(s-M^2)^2 + M^2 \Gamma^2},$$

Comparing to other constraints

- Difficult to compare multiple constraints in 3D parameter space!
- Intercept shows the boundary where one constraint becomes stronger than another, indicating the region where each class of constraints performs best

Comparing to other constraints

 Direct detection assumes a local density and velocity distribution as input

$$\frac{dR}{dE_R} = \frac{\rho_{\chi}}{m_{\rm DM}m_N} \int_{|\vec{v}| > v_{\rm min}} d^3\vec{v}|\vec{v}|f(\vec{v})\frac{d\sigma_{\chi N}}{dE_R}$$

 Relic density constraints assume DM is a thermal relicis sensitive to number of annihilation channels and relative contribution to total relic density

$$\langle \sigma v \rangle_{\text{total}} \simeq \frac{4.8 \times 10^{-10} \,\text{GeV}^{-2}}{\Omega_{\text{DM}} h^2}$$

 Each constraint has strengths and weaknesses, so together are complementary, but compare with caution

Consistency

- The simplified models we've been using are not designed to be UV-complete
- Does it matter if the simplified models we're using are physical?
 - Signals and constraints can be overestimated if we get this wrong;
 - Some models are not just be incomplete, but wrong

Consistency

- We focus on axial-vector 1s¹/₂ (Z'), because it 'hides' from direct detection
 - Violates unitarity when m_{DM} » M_{med}, greatly enhancing the cross section

Building a natural, consistent axial 1s1/2 (Z')

- $\cos\theta U(1)_{B-L} + \sin\theta U(1)_{Y}$ is guaranteed anomaly-free, so use this as our U(1)'
- This fixes the charge of the left- and right-handed SM fermions under U(1)'

	SU(3)	SU(2)	$U(1)_Y$	$U(1)_{B-L}$	U(1)'
$egin{pmatrix} u_L^{\ell_i} \\ \ell_L^i \end{pmatrix}$	1	2	$-\frac{1}{2}$	-1	$-\frac{1}{2}\cos\theta - \sin\theta$
$\left(\ell^i_R ight)^{ m C}$	1	1	1	+1	$\cos heta + \sin heta$
$egin{pmatrix} u^i_L \ d^i_L \end{pmatrix}$	3	2	$\frac{1}{6}$	$+\frac{1}{3}$	$\frac{1}{6}\cos\theta + \frac{1}{3}\sin\theta$
$\left(u_{R}^{i} ight)^{\mathrm{C}}$	3	1	$-\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{2}{3}\cos\theta - \frac{1}{3}\sin\theta$
$\left(d_{R}^{i} ight)^{\mathrm{C}}$	$\overline{3}$	1	$\frac{1}{3}$	$-\frac{1}{3}$	$\frac{1}{3}\cos\theta - \frac{1}{3}\sin\theta$

- If L and R fermions have different charge, Higgs must be charged to maintain gauge invariance $\ y_\ell \bar L_L \Phi \ell_R$

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \begin{vmatrix} \mathbf{1} \\ \mathbf{2} \end{vmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{vmatrix} = 0 \qquad \frac{1}{2}\cos\theta$$

Dilepton constraints

 Induced lepton coupling subjects this model to stringent constraints from Z' decay to dileptons

Building a natural consistent axial Z'

Mixing results in a mix of terms - no pure axial-vector term!

SM fermion f	coeff. of $g_{Z'}\overline{f}Z'f$	coeff. of $g_{Z'}\overline{f}Z'\gamma_5 f$
leptons	$-\frac{3}{4}\cos\theta - \sin\theta$	$-\frac{1}{4}\cos\theta$
neutrinos	$-\frac{1}{4}\cos\theta - \frac{1}{2}\sin\theta$	$\frac{1}{4}\cos\theta + \frac{1}{2}\sin\theta$
up quarks	$\frac{5}{12}\cos\theta + \frac{1}{3}\sin\theta$	$rac{1}{4}\cos heta$
down quarks	$-\frac{1}{12}\cos\theta + \frac{1}{3}\sin\theta$	$-\frac{1}{4}\cos\theta$

 $\mathcal{L} \supset g_{\chi} Z'_{\mu} (c^{\chi}_{V} \bar{\chi} \gamma^{\mu} \chi + c^{\chi}_{A} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi)$ $+ g_{q} Z'_{\mu} (c^{q}_{V} \bar{q} \gamma^{\mu} q + c^{q}_{A} \bar{q} \gamma^{\mu} \gamma^{5} q)$ $\hline \text{Vector} \qquad \text{Axial-vector}$

- Induces a range of DM scattering operators, not just the 'usual' σ_{SI} and $\sigma_{SD.}$

$$\longrightarrow \vec{s}_{\chi} \cdot \vec{s}_{N}, \quad i\vec{s}_{\chi} \cdot (\vec{s}_{N} \times \vec{q}), \quad \vec{s}_{\chi} \cdot \vec{v}^{\perp}$$

$$\textbf{OSD} \quad \textbf{Suppressed, but neither } \sigma_{SI} \textbf{nor } \sigma_{SI}$$

IceCube: Using annihilation to probe scattering

- It is difficult for DD experiments to compete with LHC constraints on these models
- Solar neutrinos provide a unique window on DM scattering
- DM accumulates in the sun

$$\Gamma_{\rm ann} \propto \rho^2 \to \Gamma_{\rm ann} = \Gamma_{\rm capture}$$

Conclusion

- Effective operators remain a useful benchmark for DM searches at the LHC if used and interpreted with caution
- Simplified models are the natural next step. The size of the parameter and model space present some challenges which can be overcome with careful application of constraints and approximations
- The consistent use of simplified models is important and presents interesting phenomenology!