

Cosmology and the Dark Energy Survey

400

Adam Amara ETH Zurich Dark Energy Survey & Latest Results

Cosmic Concordance?

Precision Measurements Looking Forward

The Dark Energy Survey

DES First Light 12 September 2012

Footprint

year 0 (science validation) - 180 deg² (full depth) year 1 - 2500 deg² (half depth) 5 years - 5000 deg²

History of Light Bending

Dyson, Eddington & Davidson 1919

1915: General Relativity
1919: Eclipse Experiment
1937: Galaxies as Lens (*Zwicky*)
1979: First Galaxy Lens

Examples of Gravitational Lenses

Bridle, AA + 2008 AA 2011

Galaxy Shapes

- Key is a well-behaved PSF
- Precisions hardware
- Analysis methods

Voigt, Bridle, AA+2012 Kacprzak,..., AA+2012 Refregier, Kacprzak, AA+ 2012 Refregier & AA 2014 AA+ 2010 Cypriano, AA+ 2010 Paulin-Henriksson, Refregier & AA 2009 Paulin-Henriksson, AA+ 2008

Photometric Redshifts

.8 AA & Refregier 2007 Abdalla, AA+ 2008 Bordoloi, AA & Lilly 2010 Bordoloi, AA & Lilly 2012 Bonnett, Troxel, Hartley, AA+ 2015

Weak Lensing Correlations and Mass Reconstruction

Fu et al 2007 - CFHTLS

Massey et al 2007 - COSMOS

DES: Dark Matter Mapping

Chang,..., AA+ PRL (2015) Vikram, Chang..., AA+ PRD (2015) Chang, Pujol, Gaztañaga, AA+ (2016) Pujol, Chang, Gaztañaga, AA+ (2016) 22

Science Verification Results

Cosmlogy	DES Collaboration (arXiv:1507.05603)
Shear Catalogs	Jarvis et al (arXiv:1507.05603)
Photometric redshift	Bonnett et al (arXiv:1507.05909)
Systematics maps	Leistedt et al (arXiv:1507.05647)
Shear Power Spectra	Becker et al (arXiv:1507.05598)

DES: Dark Matter Statistics

Robustness

Cosmology Parameters

The Dark Energy Survey Collaboration (2015)

Dark Energy Survey & Latest Results

Cosmic Concordance?

Precision Measurements Looking Forward

Cosmological Probes

Cosmic Microwave Background

	Parameter	WMAP		+eCMB +eCM		AB+BAO +eCMB+A		H ₀ -	+eCMB+BAO+H ₀			
	Fit parameters											
	$\Omega_b h^2$	0.0226	54 ± 0.00050	0.02229 ± 0	.00037	0.02211	± 0.00034	0.02244 ± 0.0)0035 (0.02223 ± 0.00033		
	$\Omega_c h^2$	0.113	38 ± 0.0045	0.1126 ± 0	.0035	0.1162	2 ± 0.0020	0.1106 ± 0.0	0030	0.1153 ± 0.0019		
	Ω_{Λ}	0.72	21 ± 0.025	0.728 ± 0	.019	0.707	2 ± 0.010	0.740 ± 0.0)15	$0.7135_{-0.0096}^{+0.0095}$		
	$10^9\Delta_R^2$	2.4	11 ± 0.10	2.430 ± 0	.084	2.48	$84^{+0.073}_{-0.072}$	$2.396_{-0.0}^{+0.01}$	78	2.464 ± 0.072		
Q	n_s	0.97	72 ± 0.013	0.9646 ± 0	.0098	0.957	$79^{+0.0081}_{-0.0082}$	$0.9690\substack{+0.00\\-0.0}$)91 090	0.9608 ± 0.0080		
J	τ	0.08	39 ± 0.014	0.084 ± 0	.013	0.07	$79^{+0.011}_{-0.012}$	0.087 ± 0.0	013	0.081 ± 0.012		
	Derived parameters											
	t_0 (Gyr)	13.74 ± 0.11		13.742 ± 0	.077	13.800	0 ± 0.061	13.702 ± 0.0)69	13.772 ± 0.059		
	$H_0 ({\rm km}{\rm s}^{-1}{\rm Mpc}^{-1})$	70	$.0 \pm 2.2$	70.5 ± 1	.6	68.76	5 ± 0.84	71.6 ± 1.4	4	69.32 ± 0.80		
	σ_8	0.82	21 ± 0.023	0.810 ± 0	.017	0.82	$22^{+0.013}_{-0.014}$	0.803 ± 0.0)16	$0.820^{+0.013}_{-0.014}$		
	Ω_b	0.0463 ± 0.0024		0.0449 ± 0	.0018	0.04678	3 ± 0.00098	0.0438 ± 0.0	0015 (0.04628 ± 0.00093		
	Ω_c	0.233 ± 0.023		0.227 ± 0.017		0.2460 ± 0.0094		0.216 ± 0.0	014	$0.2402^{+0.0088}_{-0.0087}$		
	Zeq	3265^{+106}_{-105}		3230 ± 81		3312 ± 48		3184 ± 70	I	3293 ± 47		
	Zreion	10	$.6 \pm 1.1$	10.3 ± 1	.1	10.0	0 ± 1.0	10.5 ± 1.1	1	10.1 ± 1.0		
				Planck+WP+highI Planck+le		ensing+WP+highI Planck		WP+highL+BAO				
		1		1 iun		<u>, , , , , , , , , , , , , , , , , , , </u>						
	Parameter	Best fit	68% limits	Best fit	68% li	mits	Best fit	68% limits	Best fit	68% limits		
	$\Omega_{ m b}h^2$	0.022032	0.02205 ± 0.00028	0.022069	$0.02207 \pm$	0.00027	0.022199	0.02218 ± 0.00026	0.022161	0.02214 ± 0.00024		
	$\Omega_{\rm c}h^2$	0.12038	0.1199 ± 0.0027	0.12025	$0.1198 \pm$	0.0026	0.11847	0.1186 ± 0.0022	0.11889	0.1187 ± 0.0017		
	$100\theta_{\rm MC}$	1.04119	1.04131 ± 0.00063	1.04130	$1.04132 \pm$	0.00063	1.04146	1.04144 ± 0.00061	1.04148	1.04147 ± 0.00056		
	τ	0.0925	$0.089^{+0.012}_{-0.014}$	0.0927	0.091_	0.013 0.014	0.0943	$0.090^{+0.013}_{-0.014}$	0.0952	0.092 ± 0.013		
<	$n_{\rm s}$	0.9619	0.9603 ± 0.0073	0.9582	$0.9585 \pm$	0.0070	0.9624	0.9614 ± 0.0063	0.9611	0.9608 ± 0.0054		
`	$\ln(10^{10}A_{\rm s})$	3.0980	$3.089^{+0.024}_{-0.027}$	3.0959	$3.090 \pm$	0.025	3.0947	3.087 ± 0.024	3.0973	3.091 ± 0.025		
	$\overline{\Omega_{\Lambda}$	0.6817	$0.685^{+0.018}_{-0.016}$	0.6830	0.685_	0.017 0.016	0.6939	0.693 ± 0.013	0.6914	0.692 ± 0.010		
	σ_8	0.8347	0.829 ± 0.012	0.8322	$0.828 \pm$	0.012	0.8271	0.8233 ± 0.0097	0.8288	0.826 ± 0.012		
	z_{re}	11.37	11.1 ± 1.1	11.38	11.1 ±	1.1	11.42	11.1 ± 1.1	11.52	11.3 ± 1.1		
	H_0	67.04	67.3 ± 1.2	67.15	67.3 ±	1.2	67.94	67.9 ± 1.0	67.77	67.80 ± 0.77		
	Age/Gyr	13.8242	13.817 ± 0.048	13.8170	13.813 ±	0.047	13.7914	13.794 ± 0.044	13.7965	13.798 ± 0.037		
	$100\theta_*$	1.04136	1.04147 ± 0.00062	1.04146	$1.04148 \pm$	0.00062	1.04161	1.04159 ± 0.00060	1.04163	1.04162 ± 0.00056		
	<i>r</i> _{drag}	147.36	147.49 ± 0.59	147.35	147.47 =	± 0.59	147.68	147.67 ± 0.50	147.611	147.68 ± 0.45		

WMAP 9

Hinshaw+ (2013)

Planck (2013)

What are the central values?

Have things changed?

Are things consistent?

RELATIVE ENTROPY

Constraints from Data A neter transformations

Kullback & Leibler (1951)

NORMAL DISTRIBUTIONS & LINEAR MODEL

	Parameter	WMAP		+eCMB +eCM		AB+BAO +eCMB+A		H_0 -	+eCMB+BAO+H ₀			
	Fit parameters											
	$\Omega_b h^2$	0.0226	54 ± 0.00050	0.02229 ± 0	.00037	0.02211	± 0.00034	$0.02244 \pm 0.000000000000000000000000000000000$)0035 (0.02223 ± 0.00033		
	$\Omega_c h^2$	0.113	38 ± 0.0045	0.1126 ± 0	.0035	0.1162	2 ± 0.0020	0.1106 ± 0.0	0030	0.1153 ± 0.0019		
	Ω_{Λ}	0.72	21 ± 0.025	0.728 ± 0	.019	0.707	2 ± 0.010	0.740 ± 0.0)15	$0.7135_{-0.0096}^{+0.0095}$		
	$10^9\Delta_R^2$	2.4	11 ± 0.10	2.430 ± 0	.084	2.48	$84^{+0.073}_{-0.072}$	$2.396_{-0.0}^{+0.01}$	78	2.464 ± 0.072		
Q	n_s	0.97	72 ± 0.013	0.9646 ± 0	.0098	0.957	$79^{+0.0081}_{-0.0082}$	$0.9690\substack{+0.00\\-0.0}$)91 090	0.9608 ± 0.0080		
J	τ	0.08	39 ± 0.014	0.084 ± 0	.013	0.07	$79^{+0.011}_{-0.012}$	0.087 ± 0.0	013	0.081 ± 0.012		
	Derived parameters											
	t_0 (Gyr)	13.74 ± 0.11		13.742 ± 0	.077	13.800	0 ± 0.061	13.702 ± 0.0)69	13.772 ± 0.059		
	$H_0 ({\rm km}{\rm s}^{-1}{\rm Mpc}^{-1})$	70	$.0 \pm 2.2$	70.5 ± 1	.6	68.76	5 ± 0.84	71.6 ± 1.4	4	69.32 ± 0.80		
	σ_8	0.82	21 ± 0.023	0.810 ± 0	.017	0.82	$22^{+0.013}_{-0.014}$	0.803 ± 0.0)16	$0.820^{+0.013}_{-0.014}$		
	Ω_b	0.0463 ± 0.0024		0.0449 ± 0	.0018	0.04678	3 ± 0.00098	0.0438 ± 0.0	0015 (0.04628 ± 0.00093		
	Ω_c	0.233 ± 0.023		0.227 ± 0.017		0.2460 ± 0.0094		0.216 ± 0.0	014	$0.2402^{+0.0088}_{-0.0087}$		
	Zeq	3265^{+106}_{-105}		3230 ± 81		3312 ± 48		3184 ± 70	I	3293 ± 47		
	Zreion	10	$.6 \pm 1.1$	10.3 ± 1	.1	10.0	0 ± 1.0	10.5 ± 1.1	1	10.1 ± 1.0		
				Planck+WP+highI Planck+le		ensing+WP+highI Planck		WP+highL+BAO				
		1		1 iun		<u>, , , , , , , , , , , , , , , , , , , </u>						
	Parameter	Best fit	68% limits	Best fit	68% li	mits	Best fit	68% limits	Best fit	68% limits		
	$\Omega_{ m b}h^2$	0.022032	0.02205 ± 0.00028	0.022069	$0.02207 \pm$	0.00027	0.022199	0.02218 ± 0.00026	0.022161	0.02214 ± 0.00024		
	$\Omega_{\rm c}h^2$	0.12038	0.1199 ± 0.0027	0.12025	$0.1198 \pm$	0.0026	0.11847	0.1186 ± 0.0022	0.11889	0.1187 ± 0.0017		
	$100\theta_{\rm MC}$	1.04119	1.04131 ± 0.00063	1.04130	$1.04132 \pm$	0.00063	1.04146	1.04144 ± 0.00061	1.04148	1.04147 ± 0.00056		
	τ	0.0925	$0.089^{+0.012}_{-0.014}$	0.0927	0.091_	0.013 0.014	0.0943	$0.090^{+0.013}_{-0.014}$	0.0952	0.092 ± 0.013		
<	$n_{\rm s}$	0.9619	0.9603 ± 0.0073	0.9582	$0.9585 \pm$	0.0070	0.9624	0.9614 ± 0.0063	0.9611	0.9608 ± 0.0054		
`	$\ln(10^{10}A_{\rm s})$	3.0980	$3.089^{+0.024}_{-0.027}$	3.0959	$3.090 \pm$	0.025	3.0947	3.087 ± 0.024	3.0973	3.091 ± 0.025		
	$\overline{\Omega_{\Lambda}$	0.6817	$0.685^{+0.018}_{-0.016}$	0.6830	0.685_	0.017 0.016	0.6939	0.693 ± 0.013	0.6914	0.692 ± 0.010		
	σ_8	0.8347	0.829 ± 0.012	0.8322	$0.828 \pm$	0.012	0.8271	0.8233 ± 0.0097	0.8288	0.826 ± 0.012		
	z_{re}	11.37	11.1 ± 1.1	11.38	11.1 ±	1.1	11.42	11.1 ± 1.1	11.52	11.3 ± 1.1		
	H_0	67.04	67.3 ± 1.2	67.15	67.3 ±	1.2	67.94	67.9 ± 1.0	67.77	67.80 ± 0.77		
	Age/Gyr	13.8242	13.817 ± 0.048	13.8170	13.813 ±	0.047	13.7914	13.794 ± 0.044	13.7965	13.798 ± 0.037		
	$100\theta_*$	1.04136	1.04147 ± 0.00062	1.04146	$1.04148 \pm$	0.00062	1.04161	1.04159 ± 0.00060	1.04163	1.04162 ± 0.00056		
	<i>r</i> _{drag}	147.36	147.49 ± 0.59	147.35	147.47 =	£ 0.59	147.68	147.67 ± 0.50	147.611	147.68 ± 0.45		

WMAP 9

Hinshaw+ (2013)

Planck (2013)

	D	$\langle D \rangle$	S	$S/\sigma(D)$	p-value ^d
BOOMERANG \rightarrow WMAP 9	22.5	18.4	4.1	1.6	0.07
WMAP 9 \rightarrow WMAP 9 + SPT	4.3	2.1	2.2	2.1	0.04
WMAP 9 \rightarrow Planck + WP	29.8	7.9	21.9	6.5	0.0002

Unit of bits

BOOMERANG: MacTavish et al. (2003) WMAP 3, 5, 7, 9: Spergel et al. (2007), Dunkley et al. (2009), Larson et al. (2011), and Bennett et al. (2013) WP: WMAP 9 polarisation data SPT: Story et al. (2013) Planck: Ade et al. (2013)

			D	$\langle D \rangle$	S	$S/\sigma(D)$	p-value ^d
BOOMERANG	\rightarrow	WMAP 9	22.5	18.4	4.1	1.6	0.07
WMAP 9	\rightarrow	WMAP $9 + SPT$	4.3	2.1	2.2	2.1	0.04
WMAP 9	\rightarrow	Planck + WP	29.8	7.9	21.9	6.5	0.0002

BOOMERANG: MacTavish et al. (2003) WMAP 3, 5, 7, 9: Spergel et al. (2007), Dunkley et al. (2009), Larson et al. (2011), and Bennett et al. (2013) WP: WMAP 9 polarisation data SPT: Story et al. (2013) Planck: Ade et al. (2013)

			D	$\langle D \rangle$	S	$S/\sigma(D)$	p-value ^d
BOOMERANG	\rightarrow	WMAP 9	22.5	18.4	4.1	1.6	0.07
WMAP 9	\rightarrow	WMAP $9 + SPT$	4.3	2.1	2.2	2.1	0.04
WMAP 9	\rightarrow	Planck + WP	29.8	7.9	21.9	6.5	0.0002

BOOMERANG: MacTavish et al. (2003) WMAP 3, 5, 7, 9: Spergel et al. (2007), Dunkley et al. (2009), Larson et al. (2011), and Bennett et al. (2013) WP: WMAP 9 polarisation data SPT: Story et al. (2013) Planck: Ade et al. (2013)

			D	$\langle D \rangle$	S	$S/\sigma(D)$	p-value ^d
BOOMERANG	\rightarrow	WMAP 9	22.5	18.4	4.1	1.6	0.07
WMAP 9	\rightarrow	WMAP $9 + SPT$	4.3	2.1	2.2	2.1	0.04
WMAP 9	\rightarrow	Planck + WP	29.8	7.9	21.9	6.5	0.0002

BOOMERANG: MacTavish et al. (2003) WMAP 3, 5, 7, 9: Spergel et al. (2007), Dunkley et al. (2009), Larson et al. (2011), and Bennett et al. (2013) WP: WMAP 9 polarisation data SPT: Story et al. (2013) Planck: Ade et al. (2013)

What about the other probes?

Grandis et al (2015)

Dark Energy Survey & Latest Results

Cosmic Concordance?

Precision Measurements Looking Forward

Current and Planned Experiments

Survey	Start (rough dates)
COSMOS*	2003
CFHTLS	2003
Pan-STARRS1	2009
KIDS	2011
DES*	2012
HALO (balloon)*	>2020
LSST*	>2020
Euclid*	>2020
WFIRST	>2020

Bridle, Amara+ 2008 Amara 2011

Galaxy Shapes

Analysis methods

Voigt, Bridle, Amara+2012 Kacprzak,..., Amara+2012 Refregier, Kacprzak, Amara+2012 Refregier & Amara 2014

Amara+ 2010 Cypriano, Amara+ 2010 Paulin-Henriksson, Refregier & Amara 2009 Paulin-Henriksson, Amara+ 2008

Toy Model: Measuring the Size of a 2D Gaussian

Refregier, AA, + 2013

Measurement Biases

$$\delta a_i \simeq -\frac{1}{2} F_{ij} F_{kl} B_{jkl} \propto 1/\text{SNR}^2$$
$$F_{ij} = \sum_p \frac{1}{\sigma_p^2} \frac{\partial f}{\partial a_i} \frac{\partial f}{\partial a_j}$$
$$B_{ijk} = \sum_p \frac{1}{\sigma_p^2} \frac{\partial f}{\partial a_i} \frac{\partial^2 f}{\partial a_j \partial a_k}$$

Refregier, AA, + 2013

Monte Carlo Control Loops

Refregier & Amara (2013)

Ultra Fast Image Generator (UFig)

Speed the driving factor

As fast as SExtractor (or faster) Subaru Image (0.25 deg2,R~26,10k×8k) generated in: 30sec on a laptop 30µsec per galaxy

HOPE: A Python Just-In-Time compiler for astrophysical computations

Akeret et al 2014 http://hope.phys.ethz.ch

	Python (NumPy)	Numba	Cython	Nuitka (NumPy)	PyPy (NumPy)	numexpr (8 cores)	HOPE	C++
Fibonacci	57.4	65.7 ^{<i>a</i>}	1.1	26.7	21.1		1.1	1.0
Quicksort	79.4	b	4.6	61.0	45.8		1.1	1.0
Pi sum	27.2	1.0	1.1	13.0	1.0		1.0	1.0
10 th order	2.6	2.2	2.1	1.2	12.1	1.4	1.1	1.0
Simplify	1.4	1.5 ^{<i>ab</i>}	1.8	1.4	23.2	0.6	0.015	1.0
Pairwise	1357.8	18	10	1247.7	277.8		17	10
distance	(8.7)	1.0	1.0	(9.5)	(60.4)		1.7	1.0
Star PSF	265.4	250.4 ^{<i>a</i>}	46.2	234.6	339.5		2.2	1.0

Calibrating Shear measurement

Bruderer et al (2015)

Dark Energy Survey & Latest Results

Cosmic Concordance?

Precision Measurements Looking Forward

Dark Energy Survey & Latest Results

 \rightarrow

 \rightarrow

 \rightarrow

Science Verification phase was enormously successful. First results are consistent with expectations and first science survey results are due this year.

Cosmic Concordance?

In the era of precision multiple probes, concordance of the model needs to be tested in a consistent way. Relative entropy is simple and powerful tool for this

Precision Measurements Looking Forward

Ambitious hardware driven projects need to be matched by sophisticated analysis methods. In particular systematic use of simulations and forward modelling is crucial.

End

Grandis et al (2015)

