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History of Light Bending
332 SIR F. W. DYSON, PROF. A. S. EDDINGTON AND MR. C. DAVIDSON ON A 

Thus the results of the expeditions to Sobral and Principe can leave little doubt that 
a deflection of light takes place in the neighbourhood of the sun and that it is of the 
amount demanded by EINSTEIN'S generalised theory of relativity, as attributable to 
the sun's gravitational field. But the observation is of such interest that it will 
probably be considered desirable to repeat it at future eclipses. The unusually 
favourable conditions of the 1919 eclipse will not recur, and it will be necessary to 
photograph fainter stars, and these will probably be at a greater distance from the sun. 
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Diagram 2. 

This can be done with such telescopes as the astrographic wvith the object-glass stopped 
down to 8 inches, if photographs of the same high quality are obtained as in regular 
stellar work. It will probably be best to discard the use of coelostat mirrors. Thise 
are of great convenience for photographs of the corona and spectioscopIc observations, 
but for work of precision of the high order required, it is undesirable to introduce 
complications, which can be avoided, into the optical train. It would seem that some 
form of equatorial mounting (such as that employed in the Eclipse Expeditions of the 
Lick Observatory) is desirable. 

In conclusion, it is a pleasure to record the great assistance given to the Expeditions 
from many quarters. Reference has been made in the course of the paper to some 
of these. Especial thanks are due to the Brazilian noverument for- the hospitality 
and facilities accorded to the observers in Sobral. They were made guests of the 
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1915: General Relativity 

1919: Eclipse Experiment 

1937: Galaxies as Lens (Zwicky)

1979: First Galaxy Lens 
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Examples of Gravitational Lenses
Abell 2218

Q2237+0305

HST UDF
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• Key is a well-behaved PSF
• Precisions hardware
• Analysis methods 
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Photometric Redshifts

Appendix 2. Euclid Imaging Consortium Simulations 
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measured, in addition to an effective number of galaxies, The effective number in each pipeline were 

calculated by including a weighting scheme that reflects the quality of the shear measurement; lensfit 

measures uses a Bayesian weighting scheme, im2shape uses a measured error on the shear. 

In this document we have taken a conservative approach in which we assume systematic effects will place 

the main limit on the number of usable galaxies. In many cases the effective number of galaxies exceeds in 

the requirement and goal. In addition if galaxies of lower signal to noise can be included then the galaxies 

number density increases – whether such galaxies can be used for weak lensing is linked to the achievable 

photometric redshift accuracy at these signal-to-noise levels, this is discussed later. 

A.2.2  Exposure Time Calculator (ETC)  

The Euclid exposure time calculator has been created with web interface. This can calculator the exposure 

time needed to observe any object (star, galaxy – spiral or elliptical) using the optical or IR instruments to 

any magnitude using either F606_W or F814_W HST filters. This calculator is the front end for a full 

simulator for optical telescopes adapted from tools developed for the Large Binocular Telescope. The 

calculator assumes a specific realistic quantum efficiency of the detector and includes Zodical background 

noise. Both the read-out noise, dark current and wavelength range are free parameters. Galaxies are assumed 

to have a half light radius of 0.4’’ and the PSF is assumed to be 0.23’’ at 8500 A. 

A.2.3  Photometric Redshifts Simulations 

The photometric redshift requirements for Euclid have been carried out independently by two teams. 

The concept of photometric redshifts is illustrated in Figure A2.5. The dotted blue curve and solid blue curve 

show the same galaxy at two different redshifts. The ratio of luminosity received in the different bands will 

be different for the two objects. Expecially for the higher redshift objects the Euclid infrared bands are 

crucial for accurate photometric redshifts. The complementarity between the ground and space based obser-

vations are clear from the positions of the different observing bands. 

UCL team:  

The UCL simulations are described in more detail in Abdalla et al. (2008) and Banerji (2009). The super-

vised artificial neural network photometric code ANNz (Collister & Lahav 2004) is a training set method 

which has been shown to produce competitive results compared to other training set methods available 

(Abdalla et al. 2009). ANNz requires a training set which is the data used to optimise a cost function with 

respect to the free parameters (‘weights’). If the data is noisy, a validation set is also required in order to 

prevent over-fitting. The remaining freedom left in a neural network analysis is the architecture of the net-

work. A network with architecture N:2N:2N:1 (i.e. which has N inputs, two hidden layers with 2N nodes 

each and only one output estimating the redshift, and where only adjacent layers are interconnected) has been 

shown to work well on photometric data (Collister & Lahav 2004) where N is the number of different photo-

metric bands available. 

 

 

Figure A2.5: Spectra of different galaxies at different 

redshifts. The shaded regions are the wavelength 

range covered by the Pan-STARRS-like (grey) and 

Euclid NIR (red) simulation. The solid blue curve and 

the red curve are spectra of different galaxies at same 

redshift. The blue dotted curve has the same SED as 

the solid blue curve but has a different redshift. Flux 

is in units of erg/sec/angstrom. 
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DES: Dark Matter Mapping
4

FIG. 1. The DES SV main foreground galaxy maps kg,main (left), E-mode convergence map kE (middle) and B-mode convergence map kB
(right) are shown in these panels. All maps are generated with 5⇥5 arcmin2 pixels and 20 arcmin RMS Gaussian smoothing. In the kg and
kE maps, red areas corresponds to overdensities and blue areas to underdensities. White regions correspond to the survey mask. The scale of
the Gaussian smoothing kernel is indicated by the Gaussian profile on the upper right corner of the right panel. The kE map is overlaid by
Redmapper galaxy clusters with optical richness l > 20. The radius of the circles scale with l .

algorithm Redmapper v6.3.3 [32] Each cluster is represented
by a circle with radius proportional to the optical richness l .
l is related to mass via a roughly linear relation (see [32] for
details of the mass calibration of l ). We select only clusters
with l > 20, which corresponds to mass larger than a few
times 1014 M�. Visually, one can see that the spatial distribu-
tion of the clusters traces the mass map very well, with most
clusters detected in or around the high kE regions.

We analyze the redshift distributions of the clusters in the
high-mass and low-mass region. Two examples are shown in
Figure 2, where we plot (in blue) the l -weighted redshift dis-
tribution of the clusters within a 1 degree radius of the iden-
tified high and low-mass positions. Compared to the aver-
age redshift distribution of clusters (overlaid in grey), we find
that the high-mass (low-mass) regions indeed contain many
more (fewer) clusters than average. The redshift binning is
Dz=0.03, corresponding to between 1.5-3sz in this redshift
range, where sz is the cluster photo-z error uncertainty. Note
that the photo-z’s for Redmapper clusters are very well deter-
mined (sz ⇡ 0.01(1+ z)), which is important for the identifi-
cations of the 3D structures. Using these histograms we can
identify potential candidates of super-clusters. For example,
the peak at z ⇠ 0.14 in the left panel indicates that this spatial
structure is contained in a redshift range localized to within
about 100 Mpc along the line of sight. This line of sight has
multiple structures at different redshifts, others have just one
or two. The largest mass concentrations are investigated in
more detail in the companion paper and in follow-up studies.

FIG. 2. Richness-weighted redshift distribution of Redmapper
galaxy clusters in overdense (left) and underdense (right) regions in
the convergence map. The blue line shows the weighted histogram
while the thick grey line shows the average redshift distribution of
the clusters. The (RA, DEC) positions are shown in the upper right
corner of each panel.

Mass-galaxy correlation

Next, we investigate quantitatively the correlation between
the foreground galaxies and the mass map by calculating the
Pearson correlation coefficient between the two maps over a
range of smoothing scales that span 5 to 40 arcmin. That is,
we calculate

rkE kg =
hkEkgi
skE skg

, (7)

where hkEkgi is the covariance between kE and kg, and skE
and skg are the standard deviations of the two maps. In this
calculation, pixels in the masked region are not used. We also
remove pixels within 10 arcmin of the boundaries to avoid
significant artefacts from the smoothing. Similarly we cal-

Chang,…, AA+ PRL (2015) 
Vikram, Chang…, AA+ PRD (2015) 
Chang, Pujol, Gaztañaga, AA+ (2016) 
Pujol, Chang, Gaztañaga, AA+  (2016)
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Cosmlogy DES Collaboration (arXiv:1507.05603)

Shear Catalogs Jarvis et al (arXiv:1507.05603)

Photometric redshift Bonnett et al (arXiv:1507.05909)

Systematics maps Leistedt et al (arXiv:1507.05647)

Shear Power Spectra Becker et al (arXiv:1507.05598)
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DES: Dark Matter Statistics

12 Bonnett, Troxel, Hartley, Amara, Leistedt and the DES Collaboration

Figure 10. Each row of panels show the weighted spectroscopic redshift distributions (shaded area) of the objects in each tomographic
bin as selected by the mean of skynet compared to estimates of the redshift distribution of the four methods used in this work. Top
row: The spectra used in this test comes from VVDS-F14, an independent sample not not used for training. Second row: The spectra
used in this test are a 30% subset of VVDS-Deep used as part of the validation sample. Third row: The spectra used in this test are a
30% subset of the matched spectroscopic catalogue used for validation. Bottom row: The redshift distribution in the tomographic bins
for the ngmix sample.

methods is very small despite low-z di↵erences in the corre-
lation function, with agreement at much better than the 1�
level. bpz has a relative bias of about 1�, by comparison,
which corresponds to about 3% in �

8

.

For completeness, we have also repeated the above anal-
yses and those in Sec. 6.1.2 on the im3shape n(z) with the
same redshift boundaries matching those derived for ngmix

and again for tomographic bins derived for im3shape, and
find in all cases that the major conclusions and resulting
di↵erences across photo-z methods are consistent between
analyses of the two catalogues at the level of accuracy we
require for SV analysis.

MNRAS 000, 000–000 (0000)

Bonnett, Troxel, Hartley, AA+ (2015)

2316 Becker, Troxel, MacCrann, Krause, Eifler, Friedrich, Nicola, Refregier and the DES Collab.
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Figure A2. Spherical harmonic shear power spectrum estimated
using PolSpice. The left and right panels correspond to the ng-

mix and im3shape catalogs, respectively. The top and bottom
panels show the E- and B-modes, respectively. The measurement
uncertainties are estimated using the mock catalogs. The black
solid lines show the predictions for the flat, ⇤CDM model given
above. Note that the theoretical prediction has been convolved
with the PolSpice kernels, which relate the true to measured
power spectra. The S/N values for the E-modes are computed as
outlined in Section 4.1 and the �2 values for the B-modes indi-
cate consistency with zero. The reported values take into account
correlations between the band-powers.

tion range introduce kernels which relate the power spectra
measured by PolSpice to the underlying true power spec-
tra. These kernels can be computed for a given apodization
scheme and integration range and can therefore be corrected
for when comparing measurement to theory (for details see
Chon et al. 2004). For our analysis, we pixelise the galaxy
ellipticities onto a HEALPix pixelisation of the sphere with
a resolution of Nside=1024, where each pixel covers a solid
angle of 11.8 arcmin2. In order to obtain a robust estimate
of the shear field, we need to correct for multiplicative bias
in the measured ellipticities. Since the correction factors de-
scribed in Sections 2.1 and 2.2 are noisy estimates of the
true corrections, we determine the mean sensitivity or mul-
tiplicative bias correction for our galaxy sample and apply
this mean correction to the pixelised maps. Additionally,
we apply the DES SV LSS mask (Crocce et al. in prepara-
tion) to our maps in order to restrict to regions deeper than
MAG_I_AUTO = 22.5. For the power spectrum measurement,
we limit all integrations to scales smaller than ✓max = 15 de-
grees and we apodize the correlation function with a Gaus-
sian window of ✓FWHM = 10 degrees. Finally, we compress
the power spectra into 7 band-powers with PolSpice band-
power kernels.

The noise power spectrum needs to be computed from
simulations. In order to produce noise only maps, we remove
correlations in the input maps by rotating each galaxy shear
by a random angle. We then estimate the noise power spec-
trum as the mean of the power spectra of 100 such random
realizations. This procedure yields shape noise estimates

consistent with C`,SN =
�2

✏
n
pix

where �2
✏ is the variance of

either component of the mean ellipticity per pixel and npix

is the number density of HEALPix pixels; this suggests that

the ellipticity distribution of the galaxies is non- Gaussian
and therefore the analytic estimate can only be applied after
averaging the distribution over pixels. We test the pipeline
using Gaussian field realizations and the mock catalogs.

A3 Results

Figure A1 shows the non-tomographic band-powers using
the methods of Becker & Rozo (2014), their window func-
tions as the dotted lines, and their error bars computed with
the mock catalogs as the grey bands. We find a detection
significance 6.1� and 5.7� for ngmix and im3shape, respec-
tively. These detection significances are similar to the real-
space two-point functions. Finally, the solid line shows the
expected shear power spectrum amplitude assuming the flat,
⇤CDM model given above. The dashed line shows for each
band-power the integral of the band-power window function
over the shear power spectrum.

Figure A2 shows the results for the PolSpice statistics.
We find a detection of cosmic shear of 5.1� and 5.5� for
ngmix and im3shape respectively for the PolSpice statis-
tics. Note that the PolSpice statistics do not use as many
high-`modes as the real-space band-powers or the real-space
correlation functions, so that one expects a lower detection
significance. We also find that the B-modes are statistically
consistent with zero for the PolSpice statistics.

APPENDIX B: VALIDATION OF THE MOCK
CATALOGS

In this section we present validation tests on the mock
catalogs. We first compare the shear correlation functions
measured in the mock catalogs in tomographic bins with
the theoretical expectation from the Takahashi et al. (2012)
fitting function for the matter power spectrum. The result
of this test is shown in Figure B1. We find that at high
redshift the small-scale shear correlation functions are
suppressed relative to the theoretical expectation. Note
however that this numerical e↵ect is below the scales where
the two-point functions are being used for cosmological
parameter estimation (see Table 2 of DES et al. 2015). Ad-
ditionally, we only estimate the covariance of the two-point
functions from the mock catalogs. Our covariance matrices
from the mock catalogs agree well with the halo model
computations at small-scales, indicating that the covariance
is less sensitive to these numerical e↵ects (see Sec. 5 for
a quantitative comparison). Future work may require
higher-resolution shear fields for covariance estimation.

APPENDIX C: DETAILED COVARIANCE
MATRIX VALIDATION

In this section, we present further details of the valida-
tion of the covariance matrices, including our tomographic
halo model computations and the comparison to the simu-
lations. The halo model covariance was computed with the
CosmoLike covariance module (see Eifler et al. 2014b and
Krause et al. 2015 for details).

In the halo model, the covariance of tomographic shear
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Figure A2. Spherical harmonic shear power spectrum estimated
using PolSpice. The left and right panels correspond to the ng-

mix and im3shape catalogs, respectively. The top and bottom
panels show the E- and B-modes, respectively. The measurement
uncertainties are estimated using the mock catalogs. The black
solid lines show the predictions for the flat, ⇤CDM model given
above. Note that the theoretical prediction has been convolved
with the PolSpice kernels, which relate the true to measured
power spectra. The S/N values for the E-modes are computed as
outlined in Section 4.1 and the �2 values for the B-modes indi-
cate consistency with zero. The reported values take into account
correlations between the band-powers.

tion range introduce kernels which relate the power spectra
measured by PolSpice to the underlying true power spec-
tra. These kernels can be computed for a given apodization
scheme and integration range and can therefore be corrected
for when comparing measurement to theory (for details see
Chon et al. 2004). For our analysis, we pixelise the galaxy
ellipticities onto a HEALPix pixelisation of the sphere with
a resolution of Nside=1024, where each pixel covers a solid
angle of 11.8 arcmin2. In order to obtain a robust estimate
of the shear field, we need to correct for multiplicative bias
in the measured ellipticities. Since the correction factors de-
scribed in Sections 2.1 and 2.2 are noisy estimates of the
true corrections, we determine the mean sensitivity or mul-
tiplicative bias correction for our galaxy sample and apply
this mean correction to the pixelised maps. Additionally,
we apply the DES SV LSS mask (Crocce et al. in prepara-
tion) to our maps in order to restrict to regions deeper than
MAG_I_AUTO = 22.5. For the power spectrum measurement,
we limit all integrations to scales smaller than ✓max = 15 de-
grees and we apodize the correlation function with a Gaus-
sian window of ✓FWHM = 10 degrees. Finally, we compress
the power spectra into 7 band-powers with PolSpice band-
power kernels.

The noise power spectrum needs to be computed from
simulations. In order to produce noise only maps, we remove
correlations in the input maps by rotating each galaxy shear
by a random angle. We then estimate the noise power spec-
trum as the mean of the power spectra of 100 such random
realizations. This procedure yields shape noise estimates

consistent with C`,SN =
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where �2
✏ is the variance of

either component of the mean ellipticity per pixel and npix

is the number density of HEALPix pixels; this suggests that

the ellipticity distribution of the galaxies is non- Gaussian
and therefore the analytic estimate can only be applied after
averaging the distribution over pixels. We test the pipeline
using Gaussian field realizations and the mock catalogs.

A3 Results

Figure A1 shows the non-tomographic band-powers using
the methods of Becker & Rozo (2014), their window func-
tions as the dotted lines, and their error bars computed with
the mock catalogs as the grey bands. We find a detection
significance 6.1� and 5.7� for ngmix and im3shape, respec-
tively. These detection significances are similar to the real-
space two-point functions. Finally, the solid line shows the
expected shear power spectrum amplitude assuming the flat,
⇤CDM model given above. The dashed line shows for each
band-power the integral of the band-power window function
over the shear power spectrum.

Figure A2 shows the results for the PolSpice statistics.
We find a detection of cosmic shear of 5.1� and 5.5� for
ngmix and im3shape respectively for the PolSpice statis-
tics. Note that the PolSpice statistics do not use as many
high-`modes as the real-space band-powers or the real-space
correlation functions, so that one expects a lower detection
significance. We also find that the B-modes are statistically
consistent with zero for the PolSpice statistics.

APPENDIX B: VALIDATION OF THE MOCK
CATALOGS

In this section we present validation tests on the mock
catalogs. We first compare the shear correlation functions
measured in the mock catalogs in tomographic bins with
the theoretical expectation from the Takahashi et al. (2012)
fitting function for the matter power spectrum. The result
of this test is shown in Figure B1. We find that at high
redshift the small-scale shear correlation functions are
suppressed relative to the theoretical expectation. Note
however that this numerical e↵ect is below the scales where
the two-point functions are being used for cosmological
parameter estimation (see Table 2 of DES et al. 2015). Ad-
ditionally, we only estimate the covariance of the two-point
functions from the mock catalogs. Our covariance matrices
from the mock catalogs agree well with the halo model
computations at small-scales, indicating that the covariance
is less sensitive to these numerical e↵ects (see Sec. 5 for
a quantitative comparison). Future work may require
higher-resolution shear fields for covariance estimation.

APPENDIX C: DETAILED COVARIANCE
MATRIX VALIDATION

In this section, we present further details of the valida-
tion of the covariance matrices, including our tomographic
halo model computations and the comparison to the simu-
lations. The halo model covariance was computed with the
CosmoLike covariance module (see Eifler et al. 2014b and
Krause et al. 2015 for details).

In the halo model, the covariance of tomographic shear
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Figure A2. Spherical harmonic shear power spectrum estimated
using PolSpice. The left and right panels correspond to the ng-

mix and im3shape catalogs, respectively. The top and bottom
panels show the E- and B-modes, respectively. The measurement
uncertainties are estimated using the mock catalogs. The black
solid lines show the predictions for the flat, ⇤CDM model given
above. Note that the theoretical prediction has been convolved
with the PolSpice kernels, which relate the true to measured
power spectra. The S/N values for the E-modes are computed as
outlined in Section 4.1 and the �2 values for the B-modes indi-
cate consistency with zero. The reported values take into account
correlations between the band-powers.

tion range introduce kernels which relate the power spectra
measured by PolSpice to the underlying true power spec-
tra. These kernels can be computed for a given apodization
scheme and integration range and can therefore be corrected
for when comparing measurement to theory (for details see
Chon et al. 2004). For our analysis, we pixelise the galaxy
ellipticities onto a HEALPix pixelisation of the sphere with
a resolution of Nside=1024, where each pixel covers a solid
angle of 11.8 arcmin2. In order to obtain a robust estimate
of the shear field, we need to correct for multiplicative bias
in the measured ellipticities. Since the correction factors de-
scribed in Sections 2.1 and 2.2 are noisy estimates of the
true corrections, we determine the mean sensitivity or mul-
tiplicative bias correction for our galaxy sample and apply
this mean correction to the pixelised maps. Additionally,
we apply the DES SV LSS mask (Crocce et al. in prepara-
tion) to our maps in order to restrict to regions deeper than
MAG_I_AUTO = 22.5. For the power spectrum measurement,
we limit all integrations to scales smaller than ✓max = 15 de-
grees and we apodize the correlation function with a Gaus-
sian window of ✓FWHM = 10 degrees. Finally, we compress
the power spectra into 7 band-powers with PolSpice band-
power kernels.

The noise power spectrum needs to be computed from
simulations. In order to produce noise only maps, we remove
correlations in the input maps by rotating each galaxy shear
by a random angle. We then estimate the noise power spec-
trum as the mean of the power spectra of 100 such random
realizations. This procedure yields shape noise estimates

consistent with C`,SN =
�2

✏
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where �2
✏ is the variance of

either component of the mean ellipticity per pixel and npix

is the number density of HEALPix pixels; this suggests that

the ellipticity distribution of the galaxies is non- Gaussian
and therefore the analytic estimate can only be applied after
averaging the distribution over pixels. We test the pipeline
using Gaussian field realizations and the mock catalogs.

A3 Results

Figure A1 shows the non-tomographic band-powers using
the methods of Becker & Rozo (2014), their window func-
tions as the dotted lines, and their error bars computed with
the mock catalogs as the grey bands. We find a detection
significance 6.1� and 5.7� for ngmix and im3shape, respec-
tively. These detection significances are similar to the real-
space two-point functions. Finally, the solid line shows the
expected shear power spectrum amplitude assuming the flat,
⇤CDM model given above. The dashed line shows for each
band-power the integral of the band-power window function
over the shear power spectrum.

Figure A2 shows the results for the PolSpice statistics.
We find a detection of cosmic shear of 5.1� and 5.5� for
ngmix and im3shape respectively for the PolSpice statis-
tics. Note that the PolSpice statistics do not use as many
high-`modes as the real-space band-powers or the real-space
correlation functions, so that one expects a lower detection
significance. We also find that the B-modes are statistically
consistent with zero for the PolSpice statistics.

APPENDIX B: VALIDATION OF THE MOCK
CATALOGS

In this section we present validation tests on the mock
catalogs. We first compare the shear correlation functions
measured in the mock catalogs in tomographic bins with
the theoretical expectation from the Takahashi et al. (2012)
fitting function for the matter power spectrum. The result
of this test is shown in Figure B1. We find that at high
redshift the small-scale shear correlation functions are
suppressed relative to the theoretical expectation. Note
however that this numerical e↵ect is below the scales where
the two-point functions are being used for cosmological
parameter estimation (see Table 2 of DES et al. 2015). Ad-
ditionally, we only estimate the covariance of the two-point
functions from the mock catalogs. Our covariance matrices
from the mock catalogs agree well with the halo model
computations at small-scales, indicating that the covariance
is less sensitive to these numerical e↵ects (see Sec. 5 for
a quantitative comparison). Future work may require
higher-resolution shear fields for covariance estimation.

APPENDIX C: DETAILED COVARIANCE
MATRIX VALIDATION

In this section, we present further details of the valida-
tion of the covariance matrices, including our tomographic
halo model computations and the comparison to the simu-
lations. The halo model covariance was computed with the
CosmoLike covariance module (see Eifler et al. 2014b and
Krause et al. 2015 for details).

In the halo model, the covariance of tomographic shear
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Figure 3. Graphical illustration of the 68% confidence limits on S8 ⌘ �8(⌦m/0.3)0.5 values given in Table 1, showing the robustness
of our results (purple) and comparing with the CFHTLenS and CMB lensing results (orange) and Planck (red). The grey vertical band
aligns with the fiducial constraints at the top of the plot. Note that Planck lensing in particular optimally constrains a di↵erent quantity
than S8 shown above e.g. see the second and third columns of Table 1.

ing variations of the DES SV analysis (see Section 5) and
combinations with CFHTLenS and Planck (see Section 6.1).

For comparison with other constraints we also investi-
gated the impact of ignoring shear measurement and photo-
metric redshift uncertainties and find that the central value
of S8 changes negligibly, and the error bar decreases by
⇠20% (see Table 1 for details).

In Table 1 we also show results ignoring all systematics.
This is the same as the “No photoz or shear systematics”
case but additionally ignoring intrinsic alignments, so that
only the other cosmological parameters are varied. The cen-
tral value shifts down by 0.037 and the error bar is reduced
by 27% compared to the fiducial case. Therefore the sys-
tematics contribute almost half (in quadrature) of our total
error budget, and further e↵ort will need to be made to re-
duce systematic uncertainties if we are to realise a significant
improvement in the constraints (from shear 2pt correlations
alone) with larger upcoming DES samples.

4 CHOICE OF DATA VECTOR AND SCALES
USED

In this Section we consider the impact of the choice of two-
point statistic on the cosmological constraints, and investi-
gate how our fiducial estimators are a↵ected by the choice
of angular scales used.

4.1 Choice of two-point statistic

Be15 present results for a selection of two-point statistics
– see that work, and references therein for more detailed
description of the statistics and their estimators. For an
overview of the theory presented here see Bartelmann &
Schneider (2001).

The statistics can all be described as weighted integrals
over the weak lensing convergence power spectrum at an-
gular wavenumber `, Cij

` , of tomographic bin i and tomo-
graphic bin j, which can be related to the matter power

MNRAS 000, 1–20 (2015)

10 The Dark Energy Survey Collaboration

Redshift bin combination ✓min(⇠+) ✓min(⇠�)

(1,1) 4.6 56.5
(1,2) 4.6 56.5
(1,3) 4.6 24.5
(2,2) 4.6 24.5
(2,3) 2.0 24.5
(3,3) 2.0 24.5

Table 2. Scale cuts for tomographic shear two point functions
⇠± using the prescription described in the text.

tential bias on �8 as that which would arise from ignoring
the presence of baryonic e↵ects; as a specific model for these
e↵ects we use the OWLS AGN simulation (Schaye et al.
2010). See Section 5.4 for more details, in particular Eq.
8 for the implementation of the AGN model. For a given
angular scale ⇠� is more a↵ected than ⇠+: for example the
fractional bias when using all scales in ⇠�, but none in ⇠+
(✓�min = 20, ✓+min = 245.50) is ⇡ 0.03 whereas the bias when
using all scales in ⇠+, but none in ⇠� (✓+min = 20, ✓�min =
245.5) is ⇡ 0.015. For the non-tomographic case, we use a
minimum angular scale of 3 arcminutes for ⇠+, and 30 ar-
cminutes for ⇠�, because on these angular scales the bias is
< 25% of the statistical uncertainty on �8 (with no other
parameters marginalised). For the tomographic case we use
a more general prescription in which we cut angular bins
that change significantly when we change the non-linear
power model. We remove data points where the theoreti-
cal prediction changes by more than 5% when the nonlinear
matter power spectrum is switched from the fiducial to ei-
ther that predicted from the FrankenEmu10 code (based on
the Coyote Universe Simulations (Heitmann et al. 2014b),
and extended at high k using the ‘CEp’ presciption from
Harnois-Déraps et al. 2015), or to the OWLS AGN model.
The inferred biases for the non-tomographic ⇠± shown in
Figure 5 suggest similar angular cuts. The results of these
cuts are summarised in Table 2. We demonstrate the e↵ec-
tiveness of these cuts and discuss other methods of dealing
with non-linear scales in Section 5.4.

We limit ⇠+ to < 60 arcmin, since these large scales in
⇠+ are highly correlated and therefore add little information,
and are likely to be more severely a↵ected by additive shear
biases (as detailed in J15).

5 ROBUSTNESS TO SYSTEMATICS

We now examine the robustness of our fiducial constraints
to assumptions made about the main systematic uncertain-
ties for cosmic shear. In each subsection we consider the
impact of ignoring the systematic in question, and examine
alternative prescriptions for the input data or modelling.

5.1 Shear calibration

The measurement of galaxy shapes at the accuracy required
for cosmic shear is a notoriously hard problem. The raw
shapes in our two catalogues are explicitly corrected for

10 http://www.hep.anl.gov/cosmology/CosmicEmu/emu.html

Figure 6. Robustness to assumptions about shear measurement.
Shaded purple (fiducial case): ngmix, with one shear mulitiplica-
tive bias parameter m for each of the 3 tomographic redshift bins,
with an independent Gaussian prior on each mi with � = 0.05.
Solid blue lines: im3shape with the same assumptions. Planck is
shown in red.

known sources of systematic bias. This involves either cali-
bration using image simulations in the case of im3shape or
sensitivity corrections in the case of ngmix (see J15). We
rely on a number of assumptions and cannot be completely
certain the final catalogues carry no residual bias. It is there-
fore important that our model includes the possibility of er-
ror in our shape measurements. As in Jee et al. (2013) we
marginalise over shear measurement uncertainties in param-
eter estimation.

J15 estimate the systematic uncertainty on the shear
calibration by comparing the two shape measurement codes
to image simulations, and to each other. Following that dis-
cussion we include in our model a multiplicative uncertainty
which is independent in each of the three redshift bins. We
thus introduce three free parameters mi (i = 1, 2, 3). The
predicted data are transformed as

⇠i,j±pred = (1 +mi)(1 +mj)⇠
i,j
±true (5)

for redshift bins i, j.
As discussed in J15, we use a Gaussian prior on the

mi parameters of width 0.05, compared to a 0.06 uniform
prior used by Jee et al. (2013). No systematic shear calibra-
tion uncertainties were propagated by CFHTLenS in H13
or earlier work (although K13 did investigate the statistical
uncertainty on the shear calibration arising from having a
limited calibration sample). If we neglect this uncertainty
and assume that our shape measurement has no errors (fix-
ing mi = 0) then our uncertainty on S8 is reduced by 9%
and the central value is unchanged (see the “Without shear
bias marginalisation” row in Table 1 and Figure 3 for more
details).

Figure 6 shows the result of interchanging the two
shear measurement codes, swapping ngmix (fiducial) to
im3shape. The im3shape constraints are weaker, because
the shapes are measured from a single imaging band (r-
band) instead of simultaneously fitting to three bands (r,
i, z) as in ngmix, and im3shape retains fewer galaxies after
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Figure 7. Results using di↵erent photoz codes. Purple filled con-
tours: fiducial case (SkyNet). Blue dashed lines: ANNz2. Green
solid lines: TPZ. Red dash-dotted lines: BPZ w/ correction.

quality cuts (in particular the im3shape catalogue contains
around half as many galaxies as ngmix in our highest red-
shift bin). The preferred value of S8 is shifted about 1�
higher for im3shape than ngmix and the error bar is in-
creased by 38% (see the “im3shape shears” row in Table
1 and Figure 3). While we do not expect the constraints
from the two shear codes to be identical, since they come
from di↵erent data selections, the two codes do share many
of the same galaxies, and of course probe a common vol-
ume. We can estimate the significance of the shift using the
mock DES SV simulations detailed in Be15. Carefully tak-
ing into account the overlapping galaxy samples, correlated
shape noise and photon noise, and of course the common
area, we create an ngmix and an im3shape realisation of
our signal for each mock survey. We then compute the dif-
ference in the best-fit �8s (keeping all other parameters fixed
to fiducial values for computational reasons) for the two sig-
nals, and compute the standard deviation of this di↵erence
over the 126 mock realisations. We find this di↵erence has
a standard deviation of 0.028, compared with the di↵erence
in this statistic (the best-fit �8 with all other parameters
fixed) on the data of 0.046. We conclude that although this
shift is not particularly significant, it could be an indica-
tion of shape measurement biases in either catalogue. The
decreased statistical errors of future DES analyses will pro-
vide more stringent tests on shear code consistency.

5.2 Photometric redshift biases

In this subsection we investigate the robustness of our con-
straints to errors in the photometric redshifts. As motivated
by Bo15, for our fiducial model we marginalise with a Gaus-
sian prior of width 0.05 over three independent photometric
redshift calibration bias parameters �zi (i = 1, 2, 3) where

npred
i (z) = nmeas

i (z � �zi) (6)

for redshift bin i, where nmeas
i (z) is the measured photo-

metric redshift probability distribution and npred
i (z) is the

redshift distribution used in predicting the shear two-point

functions (i.e. our model for the true ni(z) assuming the
given �zi). This model is discussed further in Bo15 where it
is shown to be a reasonably good model for the uncertainties
at the current level of accuracy required.

If we neglect photometric redshift calibration uncertain-
ties then the error on S8 is reduced by ⇠10% and its value
shifts down by ⇠10% of the fiducial error bar (see the row
labelled “Without photo-z bias marginalisation” in Table 1
and Figure 3).

In Figure 7 we show the impact of switching between
the four photometric redshift estimation codes described in
Bo15. We see excellent agreement between the codes, al-
though as detailed in Bo15, the machine learning codes are
not independent - Skynet, ANNZ2, TPZ are trained on the
same spectroscopic data, while an empirical calibration is
performed on the template fitting method BPZ using sim-
ulation results. As quantified in Table 1 and illustrated in
Figure 3, the constraint on S8 moved by less than two thirds
of the error bar when switching between photometric red-
shift codes, with the biggest departure occurring for BPZ,
which moves to higher S8. A more detailed analysis and vali-
dation of the photo-zs using relevant weak lensing estimators
and metrics is performed in Bo15 for galaxies in the shear
catalogues.

5.3 Intrinsic alignments

In this subsection we investigate the e↵ect of assumptions
made about galaxy intrinsic alignments (IAs), by repeating
the cosmological analysis with (i) no intrinsic alignments,
(ii) a simpler, linear, intrinsic alignment model, (iii) a more
complete tidal alignment model, and (iv) adding a free power
law redshift evolution. We also show constraints on the am-
plitude of intrinsic alignments and show the benefit of using
tomography. We use the same data vector and likelihood
calculation for all models.

It was realised early in the study of weak gravitational
lensing (Heavens et al. 2000; Croft & Metzler 2000; Cate-
lan et al. 2001; Crittenden et al. 2001) that the unlensed
shapes of physically close galaxies may align during galaxy
formation due to the influence of the same large-scale gravi-
tational field. This type of correlation was dubbed “Intrinsic-
Intrinsic”, or II. Hirata & Seljak (2004) then demonstrated
that a similar e↵ect can give rise to long-range IA correla-
tions as background galaxies are lensed by the same struc-
tures that correlate with the intrinsic shapes of foreground
galaxies. This gives rise to a “Gravitational-Intrinsic”, or
GI, correlation. The total measured cosmic shear signal is
the sum of the pure lensing contribution and the IA terms:

Cij
obs(`) = Cij

GG(`) + Cij
GI(`) + Cij

IG(`) + Cij
II (`). (7)

Neglecting this e↵ect can lead to significantly biased cosmo-
logical constraints (Heavens et al. 2000; Bridle & King 2007;
Joachimi et al. 2011; Kirk et al. 2012; Krause et al. 2015).

We treat IAs in the “tidal alignment” paradigm, which
assumes that intrinsic galaxy shapes are linearly related
to the tidal field (Catelan et al. 2001), and thus that the
additional Cij(`) terms above are integrals over the 3D
matter power spectra. It has been shown to accurately de-
scribe red/elliptical galaxy alignments (Joachimi et al. 2011;
Blazek et al. 2011). More details of all the IA models consid-
ered in this paper can be found in Appendix A. Within the
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Figure 4. Comparison of constraints on �8 and ⌦m for various
choices of data vector: ⇠± with no tomography or systematics
(purple filled), Cij

` bandpowers (dashed red lines) and PolSpice-
C` bandpowers (solid green lines) (both with no tomography or
systematics). We do not show our fiducial constraints, or Planck,
since we have not marginalised over systematics for the con-
straints shown here, so agreement is not necessary or meaningful
(although Table 1 suggests there is reasonable agreement).

spectrum, P�(k, z), by the Limber approximation

Cij
` =

9H4
0⌦

2
m

4c4

Z �
h

0

d�
gi(�)gj(�)

a2(�)
P�

✓
`

fK(�)
,�

◆
, (2)

where � is the comoving radial distance, �h is the comoving
distance of the horizon, a(�) is the scale factor, and fK(�)
the comoving angular diameter distance. We assume a flat
universe (fK(�) = �) hereafter. The lensing e�ciency gi is
defined as an integral over the redshift distribution of source
galaxies n(�(z)) in the ith redshift bin:

gi(�) =

Z �
h

�

d�0ni(�
0)
fK(�0 � �)

fK(�0)
, (3)

Our fiducial statistics, the real space correlation functions,
⇠±(✓), are weighted integrals of the angular power spectra:

⇠ij± (#) =
1
2⇡

Z
d` ` J0/4(`#)C

ij
` , (4)

where J0/4 is the Bessel function of either 0th or 4th order.
⇠± have the advantage of being straightforward to estimate
from the data, whereas the Cij

` s require more processing but
are a step closer to the theoretical predictions. An advantage
of using Cij

` is that the signal is split into two parts, E- and
B-modes, the latter of which is expected to be very small
for cosmic shear. The cosmic shear signal is concentrated
in the E-mode because to first order the shear signal is the
gradient of a scalar field. The B-mode can therefore be used
as a test of systematics as discussed in J15 and Be15.

Be15 also implement the method of Becker & Rozo
(2014) which uses linear combinations of ⇠±(✓) to estimate
fourier space bandpowers of Cij

` . Also presented are PolSpice
(Szapudi et al. 2000) estimates of the Cij

` s from pixelised
shear maps using the pseudo-C` estimation process, which
corrects the spherical harmonic transform values for the ef-
fect of the survey mask (see Hikage et al. (2011) for the first

Figure 5. The fractional bias on �8 due to ignoring an OWLS
AGN baryon model (solid lines) compared to the statistical uncer-
tainty on �8 (dashed lines) as a function of minimum scale used
for ⇠� (✓�min, x-axis) or ⇠+ (✓+min, colours). Whereas the statistical
error is minimised by using small scales, the bias is significant for
✓�min < 300 and ✓+min < 30.

implementation for cosmic shear). For simplicity we do not
perform a tomographic analysis using these estimators. To
compare cosmological constraints with these di↵erent esti-
mators we do not marginalise over any systematics, to enable
a more conservative comparison between them. (Note that
marginalising over intrinsic alignments inflates the errors of
non-tomographic analyses as described in Section 5.3).

Figure 4 shows constraints from the di↵erent estima-
tors, and we see that the three are in good agreement. A
more detailed comparison can be made using the numbers
in Table 1, which are shown graphically in Figure 3. The rel-
evant lines for comparison are the “No tomography or sys-
tematics” line which uses the fiducial ⇠± data vector, and
the two C` bandpower lines. The uncertainties are similar
between these methods, and the PolSpice-C` constraints are
shifted to slightly lower S8, though are consistent with con-
straints based on the ⇠± approach.

4.2 Choice of scales

All the two-point statistics discussed thus far involve a mix-
ing of physical scales: it is clear from Eq. 4 that ⇠± at a given
real space angular scale uses information from a range of an-
gular wavenumbers `, while C` itself uses information from
a range of physical scales k in the matter power spectrum
P�(k, z). In Section 5.4 we discuss some of the di�culties
in producing an accurate theoretical estimate of P�(k, z) for
high k (small physical scales). In this work, we aim to null
the e↵ects of this theoretical uncertainty by cutting small
angular scales from our data vector, since using scales where
the theoretical prediction is inaccurate can bias the derived
cosmological constraints, mostly due to unknown baryonic
e↵ects on clustering.

Figure 5 demonstrates the impact of errors in the mat-
ter power spectrum prediction on estimates of �8 from a
non-tomographic analysis. In this figure we estimate the po-
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the inclusion of the AGN model causes an increase in S8

of 20% of our error bar (compare the “Without small-scale
cuts” line in Table 1 with the “OWLS AGN P (k) w/o small-
scale cuts” line). (However, with our fiducial cuts to small
scales the increase is only 13% of our error bar (compare the
“OWLS AGN P (k)” line in Table 1 with the Fiducial line).
We note that although the contours in Figure 9 do appear to
tighten slightly along the degeneracy direction when includ-
ing small scales, the errorbar on S8 increases slightly. This
could be due to the theoretical model being a poor fit at
small scales, or the noisiness of the covariance matrix. ) To
take advantage of the small scale information in future weak
lensing analyses, more advanced methods of accounting for
baryonic e↵ects will be required. Eifler et al. (2014a) pro-
pose a PCA marginalisation approach that uses information
from a range of hydrodynamic simulations, while Zentner
et al. (2013b) and Mead et al. (2015) propose modified halo
model approaches to modelling baryonic e↵ects. Even with
more advanced approaches to baryonic e↵ects, future cosmic
shear studies will have to overcome other systematics that
a↵ect small angular scales, such as the shape measurement
selection biases explored in Hartlap et al. (2011).

6 OTHER DATA

In this Section we compare the DES SV cosmic shear con-
straints with other recent cosmological data. We first com-
pare our results to those from CFHTLenS. We then com-
pare and combine with the Cosmic Microwave Background
(CMB) constraints from Planck (Planck XIII 2015), primar-
ily using the TT + low P dataset throughout (which we refer
to simply as “Planck” in most figures). We also compare to
another Planck data combination which used high-` TT, TE
and EE data and low-` P data.

Planck also measured gravitational lensing of the CMB,
which probes a very similar quantity to cosmic shear, but
weighted to higher redshifts (z ⇠ 2); we refer to this as
“Planck lensing” when comparing constraints. We discuss
additional datasets and present constraints on the dark
energy equation of state. See Planck Collaboration et al.
(2015c) and Lahav & Liddle (2014) for a broad review of
current cosmological constraints.

6.1 Comparisons

A comparison of DES SV constraints to those from other
observables is shown in Figure 10. The observables shown are
described below. Constraints on S8 from these comparisons
are also shown in Table 1 and Figure 3.

6.1.1 Other lensing data

CFHTLenS remains the most powerful current cosmic shear
survey, with 154 square degrees of data in the u, g, r, i, and
z bands. Table 1 summarises the constraints from the non-
tomographic analysis of K13 and the tomographic analysis
of H13 that we have computed using the same parameter
estimation pipeline as the DES SV data (starting from the
published correlation functions and covariance matrices).

We investigate the e↵ect of the scale cuts used for the

Figure 10. Joint constraints from a selection of recent datasets
on the total matter density ⌦m and amplitude of matter
fluctuations �8. From highest layer to lowest layer: Planck
TT+lowP(red); X-ray cluster mass counts (Mantz et al. 2015,
white/grey shading); DES SV (purple); CFHTLenS (H13, or-
ange); Planck CMB lensing (yellow); CMASS f�8 (Chuang et al.
2013, green).

CFHTLenS analysis so that we can make a more fair com-
parison to DES SV. In Table 1 and Fig 3 we show constraints
using scale cuts that were used in both C13 and K13 to test
the robustness of the results, labelled “original conservative
scales”. (H13 exclude angles < 30 for redshift bin combina-
tions involving the lowest two redshift bins from ⇠+, and
excluding angles < 300 for bin combinations involving the
lowest four redshift bins, and angles < 160 for bin combina-
tions involving the highest two redshift bins from ⇠�. K13
exclude angles < 170 from ⇠+ and < 530 from ⇠�.) Finally,
we show the CFHTLenS results using minimum scales se-
lected using the approach described in Section 4.2, which
we refer to as “modified conservative scales” in Table 1 and
Fig 3.

We show constraints from H13, with our scale cuts, on
(⌦m,�8) as orange contours in Figure 10. Our cosmologi-
cal constraints are consistent with H13, but have a higher
amplitude and larger uncertainties.

The values in Table 1 show that our prescription for
selecting which scales to use gives similar results to the pre-
scription in H13 (compare the “CFHTLenS (H13) original
conservative scales” line to the “CFHTLenS (H13) modified
conservative scales” line). The K13 results show some sen-
sitivity to switching from using all scales to cutting small
scales (possibly because of the apparent lack of power in the
large scale points that K13 used but H13 did not), with
a lower amplitude preferred when excluding small scales
(though see also Kitching et al. (2014) which prefers higher
amplitudes). The uncertainties increase by ⇠ 50% for the
“modified conservative scales” case (✓min(⇠+) = 3.50 and
✓min(⇠�) = 280) compared to using all scales.

The most comparable lines in Table 1 show that our
tomographic uncertainties are ⇠ 20% larger than those
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Table 4
Six-parameter ΛCDM Fit: WMAP Plus External Dataa

Parameter WMAP +eCMB +eCMB+BAO +eCMB+H0 +eCMB+BAO+H0

Fit parameters

Ωbh
2 0.02264 ± 0.00050 0.02229 ± 0.00037 0.02211 ± 0.00034 0.02244 ± 0.00035 0.02223 ± 0.00033

Ωch
2 0.1138 ± 0.0045 0.1126 ± 0.0035 0.1162 ± 0.0020 0.1106 ± 0.0030 0.1153 ± 0.0019

ΩΛ 0.721 ± 0.025 0.728 ± 0.019 0.707 ± 0.010 0.740 ± 0.015 0.7135+0.0095
−0.0096

109∆2
R 2.41 ± 0.10 2.430 ± 0.084 2.484+0.073

−0.072 2.396+0.079
−0.078 2.464 ± 0.072

ns 0.972 ± 0.013 0.9646 ± 0.0098 0.9579+0.0081
−0.0082 0.9690+0.0091

−0.0090 0.9608 ± 0.0080

τ 0.089 ± 0.014 0.084 ± 0.013 0.079+0.011
−0.012 0.087 ± 0.013 0.081 ± 0.012

Derived parameters

t0 (Gyr) 13.74 ± 0.11 13.742 ± 0.077 13.800 ± 0.061 13.702 ± 0.069 13.772 ± 0.059
H0 (km s−1 Mpc−1) 70.0 ± 2.2 70.5 ± 1.6 68.76 ± 0.84 71.6 ± 1.4 69.32 ± 0.80
σ8 0.821 ± 0.023 0.810 ± 0.017 0.822+0.013

−0.014 0.803 ± 0.016 0.820+0.013
−0.014

Ωb 0.0463 ± 0.0024 0.0449 ± 0.0018 0.04678 ± 0.00098 0.0438 ± 0.0015 0.04628 ± 0.00093
Ωc 0.233 ± 0.023 0.227 ± 0.017 0.2460 ± 0.0094 0.216 ± 0.014 0.2402+0.0088

−0.0087

zeq 3265+106
−105 3230 ± 81 3312 ± 48 3184 ± 70 3293 ± 47

zreion 10.6 ± 1.1 10.3 ± 1.1 10.0 ± 1.0 10.5 ± 1.1 10.1 ± 1.0

Notes. a ΛCDM model fit to WMAP nine-year data combined with a progression of external data sets. A complete list of parameter values for
this model, with additional data combinations, may be found at http://lambda.gsfc.nasa.gov/.

The improvement in the baryon density measurement is due
to more precise measurements of the Silk damping tail in the
power spectrum at l ! 1000; the improvements in Ωch

2 and
ΩΛ are due in part to improvements in the high-l TT data, but
also to the detection of CMB lensing in the SPT and ACT data
(Das et al. 2011a; van Engelen et al. 2012), which helps to
constrain Ωm by fixing the growth rate of structure between
z = 1100 and z = 1–2 (the peak in the lensing kernel). Taken
together, CMB data available at the end of the WMAP mission
produce a 1.6% measurement of Ωbh

2 and a 3.0% measurement
of Ωch

2.
The increased k-space lever arm provided by the high-l CMB

data improves the uncertainty on the scalar spectral index by
25%, giving ns = 0.9646 ± 0.0098, which implies a non-zero tilt
in the primordial spectrum (i.e., ns < 1) at 3.6σ . We examine
the implications of this measurement for inflation models in
Section 4.1.

If we assume a flat universe, which breaks the CMB’s
geometric degeneracy, then CMB data alone now provide a
2.3% measurement of the Hubble parameter, H0 = 70.5 ±
1.6 km s−1 Mpc−1, independent of the cosmic distance ladder.
As discussed in Section 3.4, this is consistent with the recent de-
termination of the Hubble parameter using the cosmic distance
ladder: H0 = 73.8 ± 2.4 km s−1 Mpc−1 (Riess et al. 2011); we
explore the effect of adding this prior in Section 3.4. We relax
the assumption of flatness in Section 4.5.

We conclude by comparing our results for the ACT and SPT
foreground “nuisance” parameters to those found by the ACT
and SPT teams. For example, we find AACT

Poisson = 14.8+2.3
−2.4 while

the ACT team finds AACT
Poisson = 12.0 ± 1.9. (Note that we do not

expect perfect agreement because we use nine-year WMAP data
and we fit the clustered source amplitude jointly with SPT data,
unlike the ACT team’s treatment.) The ACT team concluded that
the ΛCDM cosmological model (fit to) the 148 GHz spectrum
(and the seven-year WMAP data), marginalized over SZ and
source power is a good fit to the data (Dunkley et al. 2011).
The complete set of foreground parameters fit to the ACT and
SPT data may be found at http://lambda.gsfc.nasa.gov/ for all
the models reported in this paper.

3.3. Adding BAO Data

Acoustic structure in the large-scale distribution of galaxies is
manifest on a co-moving scale of 152 Mpc, where the evolution
of matter fluctuations is largely within the linear regime. A
number of authors have studied the degree to which the acoustic
structure could be perturbed by nonlinear evolution (e.g., Seo &
Eisenstein 2005, 2007; Jeong & Komatsu 2006, 2009; Crocce &
Scoccimarro 2008; Matsubara 2008; Taruya & Hiramatsu 2008;
Padmanabhan & White 2009), and the effects are well below the
current measurement uncertainties. Because it is based on the
same well-understood physics that governs the CMB anisotropy,
we consider measurements of the BAO scale to be the next-
most robust cosmological probe after CMB fluctuations. The
ΛCDM parameters fit to CMB and BAO data are given in the
“+eCMB+BAO” column of Table 4.

Measurements of the tangential and radial BAO scale at
redshift z measure the effective distance DV (z), given in
Equation (1), in units of the sound horizon rs(zd ). This quantity is
primarily sensitive to the total matter and dark energy densities,
and to the current Hubble parameter. Since the BAO scale is
relatively insensitive to the baryon density, Ωbh

2, this parameter
does not improve significantly with the addition of the BAO
prior. However, the low-redshift distance information imposes
complementary constraints on the matter density and Hubble
parameter, improving the precision on Ωch

2 from 3.0% to 1.6%,
and on H0 from 2.3% to 1.2%. In the context of standard ΛCDM
these improvements lead to a measurement of the age of the
universe with 0.4% precision: t0 = 13.800 ± 0.061 Gyr.

The addition of the BAO prior helps to break some resid-
ual degeneracy between the primordial spectral index, ns, on
the one hand, and Ωch

2 and H0 on the other. Figure 4 shows
the two-dimensional parameter likelihoods for (ns,Ωch

2) and
(ns, H0) for the three data combinations considered to this point.
With only CMB data (black and blue contours) there remains
a weak degeneracy between ns and the other two. When the
BAO prior is added (red), it pushes Ωch

2 toward the upper
end of the range allowed by the CMB, and vice versa for
H0. Both of these results push ns toward the lower end of its
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Planck+WP Planck+WP+highL Planck+lensing+WP+highL Planck+WP+highL+BAO

Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . . 0.022032 0.02205 ± 0.00028 0.022069 0.02207 ± 0.00027 0.022199 0.02218 ± 0.00026 0.022161 0.02214 ± 0.00024

⌦ch2 . . . . . . . . . . 0.12038 0.1199 ± 0.0027 0.12025 0.1198 ± 0.0026 0.11847 0.1186 ± 0.0022 0.11889 0.1187 ± 0.0017

100✓MC . . . . . . . . 1.04119 1.04131 ± 0.00063 1.04130 1.04132 ± 0.00063 1.04146 1.04144 ± 0.00061 1.04148 1.04147 ± 0.00056

⌧ . . . . . . . . . . . . 0.0925 0.089+0.012
�0.014 0.0927 0.091+0.013

�0.014 0.0943 0.090+0.013
�0.014 0.0952 0.092 ± 0.013

ns . . . . . . . . . . . 0.9619 0.9603 ± 0.0073 0.9582 0.9585 ± 0.0070 0.9624 0.9614 ± 0.0063 0.9611 0.9608 ± 0.0054

ln(1010As) . . . . . . . 3.0980 3.089+0.024
�0.027 3.0959 3.090 ± 0.025 3.0947 3.087 ± 0.024 3.0973 3.091 ± 0.025

APS
100 . . . . . . . . . . 152 171 ± 60 209 212 ± 50 204 213 ± 50 204 212 ± 50

APS
143 . . . . . . . . . . 63.3 54 ± 10 72.6 73 ± 8 72.2 72 ± 8 71.8 72.4 ± 8.0

APS
217 . . . . . . . . . . 117.0 107+20

�10 59.5 59 ± 10 60.2 58 ± 10 59.4 59 ± 10

ACIB
143 . . . . . . . . . . 0.0 < 10.7 3.57 3.24 ± 0.83 3.25 3.24 ± 0.83 3.30 3.25 ± 0.83

ACIB
217 . . . . . . . . . . 27.2 29+6

�9 53.9 49.6 ± 5.0 52.3 50.0 ± 4.9 53.0 49.7 ± 5.0

AtSZ
143 . . . . . . . . . . 6.80 . . . 5.17 2.54+1.1

�1.9 4.64 2.51+1.2
�1.8 4.86 2.54+1.2

�1.8

rPS
143⇥217 . . . . . . . . 0.916 > 0.850 0.825 0.823+0.069

�0.077 0.814 0.825 ± 0.071 0.824 0.823 ± 0.070

rCIB
143⇥217 . . . . . . . . 0.406 0.42 ± 0.22 1.0000 > 0.930 1.0000 > 0.928 1.0000 > 0.930

�CIB . . . . . . . . . . 0.601 0.53+0.13
�0.12 0.674 0.638 ± 0.081 0.656 0.643 ± 0.080 0.667 0.639 ± 0.081

⇠tSZ⇥CIB . . . . . . . . 0.03 . . . 0.000 < 0.409 0.000 < 0.389 0.000 < 0.410

AkSZ . . . . . . . . . . 0.9 . . . 0.89 5.34+2.8
�1.9 1.14 4.74+2.6

�2.1 1.58 5.34+2.8
�2.0

⌦⇤ . . . . . . . . . . . 0.6817 0.685+0.018
�0.016 0.6830 0.685+0.017

�0.016 0.6939 0.693 ± 0.013 0.6914 0.692 ± 0.010

�8 . . . . . . . . . . . 0.8347 0.829 ± 0.012 0.8322 0.828 ± 0.012 0.8271 0.8233 ± 0.0097 0.8288 0.826 ± 0.012

zre . . . . . . . . . . . 11.37 11.1 ± 1.1 11.38 11.1 ± 1.1 11.42 11.1 ± 1.1 11.52 11.3 ± 1.1

H0 . . . . . . . . . . . 67.04 67.3 ± 1.2 67.15 67.3 ± 1.2 67.94 67.9 ± 1.0 67.77 67.80 ± 0.77

Age/Gyr . . . . . . . 13.8242 13.817 ± 0.048 13.8170 13.813 ± 0.047 13.7914 13.794 ± 0.044 13.7965 13.798 ± 0.037

100✓⇤ . . . . . . . . . 1.04136 1.04147 ± 0.00062 1.04146 1.04148 ± 0.00062 1.04161 1.04159 ± 0.00060 1.04163 1.04162 ± 0.00056

rdrag . . . . . . . . . . 147.36 147.49 ± 0.59 147.35 147.47 ± 0.59 147.68 147.67 ± 0.50 147.611 147.68 ± 0.45

Table 5. Best-fit values and 68% confidence limits for the base ⇤CDM model. Beam and calibration parameters, and addi-
tional nuisance parameters for “highL” data sets are not listed for brevity but may be found in the Explanatory Supplement
(Planck Collaboration ES 2013).

strongly degenerate with the Poisson point source ampli-
tude at 100 GHz. This degeneracy is broken when the high-
resolution CMB data are added to Planck.

The last two points are demonstrated clearly in Fig. 7, which
shows the residuals of the Planck spectra with respect to the
best-fit cosmology for the Planck+WP analysis compared to the
Planck+WP+highL fits. The addition of high-resolution CMB
data also strongly constrains the net contribution from the kSZ
and tSZ⇥CIB components (dotted lines), though these compo-
nents are degenerate with each other (and tend to cancel).

Although the foreground parameters for the Planck+WP fits
can di↵er substantially from those for Planck+WP+highL, the
total foreground spectra are rather insensitive to the addition of
the high-resolution CMB data. For example, for the 217 ⇥ 217
spectrum, the di↵erences in the total foreground solution are less
than 10 µK2 at ` = 2500. The net residuals after subtracting both
the foregrounds and CMB spectrum (shown in the lower panels
of each sub-plot in Fig. 7) are similarly insensitive to the addi-
tion of the high-resolution CMB data. The foreground model is
su�ciently complex that it has a high “absorptive capacity” to
any smoothly-varying frequency-dependent di↵erences between
spectra (including beam errors).

Table 6. Goodness-of-fit tests for the Planck spectra. The ��2 =
�2 � N` is the di↵erence from the mean assuming the model is
correct, and the last column expresses ��2 in units of the disper-
sion

p
2N`.

Spectrum `min `max �2 �2/N` ��2/
p

2N`

100 ⇥ 100 50 1200 1158 1.01 0.14
143 ⇥ 143 50 2000 1883 0.97 �1.09
217 ⇥ 217 500 2500 2079 1.04 1.23
143 ⇥ 217 500 2500 1930 0.96 �1.13

All 50 2500 2564 1.05 1.62

To quantify the consistency of the model fits shown in Fig. 7
for Planck we compute the �2 statistic

�2 =
X

``0
(Cdata
` �CCMB

` �Cfg
` )M�1

``0 (C
data
`0 �CCMB

`0 �Cfg
`0 ), (33)

for each of the spectra, where the sums extend over the mul-
tipole ranges `min and `max used in the likelihood, M``0 is
the covariance matrix for the spectrum Cdata

` (including cor-
rections for beam eigenmodes and calibrations), CCMB

` is the
best-fit primordial CMB spectrum and Cfg

` is the best-fit fore-
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Table 4
Six-parameter ΛCDM Fit: WMAP Plus External Dataa

Parameter WMAP +eCMB +eCMB+BAO +eCMB+H0 +eCMB+BAO+H0

Fit parameters

Ωbh
2 0.02264 ± 0.00050 0.02229 ± 0.00037 0.02211 ± 0.00034 0.02244 ± 0.00035 0.02223 ± 0.00033

Ωch
2 0.1138 ± 0.0045 0.1126 ± 0.0035 0.1162 ± 0.0020 0.1106 ± 0.0030 0.1153 ± 0.0019

ΩΛ 0.721 ± 0.025 0.728 ± 0.019 0.707 ± 0.010 0.740 ± 0.015 0.7135+0.0095
−0.0096

109∆2
R 2.41 ± 0.10 2.430 ± 0.084 2.484+0.073

−0.072 2.396+0.079
−0.078 2.464 ± 0.072

ns 0.972 ± 0.013 0.9646 ± 0.0098 0.9579+0.0081
−0.0082 0.9690+0.0091

−0.0090 0.9608 ± 0.0080

τ 0.089 ± 0.014 0.084 ± 0.013 0.079+0.011
−0.012 0.087 ± 0.013 0.081 ± 0.012

Derived parameters

t0 (Gyr) 13.74 ± 0.11 13.742 ± 0.077 13.800 ± 0.061 13.702 ± 0.069 13.772 ± 0.059
H0 (km s−1 Mpc−1) 70.0 ± 2.2 70.5 ± 1.6 68.76 ± 0.84 71.6 ± 1.4 69.32 ± 0.80
σ8 0.821 ± 0.023 0.810 ± 0.017 0.822+0.013

−0.014 0.803 ± 0.016 0.820+0.013
−0.014

Ωb 0.0463 ± 0.0024 0.0449 ± 0.0018 0.04678 ± 0.00098 0.0438 ± 0.0015 0.04628 ± 0.00093
Ωc 0.233 ± 0.023 0.227 ± 0.017 0.2460 ± 0.0094 0.216 ± 0.014 0.2402+0.0088

−0.0087

zeq 3265+106
−105 3230 ± 81 3312 ± 48 3184 ± 70 3293 ± 47

zreion 10.6 ± 1.1 10.3 ± 1.1 10.0 ± 1.0 10.5 ± 1.1 10.1 ± 1.0

Notes. a ΛCDM model fit to WMAP nine-year data combined with a progression of external data sets. A complete list of parameter values for
this model, with additional data combinations, may be found at http://lambda.gsfc.nasa.gov/.

The improvement in the baryon density measurement is due
to more precise measurements of the Silk damping tail in the
power spectrum at l ! 1000; the improvements in Ωch

2 and
ΩΛ are due in part to improvements in the high-l TT data, but
also to the detection of CMB lensing in the SPT and ACT data
(Das et al. 2011a; van Engelen et al. 2012), which helps to
constrain Ωm by fixing the growth rate of structure between
z = 1100 and z = 1–2 (the peak in the lensing kernel). Taken
together, CMB data available at the end of the WMAP mission
produce a 1.6% measurement of Ωbh

2 and a 3.0% measurement
of Ωch

2.
The increased k-space lever arm provided by the high-l CMB

data improves the uncertainty on the scalar spectral index by
25%, giving ns = 0.9646 ± 0.0098, which implies a non-zero tilt
in the primordial spectrum (i.e., ns < 1) at 3.6σ . We examine
the implications of this measurement for inflation models in
Section 4.1.

If we assume a flat universe, which breaks the CMB’s
geometric degeneracy, then CMB data alone now provide a
2.3% measurement of the Hubble parameter, H0 = 70.5 ±
1.6 km s−1 Mpc−1, independent of the cosmic distance ladder.
As discussed in Section 3.4, this is consistent with the recent de-
termination of the Hubble parameter using the cosmic distance
ladder: H0 = 73.8 ± 2.4 km s−1 Mpc−1 (Riess et al. 2011); we
explore the effect of adding this prior in Section 3.4. We relax
the assumption of flatness in Section 4.5.

We conclude by comparing our results for the ACT and SPT
foreground “nuisance” parameters to those found by the ACT
and SPT teams. For example, we find AACT

Poisson = 14.8+2.3
−2.4 while

the ACT team finds AACT
Poisson = 12.0 ± 1.9. (Note that we do not

expect perfect agreement because we use nine-year WMAP data
and we fit the clustered source amplitude jointly with SPT data,
unlike the ACT team’s treatment.) The ACT team concluded that
the ΛCDM cosmological model (fit to) the 148 GHz spectrum
(and the seven-year WMAP data), marginalized over SZ and
source power is a good fit to the data (Dunkley et al. 2011).
The complete set of foreground parameters fit to the ACT and
SPT data may be found at http://lambda.gsfc.nasa.gov/ for all
the models reported in this paper.

3.3. Adding BAO Data

Acoustic structure in the large-scale distribution of galaxies is
manifest on a co-moving scale of 152 Mpc, where the evolution
of matter fluctuations is largely within the linear regime. A
number of authors have studied the degree to which the acoustic
structure could be perturbed by nonlinear evolution (e.g., Seo &
Eisenstein 2005, 2007; Jeong & Komatsu 2006, 2009; Crocce &
Scoccimarro 2008; Matsubara 2008; Taruya & Hiramatsu 2008;
Padmanabhan & White 2009), and the effects are well below the
current measurement uncertainties. Because it is based on the
same well-understood physics that governs the CMB anisotropy,
we consider measurements of the BAO scale to be the next-
most robust cosmological probe after CMB fluctuations. The
ΛCDM parameters fit to CMB and BAO data are given in the
“+eCMB+BAO” column of Table 4.

Measurements of the tangential and radial BAO scale at
redshift z measure the effective distance DV (z), given in
Equation (1), in units of the sound horizon rs(zd ). This quantity is
primarily sensitive to the total matter and dark energy densities,
and to the current Hubble parameter. Since the BAO scale is
relatively insensitive to the baryon density, Ωbh

2, this parameter
does not improve significantly with the addition of the BAO
prior. However, the low-redshift distance information imposes
complementary constraints on the matter density and Hubble
parameter, improving the precision on Ωch

2 from 3.0% to 1.6%,
and on H0 from 2.3% to 1.2%. In the context of standard ΛCDM
these improvements lead to a measurement of the age of the
universe with 0.4% precision: t0 = 13.800 ± 0.061 Gyr.

The addition of the BAO prior helps to break some resid-
ual degeneracy between the primordial spectral index, ns, on
the one hand, and Ωch

2 and H0 on the other. Figure 4 shows
the two-dimensional parameter likelihoods for (ns,Ωch

2) and
(ns, H0) for the three data combinations considered to this point.
With only CMB data (black and blue contours) there remains
a weak degeneracy between ns and the other two. When the
BAO prior is added (red), it pushes Ωch

2 toward the upper
end of the range allowed by the CMB, and vice versa for
H0. Both of these results push ns toward the lower end of its
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APS
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APS
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�2.0

⌦⇤ . . . . . . . . . . . 0.6817 0.685+0.018
�0.016 0.6830 0.685+0.017

�0.016 0.6939 0.693 ± 0.013 0.6914 0.692 ± 0.010

�8 . . . . . . . . . . . 0.8347 0.829 ± 0.012 0.8322 0.828 ± 0.012 0.8271 0.8233 ± 0.0097 0.8288 0.826 ± 0.012

zre . . . . . . . . . . . 11.37 11.1 ± 1.1 11.38 11.1 ± 1.1 11.42 11.1 ± 1.1 11.52 11.3 ± 1.1

H0 . . . . . . . . . . . 67.04 67.3 ± 1.2 67.15 67.3 ± 1.2 67.94 67.9 ± 1.0 67.77 67.80 ± 0.77

Age/Gyr . . . . . . . 13.8242 13.817 ± 0.048 13.8170 13.813 ± 0.047 13.7914 13.794 ± 0.044 13.7965 13.798 ± 0.037

100✓⇤ . . . . . . . . . 1.04136 1.04147 ± 0.00062 1.04146 1.04148 ± 0.00062 1.04161 1.04159 ± 0.00060 1.04163 1.04162 ± 0.00056

rdrag . . . . . . . . . . 147.36 147.49 ± 0.59 147.35 147.47 ± 0.59 147.68 147.67 ± 0.50 147.611 147.68 ± 0.45

Table 5. Best-fit values and 68% confidence limits for the base ⇤CDM model. Beam and calibration parameters, and addi-
tional nuisance parameters for “highL” data sets are not listed for brevity but may be found in the Explanatory Supplement
(Planck Collaboration ES 2013).

strongly degenerate with the Poisson point source ampli-
tude at 100 GHz. This degeneracy is broken when the high-
resolution CMB data are added to Planck.

The last two points are demonstrated clearly in Fig. 7, which
shows the residuals of the Planck spectra with respect to the
best-fit cosmology for the Planck+WP analysis compared to the
Planck+WP+highL fits. The addition of high-resolution CMB
data also strongly constrains the net contribution from the kSZ
and tSZ⇥CIB components (dotted lines), though these compo-
nents are degenerate with each other (and tend to cancel).

Although the foreground parameters for the Planck+WP fits
can di↵er substantially from those for Planck+WP+highL, the
total foreground spectra are rather insensitive to the addition of
the high-resolution CMB data. For example, for the 217 ⇥ 217
spectrum, the di↵erences in the total foreground solution are less
than 10 µK2 at ` = 2500. The net residuals after subtracting both
the foregrounds and CMB spectrum (shown in the lower panels
of each sub-plot in Fig. 7) are similarly insensitive to the addi-
tion of the high-resolution CMB data. The foreground model is
su�ciently complex that it has a high “absorptive capacity” to
any smoothly-varying frequency-dependent di↵erences between
spectra (including beam errors).

Table 6. Goodness-of-fit tests for the Planck spectra. The ��2 =
�2 � N` is the di↵erence from the mean assuming the model is
correct, and the last column expresses ��2 in units of the disper-
sion

p
2N`.

Spectrum `min `max �2 �2/N` ��2/
p

2N`

100 ⇥ 100 50 1200 1158 1.01 0.14
143 ⇥ 143 50 2000 1883 0.97 �1.09
217 ⇥ 217 500 2500 2079 1.04 1.23
143 ⇥ 217 500 2500 1930 0.96 �1.13

All 50 2500 2564 1.05 1.62

To quantify the consistency of the model fits shown in Fig. 7
for Planck we compute the �2 statistic

�2 =
X

``0
(Cdata
` �CCMB

` �Cfg
` )M�1

``0 (C
data
`0 �CCMB

`0 �Cfg
`0 ), (33)

for each of the spectra, where the sums extend over the mul-
tipole ranges `min and `max used in the likelihood, M``0 is
the covariance matrix for the spectrum Cdata

` (including cor-
rections for beam eigenmodes and calibrations), CCMB

` is the
best-fit primordial CMB spectrum and Cfg

` is the best-fit fore-
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TABLE I. Numerical relative entropy estimates in bits for considered combinations of CMB data. For the Gaussian approxi-
mation, the relative entropy D is split into expected relative entropy hDi and surprise S = D�hDi. Furthermore, the expected
spread �(D) of D around its mean hDi and the significance of the surprise S/�(D) are given. Depending on the analysis
strategy, hDi and �(D) are given by (16) and (17) when adding data, by (24) and (25) when replacing data, and by (A34) and
(A35) for partial replacement. For joint analyses, hDi and �(D) are calculated as if the data was added independently. The
p-value is an estimate for the prior probability for observing a surprise that is greater or equal (less or equal) than S if S is
greater (smaller) than zero. It is an approximation when data is partially replaced.

Data combinationa Updating Gaussian approximationb Monte Carlo

schemec D hDi S S/�(D) p-valued estimate of De

BOOMERANG ! WMAP 9 replace 22.5 18.4 4.1 1.6 0.07 20.9± 0.6

WMAP 3 ! WMAP 5 joint 7.7 2.2 5.5 5.3 0.001 10.5± 0.9

WMAP 5 ! WMAP 7 joint 1.4 1.0 0.4 0.6 0.2 1.5± 0.7

WMAP 7 ! WMAP 9 joint 1.5 1.2 0.3 0.4 0.3 1.3± 0.7

WMAP 9 ! WMAP 9 + SPT add 4.3 2.1 2.2 2.1 0.04 4.6± 0.7

WMAP 9 ! Planck + WP part 29.8 7.9 21.9 6.5 0.0002 —

WMAP 9 + SPT ! Planck + WP + SPT part 27.8 6.6 21.2 6.5 0.0002 —

Planck ! Planck + WP add 1.2 2.2 �0.9 �0.9 0.08 —

a WMAP 9 = full WMAP 9 data (same for WMAP 3, 5, and 7), WP = WMAP 9 polarization data, Planck = Planck temperature data,
SPT = SPT temperature data, BOOMERANG = full BOOMERANG data

b The errors of the Gaussian estimates for D, hDi, S, and �(D) are of order 0.1.
c add = adding data, replace = replacing data, part = partial replacement of data, joint = joint analysis of data
d See appendix A 3 for details on the estimation of the p-value.
e The results from the Monte Carlo integration are stated including the estimation uncertainty.

by comparing it to the Monte Carlo integration. Fur-
thermore, the SPT likelihood is a normal distribution in
the data. As such, the requirements from section III are
fulfilled to good approximation and splitting D into hDi
and S according to equations (16) and (18) is justified.
The information gain here is 4.3 bits with 2.1 bits com-
ing from hDi, which is comparable to the update from
WMAP 5 to WMAP 9, and a surprise at the 2�(D) level.

4. Impact of Planck

WMAP temperature data and Planck observations are
strongly correlated. Hence, in the analysis shown in Ta-
ble I the WMAP data is partially replaced by the temper-
ature data from Planck while WMAP polarization (WP)
data (with and without SPT data) is used in both anal-
yses. When Planck is added to previous data (with and
without SPT) there are large gains in relative entropy
(29.8 and 27.8 bits). When studying the decomposition,
however, it can be seen that the contribution from hDi to
the total entropy gain is dominated by the surprise part
(21.9 and 21.2 bits), though measuring a considerable im-
provement in precision at 7.9 and 6.6 bits. Furthermore,
the surprise is at levels greater than 6�(D) correspond-
ing to a p-value of 0.0002. The results shown in Figure
4 support these findings and show that though the er-
ror contours do decrease considerably with the addition
of Planck constraints another apparent e↵ect is the shift
of the confidence intervals. This in fact echoes the re-
sults of the Planck Collaboration et al. [8] demonstrating
comparable shifts. Table I also shows the e↵ect on the

parameters when adding WMAP polarization data to the
Planck measurements. The findings show that WMAP
polarization data adds 1.2 bits and that the surprise is
negative, i.e. the means shift less than expected.

V. CONCLUSIONS

In order to compare the cosmological parameter con-
straints from di↵erent experiments, a tool for quantifying
changes in posterior distributions on the full parameter
space is needed. Motivated from information theory, the
concept of relative entropy measures di↵erences between
distributions in a parametrization independent way and
is therefore able to quantify the information gained from
new data. In this work, relative entropy is used to de-
velop a new tool for comparing the parameter constraints
of the ⇤CDM model from di↵erent CMB surveys. Two
ways of combining data from di↵erent experiments are
discussed: complementary datasets that can be analyzed
sequentially and correlated measurements that replace
earlier datasets.
Relative entropy captures both changes in confidence

volumes and location of the regions of the posteriors.
In the regime of Gaussian likelihoods and linear mod-
els, these contributions can even be distinguished as an
expected relative entropy measuring di↵erences in confi-
dence volume and a surprise coming from shifts in pa-
rameter space. This Gaussian regime is furthermore at
least a good approximation for CMB data analysis. The
notions of expected relative entropy and surprise turn
the relative entropy into a powerful diagnostic for the
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c add = adding data, replace = replacing data, part = partial replacement of data, joint = joint analysis of data
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fulfilled to good approximation and splitting D into hDi
and S according to equations (16) and (18) is justified.
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ing from hDi, which is comparable to the update from
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ature data from Planck while WMAP polarization (WP)
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(29.8 and 27.8 bits). When studying the decomposition,
however, it can be seen that the contribution from hDi to
the total entropy gain is dominated by the surprise part
(21.9 and 21.2 bits), though measuring a considerable im-
provement in precision at 7.9 and 6.6 bits. Furthermore,
the surprise is at levels greater than 6�(D) correspond-
ing to a p-value of 0.0002. The results shown in Figure
4 support these findings and show that though the er-
ror contours do decrease considerably with the addition
of Planck constraints another apparent e↵ect is the shift
of the confidence intervals. This in fact echoes the re-
sults of the Planck Collaboration et al. [8] demonstrating
comparable shifts. Table I also shows the e↵ect on the

parameters when adding WMAP polarization data to the
Planck measurements. The findings show that WMAP
polarization data adds 1.2 bits and that the surprise is
negative, i.e. the means shift less than expected.
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In order to compare the cosmological parameter con-
straints from di↵erent experiments, a tool for quantifying
changes in posterior distributions on the full parameter
space is needed. Motivated from information theory, the
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distributions in a parametrization independent way and
is therefore able to quantify the information gained from
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velop a new tool for comparing the parameter constraints
of the ⇤CDM model from di↵erent CMB surveys. Two
ways of combining data from di↵erent experiments are
discussed: complementary datasets that can be analyzed
sequentially and correlated measurements that replace
earlier datasets.
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In the regime of Gaussian likelihoods and linear mod-
els, these contributions can even be distinguished as an
expected relative entropy measuring di↵erences in confi-
dence volume and a surprise coming from shifts in pa-
rameter space. This Gaussian regime is furthermore at
least a good approximation for CMB data analysis. The
notions of expected relative entropy and surprise turn
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TABLE I. Numerical relative entropy estimates in bits for considered combinations of CMB data. For the Gaussian approxi-
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spread �(D) of D around its mean hDi and the significance of the surprise S/�(D) are given. Depending on the analysis
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b The errors of the Gaussian estimates for D, hDi, S, and �(D) are of order 0.1.
c add = adding data, replace = replacing data, part = partial replacement of data, joint = joint analysis of data
d See appendix A 3 for details on the estimation of the p-value.
e The results from the Monte Carlo integration are stated including the estimation uncertainty.
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the surprise is at levels greater than 6�(D) correspond-
ing to a p-value of 0.0002. The results shown in Figure
4 support these findings and show that though the er-
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sults of the Planck Collaboration et al. [8] demonstrating
comparable shifts. Table I also shows the e↵ect on the
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Planck measurements. The findings show that WMAP
polarization data adds 1.2 bits and that the surprise is
negative, i.e. the means shift less than expected.
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b The errors of the Gaussian estimates for D, hDi, S, and �(D) are of order 0.1.
c add = adding data, replace = replacing data, part = partial replacement of data, joint = joint analysis of data
d See appendix A 3 for details on the estimation of the p-value.
e The results from the Monte Carlo integration are stated including the estimation uncertainty.
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and S according to equations (16) and (18) is justified.
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ing to a p-value of 0.0002. The results shown in Figure
4 support these findings and show that though the er-
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Planck measurements. The findings show that WMAP
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negative, i.e. the means shift less than expected.
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FIG. 1. Information gains and Surprise values for di↵erent
combinations of WMAP and Planck results. The dark blue
bars show the overall information gain, while the light blue
bars show the Surprise. We can see that, while Planck 13
is in strong tension with both WMAP 9 and Planck 15, the
constraints from WMAP 9 and Planck 15 agree very well.

argued in section II B that the functional form of the
Surprise suggests to study the constraints in the coor-
dinate space  in which the WMAP 9 constraints fol-
low a multi-dimensional standard normal distribution,
i.e. in which the individual  i are independent and un-
correlated and have mean 0. For numerical reasons it is
convenient to rewrite the covariance matrix ⌃

WMAP

as
⌃

WMAP

= SUTDUS, with S being a diagonal matrix
containing the standard deviations of the flat ⇤CDM pa-
rameters ⇥ and UTDU being the eigendecomposition of
the correlation matrix. The new parameters  are then
simply given by

 =
⇣p

D
⌘
�1

US�1⇥, (23)

where D =
p
D
p
D is always well defined as the eigenval-

ues of the correlation matrix are always positive or zero.
The matrix U contains the eigenvectors of the correlation
matrix in its columns and is shown in Figure 3 together
with the inverse eigenvalues D�1 for each eigenvector.

We show the marginalized posteriors in the new param-
eter space  in Figure 4. Note that Figure 4 shows the
same constraints as Figure 2 in a di↵erent parametriza-
tion of the ⇤CDM model. Note also that the new
parametrization is entirely derived from the WMAP 9
constraints without any knowledge of the Planck data.
By construction, the WMAP 9 constraints have mean
0, standard deviation 1, and show no correlations be-
tween the individual  i components of  . The strik-
ing feature of Figure 4 is the deviation of the Planck 13
constraints from the WMAP 9 mean by more than 5�
in the direction of the parameter space with the domi-
nant eigenvalue. The Planck 15 constraints, on the other
hand, agree with the WMAP 9 constraints in this direc-
tion to great accuracy, thereby explaining the vanishing
Surprise.

Looking at the eigenvector that corresponds to the
largest eigenvalue (see first column of Figure 3), we see
that the direction that is responsible for the tension be-
tween Planck 13 and the WMAP 9 and Planck 15 con-
straints is dominated by As with additional contributions
from ⌧ and ⌦ch

2. Larson et al. [27] come to a very sim-
ilar conclusion based on the simulation-based approach
to comparing WMAP and Planck data that was outlined
in section IID. They point out that there is a mismatch
in amplitude between Planck 13 data and WMAP 9 for
small ` which dominate the constraints on the cosmolog-
ical parameters and also conclude that the shifts in the
⌦ch

2-As direction are larger than expected when tak-
ing cosmic variance correlations into account. As and ⌧
dominantly a↵ect the overall amplitude of the tempera-
ture power spectrum. The Planck team indeed changed
their calibration scheme from the 2013 to the 2015 re-
lease [30, 31], and the strong change in the Surprise is
most likely a direct consequence of this change in the
data.
It is not easy to interpret the actual magnitude of the

negative Surprise between WMAP 9 and Planck 15. In
principle, a negative Surprise indicates that the agree-
ment between the constraints is better than expected
from statistical fluctuations. The p-value of 0.07 for the
Surprise being �5.1 or smaller is estimated assuming in-
dependence of Planck and WMAP power spectra. How-
ever, the measurements are correlated due to cosmic vari-
ance as they both measure the same CMB. We would
therefore expect the measurements to be more consistent
than predicted from the WMAP 9 posterior. The con-
fidence of the over-consistency between WMAP 9 and
Planck 15 is small anyways and taking the correlations
into account would most likely diminish it.

IV. CONCLUSIONS

In this work, we have revisited the Surprise [9], a mea-
sure for the agreement between cosmological datasets
within a cosmological model. The Surprise is based
on the relative entropy between two posteriors and is a
global measure of consistency over the entire parameter
space. In the past, methods based on evidence ratios [1–
7] or the likelihood of the joint best-fit to two datasets
within the posteriors of the individual constraints [8] have
been used to compare di↵erent sets of cosmological data.
For general non-Gaussian distributions, these measures
can be more straightforward to calculate than the Sur-
prise. However, we conclude from a Gaussian toy model
analysis that interpreting those measures on a fixed,
problem independent scale can be misleading. To make
precise statements on the compatibility of datasets for
arbitrary constraints, a calibration step based on Monte
Carlo simulations would be needed.
Alternatively, one can focus on situations where this

calibration can be done analytically. CMB observations,
for example, are constraining flat ⇤CDM to a precision
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datasets that can be easier to calculate for general distri-
butions, the strength of the Surprise is its interpretability
for well constrained models. As more cosmological probes
are able to put tight constraints on ⇤CDM parameters,
estimating the Surprise between the constraints can help

to detect systematic issues in data or model in the future.

ACKNOWLEDGMENTS

This work was in part supported by the Swiss National
Science Foundation (grant number 200021 143906).

[1] P. Marshall, N. Rajguru, and A. Slosar, Physical Review
D 73, 067302 (2006).

[2] L. Amendola, V. Marra, and M. Quartin, Monthly No-
tices of the Royal Astronomical Society 430, 1867 (2013).

[3] C. Heneka, V. Marra, and L. Amendola, Monthly No-
tices of the Royal Astronomical Society 439, 1855 (2014),
1310.8435.

[4] J. Martin, C. Ringeval, R. Trotta, and V. Vennin, Phys-
ical Review D 90, 063501 (2014), 1405.7272.

[5] N. V. Karpenka, F. Feroz, and M. P. Hobson, Monthly
Notices of the Royal Astronomical Society 449, 2405
(2015), 1407.5496.

[6] M. Raveri, ArXiv e-prints (2015), arXiv:1510.00688.
[7] L. Verde, P. Protopapas, and R. Jimenez, Physics of the

Dark Universe 2, 166 (2013).
[8] N. MacCrann, J. Zuntz, S. Bridle, B. Jain, and M. R.

Becker, Monthly Notices of the Royal Astronomical So-
ciety 451, 2877 (2015).

[9] S. Seehars, A. Amara, A. Refregier, A. Paranjape, and
J. Akeret, Physical Review D 90, 023533 (2014).

[10] S. Kullback and R. A. Leibler, The Annals of Mathemat-
ical Statistics 22, 79 (1951).

[11] C. L. Bennett, D. Larson, J. L. Weiland, and N. Jarosik,
The Astrophysical Journal Supplement Series 208, 54
(2013).

[12] G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L.
Bennett, J. Dunkley, M. R. Nolta, M. Halpern, R. S.
Hill, N. Odegard, L. Page, K. M. Smith, J. L. Weiland,
B. Gold, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer,
G. S. Tucker, E. Wollack, and E. L. Wright, The Astro-
physical Journal Supplement Series 208, 19 (2013).

[13] Planck Collaboration, Astronomy and Astrophysics 571,
A1 (2014).

[14] Planck Collaboration, Astronomy and Astrophysics 571,
A15 (2014).

[15] S. Grandis, S. Seehars, A. Refregier, A. Amara, and
A. Nicola, ArXiv e-prints (2015), arXiv:1510.06422.

[16] Planck Collaboration, ArXiv e-prints (2015),
arXiv:1502.01582v1.

[17] Planck Collaboration, ArXiv e-prints (2015),

7

H0

WMAP
Planck 13
Planck 15

0.0215
0.0226
0.0236

⌦
b
h
2

�bh2

0.106
0.115
0.124

⌦
c
h
2

�ch2

2.1
2.25
2.4

A
s

As

0.952
0.978

1

n
s

ns

66
.2
70

.5
74

.8

0.0552
0.0941
0.133

⌧
0.0

21
5

0.0
22

6

0.0
23

6
0.1

06
0.1

15
0.1

24 2.12.2
52.4

0.9
52
0.9

78 1

0.0
55

2

0.0
94

1
0.1

33

�

FIG. 2. Marginalized posteriors of WMAP 9 (black), Planck 13 (blue), and Planck 15 (green) constraints in the parameters of
a flat ⇤CDM model. Dotted lines show the means.

FIG. 3. Eigenvectors (columns) of the correlation matrix of
the WMAP 9 posterior together with the inverse eigenvalues
(column labels). We plot the absolute value of the elements
of each eigenvalue to show the strength with which each cos-
mological parameter contributes to the eigenvectors (see color
scale).

where posteriors are well approximated by Gaussian dis-
tributions. Whenever updating or comparing CMB con-
straints on ⇤CDM, analytical results for Gaussian distri-
butions can hence be used to simplify the interpretation.
The Surprise is particularly useful in this limit. Being
derived from a general framework that measures both
tensions and gains in precision between posterior distri-

butions in the same units of bits, it can handle Bayesian
updates as well as independently analyzed data. It fur-
thermore depends only on the mean and covariance of the
posteriors which can be robustly estimated from stan-
dard MCMC samples. For consistent data, the Surprise
is expected to follow a relatively simple generalized �2

distribution. The p-value for observing a given Surprise,
assuming that the data is consistent within the model,
can be estimated from the posterior moments. For con-
venience, we provide a Python module for calculating the
relative entropy, the Surprise and its p-value in the linear
Gaussian case at https://github.com/seeh/surprise.

The Surprise was first applied to a historical sequence
of CMB constraints in [9], where a significant disagree-
ment between WMAP 9 and the constraints from the
2013 release of Planck data was detected. We study this
disagreement in more detail and in light of the 2015 re-
lease of Planck data. From analyzing the posteriors in
the principal components of the WMAP 9 constraints, we
find that the Surprise between WMAP 9 and Planck 2013
results (S = 17.6 bits, p-value of 0.002) is mostly due to a
shift in amplitude. This inconsistency might be the con-
sequence of a systematic in the calibration which was re-
solved in the 2015 release of the Planck team [27, 30, 31].
Accordingly, we find that Planck 2015 is in good agree-
ment with the WMAP 9 constraints as indicated by a
negative Surprise (S = �5.1 bits).

Our study shows that the Surprise is a reliable measure
of agreement between cosmological constraints. While
there exist other measures for the agreement between

Seehars et al (2015)
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for well constrained models. As more cosmological probes
are able to put tight constraints on ⇤CDM parameters,
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where posteriors are well approximated by Gaussian dis-
tributions. Whenever updating or comparing CMB con-
straints on ⇤CDM, analytical results for Gaussian distri-
butions can hence be used to simplify the interpretation.
The Surprise is particularly useful in this limit. Being
derived from a general framework that measures both
tensions and gains in precision between posterior distri-
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thermore depends only on the mean and covariance of the
posteriors which can be robustly estimated from stan-
dard MCMC samples. For consistent data, the Surprise
is expected to follow a relatively simple generalized �2

distribution. The p-value for observing a given Surprise,
assuming that the data is consistent within the model,
can be estimated from the posterior moments. For con-
venience, we provide a Python module for calculating the
relative entropy, the Surprise and its p-value in the linear
Gaussian case at https://github.com/seeh/surprise.

The Surprise was first applied to a historical sequence
of CMB constraints in [9], where a significant disagree-
ment between WMAP 9 and the constraints from the
2013 release of Planck data was detected. We study this
disagreement in more detail and in light of the 2015 re-
lease of Planck data. From analyzing the posteriors in
the principal components of the WMAP 9 constraints, we
find that the Surprise between WMAP 9 and Planck 2013
results (S = 17.6 bits, p-value of 0.002) is mostly due to a
shift in amplitude. This inconsistency might be the con-
sequence of a systematic in the calibration which was re-
solved in the 2015 release of the Planck team [27, 30, 31].
Accordingly, we find that Planck 2015 is in good agree-
ment with the WMAP 9 constraints as indicated by a
negative Surprise (S = �5.1 bits).

Our study shows that the Surprise is a reliable measure
of agreement between cosmological constraints. While
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2013 release of Planck and CFHTLenS was robust to various weak lensing systematics and
could not be resolved by considering neutrino masses, tensor modes, or sterile neutrinos. The
statistical measure that we calculate is not able to distinguish between these causes, instead
it can give a quantitative and robust measure of tension. The significant tension between
Planck15 and CFHTLenS results suggests that further investigations are needed. Recent
weak lensing results from the Dark Energy Survey [57], for example, seem to achieve better
agreement. Once again the calculation of surprise depends on the Gaussian approximations,
which in this case we find to agree very well.

Figure 5 also shows the impact of CMB lensing. In this work, we used the constrains
computed by [21], where a CMB lensing reconstruction based on the Planck15 temperature
and polarization anisotropy measurements [10] was performed. We see that this additional
probe gives an improvement (1.6 bits) that is greater than the other probes, not including
the weak lensing results. However, as with our earlier results this may not continue to hold if
we were to consider extended models. Concerning the CMB lensing result, we find that half
of the information gain comes from the surprise term, 0.8 bits. However, being only a 1-�
deviation, this surprise is not statistically significant (c.f. Table C.4).

5 Conclusion

In this paper, we compare constraints on three cosmological models (flat ⇤CDM, non-flat
⇤CDM, and flat wCDM) from H0, SNe, BAO, weak lensing, and CMB data. For this pur-
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Subaru UFig
Ultra Fast Image Generator (UFig)

Speed the driving factor 

As fast as SExtractor (or faster) 
Subaru Image (0.25 
deg2,R~26,10k×8k) generated in:  

30sec on a laptop 
30μsec per galaxy

HOPE: A Python Just-In-Time compiler  
for astrophysical computations

Akeret et al 2014

Table 2: Benchmarks times relative to C++. Best results are highlighted in bold.

Python

(NumPy)
Numba Cython

Nuitka

(NumPy)
PyPy

(NumPy)
numexpr
(8 cores) HOPE C++

Fibonacci 57.4 65.7a 1.1 26.7 21.1 — 1.1 1.0
Quicksort 79.4 —b 4.6 61.0 45.8 — 1.1 1.0
Pi sum 27.2 1.0 1.1 13.0 1.0 — 1.0 1.0
10thorder 2.6 2.2 2.1 1.2 12.1 1.4 1.1 1.0
Simplify 1.4 1.5ab 1.8 1.4 23.2 0.6 0.015 1.0
Pairwise
distance

1357.8
(8.7)

1.8 1.0
1247.7
(9.5)

277.8
(60.4)

— 1.7 1.0

Star PSF 265.4 250.4a 46.2 234.6 339.5 — 2.2 1.0

a Numba was not able to compile down to LLVM
b Compilation attempt resulted in Internal error

Numba, which is the only package besides HOPE that does not require the user to alter the code or change the runtime
environment, shows good performance as soon the package is able to compile down to LLVM. As the project is also
under active development we expect that further support and features will be implemented soon. Focusing on a
subset of the Pyhton language enables HOPE to generate C++ code targeted towards high execution performance
without the need for the user to modify the Python implementation. The performance differences compared to the
C++ implementation arise through small overheads introduced by the code generation process. It has to be noted that
HOPE is still under active development and many language features of Python are currently not supported. In cases
where HOPE is not able to translate the code it will provide the user the according information including the line of
code, which caused the problem. In these cases exploring possible improvements in performance through Cython
would be an option. This requires the user manually adapt the code. For an experienced user gains are likely to be
possible.

7. Conclusion

Python is becoming increasingly popular in the science community due to the large variety of freely available
packages and the simplicity and versatility of the language. However, a drawback of Python is the low runtime
and execution performance of the language. For many use cases this is acceptable but for large simulations and
numerical computations, such as those used in astrophysics and cosmology, accelerating the performance of codes
is crucial. This can be achieved by parallelizing the computation on multicore CPU architectures. Alternatively and
complementarily, the single thread performance of the code can be optimized. Rewriting the application in C (or other
compiled languages) can be time consuming and reduces the readability and maintainability of the code. A set of
solutions exists in the Python landscape to improve the performance, such as alternative interpreters, static Python
code compiler or just-in-time compilers. We find that some those solution are intrusive i.e. they require the user to
change the code and some are not able to fully achieve the speed of a corresponding C/C++ implementation.

To address these limitations, we introduced HOPE, a specialised Python just-in-time compiler able to apply nu-
merical optimisation to mathematical expressions during the compilation process. We conducted different benchmarks
to assess its performance and compared it with existing solutions. The tests show that HOPE is able to improve the
performance compared to plain Python by a factor of 2.4× - 119× depending on the benchmark scenario. We find
that the performance of our package is comparable to that of C++. Some of the other packages that we tested are
also able to improve the execution speed but do not increase the performance in specialized test cases such as the
computation of a ground-based point spread function. We have used our package to improve the performance of
the PyCosmo project [9] as well as to be able to rewrite the Ultra fast image generator (UFig) C++ package[10] in
Python without compromising its performance. We plan to apply HOPE to further projects and therefore continuously
increase its supported language features and improve its optimization capabilities. To simplify the installation we are
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6

Fig. 1.— Comparison of a DES SV image (DES0441-4414 ; left) and a UFig simulated image after CL1 (right). A 4 arcmin2 segment of
the total 0.5 deg2 images is shown. The same color scale has been applied to both images.

Fig. 2.— Histogram of the pixel values in ADUs for DES0441-

4414 (red) and a simulated UFig image (blue) with the fiducial
configuration after CL1. The solid lines show the counts of all the
pixels in the image. SE’s segmentation map assigns pixels either
to objects or the background. The dashed respectively dotted lines
show the corresponding pixel counts.

6. RESULTS

6.1. Control Loop 1

Excerpts of the DES0441-4414 image and the UFig

image simulated with the fiducial configuration are dis-
played in Fig. 1. They apper similar visually. For a
quantitative comparison, Figures 2-4 show the diagnostic
plots for the DES image and the UFig image. The com-
bined �2

red

of the individual values for each diagnostic has
a value of 1.06. Thus, the fiducial configuration we find is
a good fit to the data in the chosen diagnostics. To avoid
combining very di↵erent �2

red

values, we assure that the
individual �2

red

values are also close to 1. For the fiducial
configuration, the individual ones for each diagnostic are
within

���2
red

� 1
�� < 0.4 (see Appendix). By varying the

binning scheme we have checked that we recover similar

fiducial configurations and confidence limits.
Fig. 2 shows the histograms of pixel values for all the

pixels in both images (solid). The overall behavior agrees
well (�2

red

⇡ 1.38). The histograms agree well around the
peak, with the distribution of the pixels in the UFig im-
age being slightly broader. The pixels are furthermore
divided using SE’s segmentation map into two sets to al-
low us to understand di↵erences and similarities better.
One set contains all the pixels associated with identified
objects (dashed), and the other those associated with
the background (dotted). The histograms of pixels asso-
ciated with objects agree well (�2

red

⇡ 1.10). We however
observe a low-level discrepancy in the background pixel
histograms at high pixel values. While our noise model
including Gaussian noise in every pixels seems to be a
good approximation around the peak of the histogram,
it does not account for the background pixels with larger
positive pixel values. As the number of background pix-
els is small compared to the total number of pixels with
pixel values of & 30 ADUs, those di↵erences do not
a↵ect the value of �2

red

significantly.
Fig. 3 displays the magnitude-size plane of objects

identified by SE in both the simulation and the data.
Overall, the distributions resemble each other qualita-
tively and quantitatively (�2

red

⇡ 1.26). In particular,
the main bulk of the galaxy distributions, the location
of the stellar loci, and the saturation turno↵s all agree
well. Some slight di↵erences can however be noted. The
dispersion around the stellar locus is larger in the DES
image, which is due to our simple PSF model, which is
constant in size. Furthermore, the shapes of the density
contour lines and the magnitude limits are slightly di↵er-
ent. We believe that changes in the galaxy model would
improve this.
The di↵erent magnitude limits and the discrepancies in

the background-only histograms of pixel values call for

Bruderer et al (2015)

Calibrating Shear measurement



7

14 16 18 20 22 24 26 28
mag

0

1

2

3

4

5

6
S
iz
e
[p
ix
el
s]

100

200

500

1000

2000

500010
00

0

100

200

500
1000

20005000

10000

DES

UFig

Fig. 3.— Distribution of r -band magnitudes (MAG BEST ) and the sizes in pixels (FLUX RADIUS) of objects identified by SE. Isodensity
contours of the number of objects track the shape of the distribution. Red is the DES0441-4414 and blue is a simulated UFig image with the
fiducial configuration after CL1. Histograms on the right and the bottom show the projected distributions in di↵erent size and magnitude
bins. The black marks denote the di↵erence between the red and blue histograms in every bin.

more noise in the simulations. Increasing the width of
the Gaussian background would on the other hand how-
ever aggravate the discrepancy around the background
peak. To resolve this tension (see Appendix), a more
sophisticated background model easing some of the
simplifying assumptions on the properties of the
background is needed (for an overview of possi-
ble extensions see Rowe et al. 2014). An analysis
of the two-point correlation function will reveal
structures in the background not yet modelled
and will serve as an additional diagnostic.
The ellipticity planes in the di↵erent magnitude bins

are shown in Fig. 4. Due to the ellipticity introduced
by the PSF, the mean of the e

i

-distributions is shifted
towards positive values and thus there is a small asym-
metry. Note that the galaxies we include in the cali-
bration of the shear measurement are mainly in the two
brighter magnitude bins where the distributions match
well (�2

red

⇡ 1.35 and �2
red

⇡ 0.63). In the brightest
magnitude bin, the distributions deviate slightly for val-
ues of |e

i

| > 0.3. We believe this is caused by our choice
of the intrinsic ellipticity distributions being normal in
e
i

(see Eq. 3). Changes in the intrinsic ellipticity dis-

tribution can improve the agreement between the data
and the simulation. In the faintest magnitude bin, the
distributions do not match well (�2

red

⇡ 0.21). As noted
above, there seem to be more faint objects detected in
the UFig image. Furthermore, there are di↵erences be-
tween the ellipticity distributions in this bin. This can be
attributed to the simple PSF model we choose, as the ob-
jects in this bin are mostly dominated by the PSF.As we
apply a S/N-cut of 15 (corresponds to mag ⇠ 23),
di↵erences in the faintest magnitude are poten-
tially not relevant for the calibration of the shear
measurement. Nevertheless, it is only by looking at the
results of a future, more rigorous MCCL analysis includ-
ing parameters describing the PSF model that we can
assess whether the di↵erences in the faintest magnitude
bin are relevant for shear measurement.

6.2. Control Loops 2 and 3

We perform a tolerance analysis of the shear calibra-
tion, as described in Section 5.3. We vary the same six
parameters as in Section 5.1, mag0, �, ✓, �

N

, e1,rms

,
and e2,rms

. The allowed parameter ranges by the data
are given by the analysis performed in Section 6.1 (see

Bruderer et al (2015)
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Figure 5. Multiplicative bias in the measurement of �1 as a function of di↵erent parameter values and di↵erent shear measurement
methods. We simulate images equivalent to an area of 1000 deg2 for every configuration to calibrate the shear measurement. The change
is relative to the central data point, our fiducial shear calibration. The vertical blue bands show the range in parameter values data and
simulations are statistically consistent (95% confidence limits) (see Section 4.1). The horizontal gray bands correspond to the required
accuracy in the shear measurement of a 200 deg2 (light gray) and 5000 deg2 survey for the measurement not to be systematics-limited.
The star denotes the fiducial configuration.

Figure 6. Multiplicative bias in the measurement of �2. Similar to Fig. 5.



Figure 3. Marginal distributions of the four selected colums of the UFig Source-Extractor catalog
from the target image. The plot shows the non-gaussianity and the non-linear correlations of the data
set. Created with triangle.py [65]

In the following we discuss distance metrics for Source-Extractor catalogs, where the
statistical properties of multidimensional samples have to be compared. Quantifying the
discrepancy between two multidimensional statistical distributions is non-trivial [see e.g. 64].
For univariate data sets, various statistical techniques have been developed to determine if two
sets follow the same underlying PDF. A prominent example is the two-sample Kolmogorov-
Smirnov test (KS test). Applying a KS test to multivariate data is not directly possible,
especially beyond two dimensions. Applying the test to every dimension individually is
typically insu�cient, as correlations between di↵erent parameters are not taken into account.
This is problematic for the image modeling application since, as we will see below, the
object properties in the Source-Extractor catalogs are typically numerous and non-linearly
correlated.

Diverse methods founded in information theory exist to quantify the di↵erence between
two multivariate distributions. These include the Kullback-Leibler divergences and its sym-
metrized variant the Jensen-Shannon divergence [66]. Both methods require the estimation
of the underlying PDF. A common way to do this is to use a nearest neighbor or a kernel
density estimator. However, both estimation methods tend to introduce an unwanted noise
and bias in the distance measure [67]. Furthermore estimating the underling PDF is di�cult
in higher dimensions and is typically computationally intensive. Another approach is to de-
fine a distance metric between two multivariate data sets based on the Mahalanobis distance
[52]. We find that the Mahalanobis distance approach provides better constraints on the
posterior while being computationally less demanding. For this reasons we opt for the latter
in the following.

– 11 –

Figure 5. The one- and two-dimensional marginal distributions of the approximate UFig parameter
posterior. The blue lines denote the true initial parameter configuration. Created with triangle.py

[65]

package is released under the GPLv3 license and has been uploaded to PyPI1 and can be
installed using pip2:

$ pip install abcpmc --user

This will install the package and all of the required dependencies. The development
is coordinated on GitHub http://github.com/jakeret/abcpmc and contributions are wel-
come.

The package is entirely written in Python and contains the algorithm 1 as well as various
threshold schemes, prior implementations and di↵erent pertubation kernels. The code is built
with a flexible design such that one can easily extend the provided functionality.

References

[1] N. Christensen, R. Meyer, L. Knox, B. Luey, Bayesian methods for cosmological parameter
estimation from cosmic microwave background measurements, Class. Quant. Grav. 18 (14)
(2001) 2677.

1
https://pypi.python.org/pypi/abcpmc

2
www.pip-installer.org/
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Fig. 3.— Distribution of r -band magnitudes (MAG BEST ) and the sizes in pixels (FLUX RADIUS) of objects identified by SE. Isodensity
contours of the number of objects track the shape of the distribution. Red is the DES0441-4414 and blue is a simulated UFig image with the
fiducial configuration after CL1. Histograms on the right and the bottom show the projected distributions in di↵erent size and magnitude
bins. The black marks denote the di↵erence between the red and blue histograms in every bin.

more noise in the simulations. Increasing the width of
the Gaussian background would on the other hand how-
ever aggravate the discrepancy around the background
peak. To resolve this tension (see Appendix), a more
sophisticated background model easing some of the
simplifying assumptions on the properties of the
background is needed (for an overview of possi-
ble extensions see Rowe et al. 2014). An analysis
of the two-point correlation function will reveal
structures in the background not yet modelled
and will serve as an additional diagnostic.
The ellipticity planes in the di↵erent magnitude bins

are shown in Fig. 4. Due to the ellipticity introduced
by the PSF, the mean of the e

i

-distributions is shifted
towards positive values and thus there is a small asym-
metry. Note that the galaxies we include in the cali-
bration of the shear measurement are mainly in the two
brighter magnitude bins where the distributions match
well (�2

red

⇡ 1.35 and �2
red

⇡ 0.63). In the brightest
magnitude bin, the distributions deviate slightly for val-
ues of |e

i

| > 0.3. We believe this is caused by our choice
of the intrinsic ellipticity distributions being normal in
e
i

(see Eq. 3). Changes in the intrinsic ellipticity dis-

tribution can improve the agreement between the data
and the simulation. In the faintest magnitude bin, the
distributions do not match well (�2

red

⇡ 0.21). As noted
above, there seem to be more faint objects detected in
the UFig image. Furthermore, there are di↵erences be-
tween the ellipticity distributions in this bin. This can be
attributed to the simple PSF model we choose, as the ob-
jects in this bin are mostly dominated by the PSF.As we
apply a S/N-cut of 15 (corresponds to mag ⇠ 23),
di↵erences in the faintest magnitude are poten-
tially not relevant for the calibration of the shear
measurement. Nevertheless, it is only by looking at the
results of a future, more rigorous MCCL analysis includ-
ing parameters describing the PSF model that we can
assess whether the di↵erences in the faintest magnitude
bin are relevant for shear measurement.

6.2. Control Loops 2 and 3

We perform a tolerance analysis of the shear calibra-
tion, as described in Section 5.3. We vary the same six
parameters as in Section 5.1, mag0, �, ✓, �

N

, e1,rms

,
and e2,rms

. The allowed parameter ranges by the data
are given by the analysis performed in Section 6.1 (see
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Figure 5. Multiplicative bias in the measurement of �1 as a function of di↵erent parameter values and di↵erent shear measurement
methods. We simulate images equivalent to an area of 1000 deg2 for every configuration to calibrate the shear measurement. The change
is relative to the central data point, our fiducial shear calibration. The vertical blue bands show the range in parameter values data and
simulations are statistically consistent (95% confidence limits) (see Section 4.1). The horizontal gray bands correspond to the required
accuracy in the shear measurement of a 200 deg2 (light gray) and 5000 deg2 survey for the measurement not to be systematics-limited.
The star denotes the fiducial configuration.

Figure 6. Multiplicative bias in the measurement of �2. Similar to Fig. 5.
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Figure 4. Left panel: Information gain when updating WMAP9 with different cosmological probes
in the flat wCDM case. The blue bar indicates the total information gain computed with our numerical
estimator, the black star the value in the Gaussian approximation. The faded bar shows the surprise
term. Right panel: Medians and 1� percentiles of the w constraints. The solid green line indicates the
WMAP9 constraints, the dashed, green line the 1� percentiles. The solid black line indicates w = �1,
i.e. a cosmological constant. All probes except Planck15 are consistent both with WMAP9 and with
a cosmological constant. Planck15 prefers Phantom Dark Energy, w < �1.

Planck15 alone tends to favor a phantom Dark Energy equation of state (w < �1) as also
noted by the Planck team [10].

4.3 Planck15 Prior in flat ⇤CDM

As a final excursion from our fiducial configuration, we explore the information gained when
the Planck15 constraints on flat ⇤CDM are used as the prior. For this purpose, we use the
public chains provided by the Planck team [10]. Figure 5 shows our results. As was the case
when using the WMAP9 prior in the flat ⇤CDM, we see that SNe, H0 and relative BAO
measure provide little additional information. We also find that the additional gain from the
full BAO constraints is reduced from 1.1 bits when WMAP9 is used as a prior to 0.25 bits
when using Planck15. All the geometrical probes also show small levels of negative surprise.
The most striking feature of Figure 5 is the information gain when CFHTLenS weak lensing
results are combined with Planck15. We see that the results are strongly dominated by a
positive surprise. This shows that the weak lensing update has moved the means more than
statistically expected. This level of surprise, 4.4 bits, is an 8� effect and is thus very significant.
The surprise could result from residual systematics in the data or it could be a consequence
of new physics. [56] investigated these possibilities and showed that the tension between the

– 12 –
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Inserting N

s

“ 10, 500 into Equation 13 yields a frac-
tional uncertainty of „ 1.5%. We made an additional esti-
mate of this quantity by using jackknife resampling to es-
timate the standard deviation of �S8, the error on the S8

parameter. In this jackknife we removed 300 of our 10,500
peak function realisations at a time, re-calculating the co-
variance matrix each time. For each jackknife re-sampled
covariance matrix we calculated the central value of S8, as
well as the upper and lower 1-� deviation from that value.
With these jackknife estimates we then calculated the stan-
dard deviation of �S8, finding a value of „ 2%. The good
agreement between the jackknife estimate and the result of
Equation 13 indicates that our modelling of the covariance
from the shape noise realisations is accurate.

The clustering of sources with the mass peaks is not
realistic in our simulations. In Section 5.3 and Appendix
C we discussed the impact of this problem on the peak
counts. This mismatch between the simulations and the DES
data may also have an impact on the covariance matrix of
the peak function. We expect it to increase the covariance
slightly, but we do not account for this in our analysis. In
principle this is possible to use simulations with realistic
clustering, but then a process of applying the DES mask
would require more investigation; it will no longer be pos-
sible to use exactly the same positions of galaxies in simu-
lations as we observed in the survey, which is what we did
in this work. In the future it will be important to be able
to quantify the joint impact of galaxy clustering and mask
e↵ects.

6.2 Interpolation schemes

The empirical prediction of the number of peaks as a func-
tion of cosmological parameters is done on a finitely sam-
pled grid of simulations. To obtain the likelihood for points
in the ⌦m and �8 plane that do not lie on the grid, we
have to interpolate and extrapolate from the measured grid
points. This method has been used in previous studies, for
example Liu et al. (2015a) used two interpolation methods
based on Gaussian process and radial basis functions. In this
work, we obtain the likelihood in two fundamentally di↵er-
ent ways: (a) by interpolating the number of peaks for every
S{N bin through a basis expansion in ⌦m and �8, and (b)
by interpolating the �2 for each simulation using radial basis
functions. The first approach is the fiducial method, and the
second is used to test the robustness of the fiducial result.

Details of these methods are given in appendix B. We
find that switching interpolation method makes little dif-
ference to our derived cosmology. The di↵erence in central
value of S8 for both schemes is close to 1%, see Section 7.2
for comparison.

7 COSMOLOGICAL CONSTRAINTS

With only four parameters to consider, we can calculate the
likelihood of our data given the cosmological and systematic
parameters on a four dimensional grid. We model this like-
lihood as a multivariate Gaussian, with covariance matrix
calculated from the simulations; see Section 6.1 for more de-
tails. As detailed in Section 4, we chose our highest S{N bin

Figure 4. Constraints on ⌦m and �8 from peak statistics in
DES SV (blue contour), compared to equivalent constraint from
DES cosmic shear 2-pt functions (orange). The contours represent
the 68% and 95% confidence limits. Across the ⌦m{�8 degener-
acy, the uncertainty on the measurement with peak statistics is
S8 “ �8p⌦m

0.3
q↵ “ 0.77 ˘ 0.07 with best fitting ↵ “ 0.6. These

constraints include marginalisation over systematic errors: shear
bias and error in the mean of the redshift distribution. The orange
contours show the constraints from the non-tomographic DES SV
WL 2-pt measurement, with other cosmological parameters set
to the same values as used in the simulations for peak statistics:
h “ 0.7, ⌦b “ 0.04 and n

s

“ 1. They also include marginalisation
of the systematic errors with the same priors.

such that the Gaussian likelihood will remain a good approx-
imation, which is the case for number of observations greater
than 25. The size of the parameter grid is chosen to be suf-
ficiently large so that any further increases in its size do not
bring any changes to the result. To marginalise the system-
atic errors, we sum the probability along the corresponding
directions in the grid, having normalised the likelihood cube
to unity.

In this section we present the fiducial constraints from
shear peaks in 7.1 before examining the e↵ect of di↵erent
analysis assumptions in 7.2 and comparing results from the
peaks analysis to those from DES WL 2-pt statistics in 7.3.

7.1 Fiducial result

Figure 4 shows the fiducial constraints on ⌦m and �8

from shear peak statistics using our main analysis pipeline,
marginalised over both photo-z and shear measurement nui-
sance parameters. The corresponding measurement of S8 is
shown in Figure 5. The maximal constraint on the �8-⌦m

degeneracy in the case of our peaks analysis is given by
S8 “ �8p⌦m

0.3
q↵ “ 0.77 ˘ 0.07, with ↵ “ 0.6. We found the

best fitting ↵ “ 0.58, and we set it to ↵ “ 0.6 for the rest
of the analysis. Changing the slope of S8 to ↵ “ 0.5, the di-
rection of maximal sensitivity in the WL 2-pt analysis, has
very little e↵ect on the main peaks analysis, changing the
best-fit value from S8 “ 0.77 to S8 “ 0.76 and increasing
the error bars by 5.7%.
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Figure 2. Example aperture mass map from a 3 x 3 deg patch of
DES SV data. The centre of this patch is ra=79.0, dec=-59.5 [deg].
Black circles identify peaks detected above a S{N ° 3 threshold,
and their size changes with their S{N . Not all identified peaks
are lenses, most of them are actually random noise fluctuations.
The colour bar shows the value of the aperture mass.

galaxies per arcmin2 within the area inside the aperture. In
total, in DES SV, we identified 969 peaks above 3� thresh-
old. An average number of peaks for the randomised maps
was 676.4. Number of peaks above S{N ° 0 was 20165 and
20904.9 for DES and random peaks, respectively.

An example DES map of size 3 ˆ 3 deg is presented in
Figure 2. In this map, there were 44 peaks identified above
the S{N ° 3 threshold, marked in black circles. Not all of
these peaks correspond to real clusters, as some of them are
created by random noise fluctuations.

4 PEAK FUNCTIONS

We construct peak functions from the aperture mass maps.
In our work, we define a peak function to be a count of the
number of peaks in bins of their S{N . Previous works often
used binning in S{N , although using the actual values of the
 map is also an option (Liu et al. 2015b). The most com-
mon choice of the S{N range is to focus on the high S{N
peaks, although Bard, Kratochvil & Dawson (2014) and Liu
et al. (2015b) demonstrated that peaks with very low and
even negative S{N carry a large proportion of the cosmolog-
ical information (Dietrich & Hartlap 2010; Kratochvil et al.
2012). Many of the peaks are projections of many halos along
the line of sight (Yang et al. 2011; Marian, Smith & Bern-
stein 2009). Here, we decided to focus on low (S{N P r0, 2s)
and medium (S{N P r2, 4s) S{N peaks. We next detail the
considerations that we took into account when determining
the number of S{N bins and their upper limit.

4.1 Signal-to-noise range

Given the limited number of realisations of the central cos-
mology which are used to create the covariance matrix, we
focus on using as few S{N bins as possible, without sig-
nificant loss of information. We use 13 equally-spaced bins,
since a larger number does not strengthen cosmological con-
straints. We did not consider S{N bins that did not have
an equal width. For example, Dietrich & Hartlap (2010) and
Liu et al. (2015b) used roughly logarithmic bin widths. We
leave this sort of binning optimization to future work. We
also verified that our estimated covariance matrix is accu-
rate enough for this length of data vector (see Section 6.1).

We considered two arguments for deciding upon the
value of upper limit of the S{N range. Firstly, the high
mass end of the peak function corresponds to big clusters
and can carry significant cosmological information (see for
example Reischke, Maturi & Bartelmann 2015). Cluster sci-
ence also aims to extract that information (see for example
Rozo et al. 2010; Allen, Evrard & Mantz 2011). However,
accurate measurement of cluster mass with weak lensing is
a di�cult task. Accurate “boost factors” have to be calcu-
lated to account for extra galaxies found in the cluster and
the decrease in the number of lensing source galaxies due
to blending; both these e↵ects cause a decrease in the signal
of a peak. Additionally, intrinsic alignments can significantly
change the estimated S{N of the peak, especially in the case
of non-tomographic analysis. Both Applegate et al. (2012)
and Melchior et al. (2014) used boost correction factors to
calibrate cluster masses, and these corrections were on the
order of 10%. In this work, we also make an estimate of the
impact of the boost factor and intrinsic alignments on the
peak S{N , and find that the highest peaks with S{N ° 4.5
would require corrections of order ° 15%, which corresponds
to modifying the number of peaks by order of 30% (see Sec-
tion 5.3 and Appendix C). Even though the amount of in-
formation carried by the high end of the mass function is
large, we find that its measurement would be highly depen-
dent on the boost factor and intrinsic allignments modelling.
To avoid this, we choose to use only those S{N bins which
do not require significant value of boost factor corrections,
as compared to the statistical error on the number of peaks
in that bin. We found that when we use S{N † 4.5, the
measurement of cosmological parameters is not heavily de-
pendent on the application of our estimated corrections.

Secondly, as mentioned before, we model the number
of peaks as a Gaussian likelihood. This is only an approxi-
mation, as in general the peak count will follow the Poisson
distribution, modified by the impact of sample variance (Hu
& Kravtsov 2003). A Gaussian distribution becomes a good
approximation to Poisson for mean count of greater than 30.
That is why we require the upper threshold of the highest
S{N bin to be such that this bin has more than 25 peaks for
every cosmological model, including noise peaks. The high-
est S{N limit was chosen separately for each of the filter
scales. The final upper limits on the S{N was chosen to be
4.4, p4.1, 4.1q for filter scale ✓max “ 12 (20, 28) arcmin. The
selection of these values was also a↵ected by our choice to
keep the S{N bin widths constant.

We analysed the maps with a range of filter scales, and
found that larger scales (° 10 arcmin) tend to carry more
statistical power. We decided to use an aperture mass filter
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Figure 5. Constraints on S8 “ �8p⌦
m

{0.3q↵ from the DES SV shear peaks and cosmic shear 2-pt analyses for the fiducial analysis
method and several variants. Each analysis variation has 68% confidence limits shown by horizontal lines, with the best-fit values identified
by dots. The vertical blue region is used to highlight the parameter range in agreement with our fiducial peaks analysis. Each analysis
variant is described by text on the right hand side of the plot. For each analysis variant results are shown for both ↵ “ 0.6 (the direction
of optimal constraint for the peaks analysis) and ↵ “ 0.5 (the same for the 2-pt analysis). The more (less) constraining choice of ↵ for
each observable is presented in bold (faint). The colour-coding of the results is a guide to the most comparable constraints between the
two observables.

expect the errors on S8 to be increased only by a small
amount.

8 CONCLUSIONS

We performed a shear peak statistics analysis of the Dark
Energy Survey Science Verification data set, described in
Jarvis et al. (2015). We created aperture mass maps from the
DES area and from the set of N-body simulations from Di-
etrich & Hartlap (2010), edited to replicate the DES mask,
shape noise and galaxy redshift distribution. Mass peaks
were counted in bins of low and medium S{N , spanning the
range between 0 and „ 4.5. We did not use the high S{N
peaks, despite the fact that we found them to carry a large
amount of cosmological information. This is because the
boost factor and intrinsic alignment corrections estimated in
our analysis (see sections 5.3 and 5.4 and appendices C and
D) are larger and more uncertain for high S{N peaks. These

boost factors capture the e↵ects of cluster member galaxies
and loss of source galaxies due to enhanced blending at the
positions of most massive clusters. Intrinsic alignment will
further decrease the S{N of a peak. These e↵ects were not
modelled in the simulations available for use.

We include uncertainties on shear multiplicative bias
and the mean of the redshift distribution in our analysis.
We found both these systematics a↵ected the observed peak
function significantly: adding 5% multiplicative bias changes
the peak count by roughly 10%, and changing the mean red-
shift of sources by �z “ 0.05 induces a „ 15% change in
the value of the peak function. The e↵ect of these system-
atics is marginalised in the cosmological inference process.
Their overall impact on cosmological constraints seems to
be comparable to the one induced by them on the WL 2-pt
functions.

The cosmological constraints for the ⇤CDM model with
fixed h “ 0.7, ⌦b “ 0.04 and n

s

“ 1 from DES SV peak
statistics are S8 “ �8p⌦m{0.3q0.6 “ 0.77 ˘ 0.07. We checked
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