Models of inhomogeneity and backreaction: A status report

David L. Wiltshire (University of Canterbury, NZ)

DLW, P R Smale, T Mattsson and R Watkins
Phys. Rev. D 88 (2013) 083529
J H McKay & DLW: MNRAS 457 (2016) 3285
K Bolejko, M A Nazer & DLW:

arXiv:1512.07364

M A Nazer and DLW:

Phys. Rev. D 91 (2013) 063519 DLW – lecture notes: arXiv:1311.3787

Outline of talk

- Test and failure of FLRW on $\leq 100 h^{-1}$ Mpc Result: very strong Bayesian evidence for GR differential expansion on $\leq 65 h^{-1}$ Mpc scales, supported by simulations, with proposal to test impact on large angle CMB anomalies
- Concepts of coarse-graining, averaging
- What is dark energy?:

Dark energy is a misidentification of gradients in quasilocal dilatational kinetic energy

(in presence of density and spatial curvature gradients on scales $\leq 100 h^{-1}$ Mpc – *statistical homogeneity scale* (SHS) – which also alter average cosmic expansion).

Update on tests of timescape cosmology

Averaging and backreaction

Fitting problem (Ellis 1984): On what scale are Einstein's field equations valid?

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- In general $\langle G^{\mu}{}_{\nu}(g_{\alpha\beta}) \rangle \neq G^{\mu}{}_{\nu}(\langle g_{\alpha\beta} \rangle)$
- Inhomogeneity in expansion (on $\leq 100 h^{-1}$ Mpc scales) may make average non–Friedmann as structure grows
- *Weak backreaction*: Perturb about a given background
- Strong backreaction: fully nonlinear
 - Spacetime averages (R. Zalaletdinov 1992, 1993);
 - Spatial averages on hypersurfaces based on a 1+3 foliation (T. Buchert 2000, 2001).

Cosmic web: typical structures

- Galaxy clusters, 2 10 h⁻¹Mpc, form filaments and sheets or "walls" that thread and surround voids
- Universe is void dominated (60–80%) by volume, with distribution peaked at a particular scale (40% of total volume):

Survey	Void diameter	Density contrast
PSCz	$(29.8 \pm 3.5)h^{-1}{ m Mpc}$	$\delta_{\rho} = -0.92 \pm 0.03$
UZC	$(29.2 \pm 2.7)h^{-1}{ m Mpc}$	$\delta_{\rho} = -0.96 \pm 0.01$
2dF NGP	$(29.8 \pm 5.3) h^{-1} \mathrm{Mpc}$	$\delta_{\rho} = -0.94 \pm 0.02$
2dF SGP	$(31.2 \pm 5.3)h^{-1}{ m Mpc}$	$\delta_{\rho} = -0.94 \pm 0.02$

Dominant void statistics in the Point Source Catalogue Survey (PSCz), the Updated Zwicky Catalogue (UZC), and the 2 degree Field Survey (2dF) North Galactic Pole (NGP) and South Galactic Pole (SGP), (Hoyle and Vogeley 2002,2004). More recent results of Pan et al. (2011) using SDSS Data Release 7 similar.

Statistical homogeneity scale (SHS)

- Modulo debate (SDSS Hogg et al 2005, Sylos Labini et al 2009; WiggleZ Scrimgeour et al, 2012), some notion of statistical homogeneity reached on 70–100 h⁻¹Mpc scales based on 2–point galaxy correlation function
- Here $\delta \rho / \rho \lesssim 0.07$ on scales $\gtrsim 100 h^{-1}$ Mpc (bounded)
- Why? Initial conditions: initial density perturbations amplified by sound waves below sound horizon at last scattering
- BAO scale close to SHS; in galaxy clustering BAO scale determination is treated in near linear regime in Λ CDM
- No direct evidence for FLRW spatial geometry below SHS

Fundamental cosmological question

- Is space expanding or are we moving?
- General relativity: Relative velocities ("boosts") only defined in Local Inertial Frames
- FLRW expansion differs from a simple Doppler law on large scales
- Standard model cosmology treats effects of inhomogeneity as perturbed FLRW + local boosts
- Here define *differential cosmic expansion* as distance-redshift law not of this type
- Differential cosmic expansion is natural in presence of inhomogeneities (feature of every exact solution of Einstein's equations with inhomogeneous dust source)

Cosmic Microwave Background dipole

Special Relativity: motion in a thermal bath of photons

$$T' = \frac{T_0}{\gamma (1 - (v/c)\cos\theta')}$$

• 3.37 mK dipole: $v_{\text{Sun-CMB}} = 371 \text{ km s}^{-1}$ to (264.14°, 48.26°); splits as $v_{\text{Sun-LG}} = 318.6 \text{ km s}^{-1}$ to (106°, -6°) and $v_{\text{LG-CMB}} = 635 \pm 38 \text{ km s}^{-1}$ to (276.4°, 29.3°) $\pm 3.2^{\circ}$

Peculiar velocity formalism

Standard framework, FLRW + Newtonian perturbations, assumes peculiar velocity field

$$v_{\rm pec} = cz - H_0 r$$

generated by

$$\mathbf{v}(\mathbf{r}) = \frac{H_0 \Omega_{M0}^{0.55}}{4\pi} \int \mathrm{d}^3 \mathbf{r}' \,\delta_m(\mathbf{r}') \,\frac{(\mathbf{r}' - \mathbf{r})}{|\mathbf{r}' - \mathbf{r}|^3}$$

- 3 decades of debate on convergence of v(r) to velocity of LG w.r.t. CMB frame; Direction agreed, not amplitude or scale (Lavaux et al 2010; Bilicki et al 2011...)
- The debate continues: Hess & Kitaura arXiv:1412.7310, Springob et al arXiv:1511.04849,

Apparent Hubble flow variation

(b) 2: $12.5 - 25 h^{-1}$ Mpc N = 505.

(c) 3: $25 - 37.5 h^{-1}$ Mpc N = 514.

(d) 4: $37.5 - 50 h^{-1}$ Mpc N = 731.

(e) 5: $50 - 62.5 \ h^{-1}$ Mpc N = 819. (f) 6: $62.5 - 75 \ h^{-1}$ Mpc N = 562.

(g) 7: 75 - 87.5 h^{-1} Mpc N = 414.

(i) 9: $100 - 112.5 h^{-1}$ Mpc N = 222. (j) 10: $112.5 - 156.25 h^{-1}$ Mpc N = 280.

(k) 11: 156.25 – 417.4 h^{-1} Mpc N = 91.

Radial variation $\delta H_s = (H_s - H_0)/H_0$

- Two choices of shell boundaries (closed and open circles); for each choice data points uncorrelated
- Result: Hubble expansion is very significantly more uniform in LG frame than in CMB frame: $\ln B > 5$.

Boosts and spurious monopole variance

• H_s determined by linear regression in each shell

$$H_s = \left(\sum_{i=1}^{N_s} \frac{(cz_i)^2}{\sigma_i^2}\right) \left(\sum_{i=1}^{N_s} \frac{cz_ir_i}{\sigma_i^2}\right)^{-1},$$

■ Any boost $cz_i \rightarrow cz'_i = c(\gamma - 1) + \gamma [cz_i + v \cos \phi_i (1 + z_i)] \simeq cz_i + v \cos \phi_i$, then for uniformly distributed data, linear terms cancel on opposite sides of sky

$$H'_{s} - H_{s} \sim \left(\sum_{i=1}^{N_{s}} \frac{(v \cos \phi_{i})^{2}}{\sigma_{i}^{2}} \right) \left(\sum_{i=1}^{N_{s}} \frac{cz_{i}r_{i}}{\sigma_{i}^{2}} \right)^{-1}$$
$$= \frac{\langle (v \cos \phi_{i})^{2} \rangle}{\langle cz_{i}r_{i} \rangle} \sim \frac{v^{2}}{2H_{0} \langle r_{i}^{2} \rangle}$$

Boost offset and deviation

- $H_{\text{CMB}} H_{\text{LG}}$: COMPOSITE (left); Cosmicflows-2 (right)
- Fits $\langle r_i^2 \rangle^{-1}$ relation except for $40 h^{-1} \leq r \leq 60 h^{-1}$ Mpc (COMPOSITE); or $30 h^{-1} \leq r \leq 67 h^{-1}$ Mpc (CF2)
- Broadening of "nonkinematic" region in CF2 consistent with nonremoval of Malmquist distribution biases

Minimum monopole rest frame?

- Determine local boosts with fit to $H_{\rm LG} H_{\rm X} = A \langle r_i^2 \rangle^p$ giving p = -1, $A = v^2/(2H_0)$ within uncertainties
- Minimize χ_a^2 within this class; best fit: $v = 122.5 \text{ km s}^{-1}$ to $(\ell, b) = (60^\circ, -4^\circ)$ but also consistent with zero
 - Galactic plane: Zone of Avoidance degeneracy

Angular variation: LG frame

Angular variation quadrupole/dipole ratios

Value of β in $\frac{cz}{r} = H_0 + \beta \cos \phi$

Value of β in $\frac{cz}{r} = H_0 + \beta \cos \phi$

Model small scale differential expansion

- Use exact inhomogeneous solutions of Einstein's equations for structures on $\lesssim 70 h^{-1}$ Mpc scales
- Use asymptotic Planck normalized FLRW model on larger scales: *effective* model for large scale light propagation
- Non-Copernican large void solution for dark energy NOT considered here – large scale FLRW expansion with dark energy taken as effective model for light propagation from CMB
- Use Szekeres model: most general dust solution, reduces to spherically symmetric inhomoneity (Lemaître–Tolman–Bondi (LTB) model) in a limit
- Trace rays from CMB and mock COMPOSITE catalogues

Ray tracing: Szekeres model (1975)

$$ds^{2} = c^{2}dt^{2} - \frac{\left(R' - R\frac{\mathcal{E}'}{\mathcal{E}}\right)^{2}}{1 - k}dr^{2} - \frac{R^{2}}{\mathcal{E}^{2}}(dp^{2} + dq^{2}),$$

$$\mathcal{E}(r, p, q) = \frac{1}{2S}(p^{2} + q^{2}) - \frac{P}{S}p - \frac{Q}{S}q + \frac{P^{2}}{2S} + \frac{Q^{2}}{2S} + \frac{S}{2},$$

$$\dot{R}^{2} = -k(r) + \frac{2M(r)}{R} + \frac{1}{3}\Lambda R^{2},$$

$$t - t_{B}(r) = \int_{0}^{R} d\tilde{R} \left[-k + 2M/\tilde{R} + \frac{1}{3}\Lambda \tilde{R}^{2}\right]^{-1/2},$$

$$\kappa\rho = \frac{2(M' - 3M\mathcal{E}'/\mathcal{E})}{R^{2}(R' - R\mathcal{E}'/\mathcal{E})}.$$

where $' \equiv \partial/\partial r$, $\equiv \partial/\partial t$, R = R(t, r), $k = k(r) \leq 1$, S = S(r), P = P(r), Q = Q(r), M = M(r). Above eqns satisfied but functions are otherwise arbitrary. We take $t_B(r) = 0$.

Ray tracing: Szekeres model (1975)

Define
$$p - P = S \cot \frac{\theta}{2} \cos \phi$$
, $q - Q = S \cot \frac{\theta}{2} \sin \phi$.
Then $ds^2 = c^2 dt^2 - \frac{1}{1-k} \left[R' + \frac{R}{S} \left(S' \cos \theta + N \sin \theta \right) \right]^2 dr^2$
 $- \left[\frac{S' \sin \theta + N \left(1 - \cos \theta \right)}{S} \right]^2 R^2 dr^2 - \left[\frac{(\partial_{\phi} N) \left(1 - \cos \theta \right)}{S} \right]^2 R^2 dr^2$
 $+ \frac{2 \left[S' \sin \theta + N \left(1 - \cos \theta \right) \right]}{S} R^2 dr d\theta$
 $- \frac{2(\partial_{\phi} N) \sin \theta \left(1 - \cos \theta \right)}{S} R^2 dr d\phi - R^2 (d\theta^2 + \sin^2 \theta d\phi^2),$

where

$$N(r,\phi) \equiv \left(P'\cos\phi + Q'\sin\phi\right)$$
$$\frac{\mathcal{E}'}{\mathcal{E}} = \frac{-1}{S} \left[S'\cos\theta + N\sin\theta\right]$$

Ray tracing: Szekeres model

$$\begin{split} & \int_{2}^{3} \int_{2}^{4} \int_{2}^{4}$$

 $-1 \leq \delta_0 < 0$ underdensity at $r \to 0$; $\delta_M \to 0$ as $r \to \infty$.

LTB and Szekeres profiles

• Fix $\Delta r = 0.1 r_0$, $\varphi_{obs} = 0.5 \pi$

- LTB parameters: $\alpha = 0$, $\delta_0 = -0.95$, $r_0 = 45.5 \ h^{-1}$ Mpc; $r_{obs} = 28 \ h^{-1}$ Mpc, $\vartheta_{obs} = any$
- Szekeres parameters: $\alpha = 0.86$, $\delta_0 = -0.86$; $r_{obs} = 38.5 \ h^{-1} \text{ Mpc}$; $r_{obs} = 25h^{-1} \text{ Mpc}$, $\vartheta_{obs} = 0.705\pi$.

Szekeres model ray tracing constraints

- Require Planck satellite normalized FLRW model on scales $r \gtrsim 100 h^{-1}$ Mpc; i.e., spatially flat, $\Omega_m = 0.315$ and $H_0 = 67.3$ km/s/Mpc
- CMB temperature has a maximum $T_0 + \Delta T$, where

 $\Delta T(\ell = 276.4^{\circ}, b = 29.3^{\circ}) = 5.77 \pm 0.36 \text{ mK},$

matching dipole amplitude, direction in LG frame

CMB quadrupole anisotropy lower than observed

$$C_{2,CMB} < 242.2^{+563.6}_{-140.1} \ \mu \text{K}^2.$$

- Hubble expansion dipole (LG frame) matches COMPOSITE one at $z \rightarrow 0$, if possible up to $z \sim 0.045$
- Match COMPOSITE quadrupole similarly, if possible

CMB dipole, quadrupole examples

- **9** Generate $z_{ls}(\hat{\mathbf{n}})$ for each gridpoint
- $T = T_{\rm ls}/(1+z_{\rm ls})$; $(T_{\rm max} T_{\rm min})/2$ left (mK); C_2 right (μ K²)

Peculiar potential not Rees-Sciama

- Rees–Sciama (and ISW) consider photon starting and finishing from *average* point
- Across structure $|\Delta T|/T \sim 2 \times 10^{-7}$
- Inside structure $|\Delta T|/T \sim 2 \times 10^{-3}$

Local expansion variation methodology

$$\begin{split} H_0(\ell, b, z) &= \frac{\sum_i H_i w_{d,i} w_{z,i} w_{\theta,i}}{\sum_i w_{d,i} w_{z,i} w_{\theta,i}}, \qquad \langle H_0 \rangle = \frac{1}{4\pi} \int \mathrm{d}\Omega \ H_0(\ell, b, z) \\ \zeta_i &= z_i + \frac{1}{2} (1 - q_0) z_i^2 - \frac{1}{6} (1 - q_0 - 3q_0^2 + j_0) z_i^3 \\ H_i &= c \zeta_i / d_i, \qquad w_{d,i} = c \zeta_i d_i / (\Delta d_i)^2, \\ w_{z,i} &= \frac{1}{\sqrt{2\pi}\sigma_z} \exp\left[-\frac{1}{2} \left(\frac{z - z_i}{\sigma_z}\right)^2\right], \\ w_{\theta,i} &= \frac{1}{\sqrt{2\pi}\sigma_\theta} \exp\left[-\frac{1}{2} \left(\frac{\theta_i}{\sigma_\theta}\right)^2\right], \end{split}$$

 $q_0 = -0.5275$, $j_0 = 1$ ($\Omega_m = 0.315 \text{ ACDM}$); $\sigma_z = 0.01$, $\sigma_\theta = 25^\circ$, $\theta_i =$ angle between each source and boost apex.

Method and COMPOSITE data

$$\frac{\Delta H_0}{\langle H_0 \rangle} = \frac{H_0(l,b,z) - \langle H_0 \rangle}{\langle H_0 \rangle} = \sum_{l,m} a_{lm} Y_{lm},$$

Expand fractional Hubble expansion variation in multipoles, evaluate angular power spectrum: $C_{\ell} = \frac{1}{2\ell+1} \sum_{m} |a_{\ell m}|^2$

FLRW model in CMB frame + LG boost

- Result of 100,000 mock COMPOSITE catalogues with same distance uncertainties
- ✓ For standard kinematic CMB dipole, H_0 dipole too high over all z < 0.045; quadrupole OK only at z → 0
- Dipole result: means bulk flow in standard approach

LTB fit: *H* **dipole, quadrupole**

- LTB dipole matches only at $z \rightarrow 0$, increases to close to FLRW plus boost case for larger z
- Smaller insignificant quadrupole
- Differential expansion radially only; effective point symmetry on scale larger than inhomogeneity

Best fit Szekeres: *H* **dipole, quadrupole**

- Szekeres matches dipole on whole z < 0.045 range
- Smaller insignificant quadrupole
- Note $C_{2,CMB} = 8.26 \ \mu \text{K}^2$ 30 times smaller than observed
- Possible additional smaller amplitudes structures can add quadrupole (future work)

Association with known structures

- Our galaxy is in a local void complex on a filamentary sheet (Tully et al 2008) joined to Virgo cluster. Dominant overdensity 23 h⁻¹Mpc wide "Great Attractor":
 - Near side Centaurus, $z_{\rm LG}=0.0104\pm0.0001$, $(\ell,b)=(302.4^\circ,21.6^\circ)$
 - Far side Norma, $z_{\rm LG} = 0.0141 \pm 0.0002$, $(\ell, b) = (325.3^{\circ}, -7.3^{\circ})$
- Szekeres $\delta \rho / \rho > 2$ ellipsoidal overdense region, spans $0.003 \lesssim z_{\rm LG} \lesssim 0.013$ (or $16 h^{-1} \lesssim D_L \lesssim 53 h^{-1}$ Mpc) and angles $220^{\circ} < \ell < 320^{\circ}$, $-60^{\circ} < b < 40^{\circ}$
- Centaurus lies inside; Norma just outside
- Adding structures at larger distances (Perseus–Pisces) will change far side alignment

Systematics for CMB

Define nonkinematic foreground CMB anisotropies by

$$\begin{split} \Delta T_{\rm nk-hel} &= \frac{T_{\rm model}}{\gamma_{\rm LG}(1-\boldsymbol{\beta}_{\rm LG}\cdot\hat{\mathbf{n}}_{\rm hel})} - \frac{T_{0}}{\gamma_{\rm CMB}(1-\boldsymbol{\beta}_{\rm CMB}\cdot\hat{\mathbf{n}}_{\rm hel})} \\ & T_{\rm model} = \frac{T_{\rm dec}}{1+z_{\rm model}(\hat{\mathbf{n}}_{\rm LG})}, \quad T_{0} = \frac{T_{\rm dec}}{1+z_{\rm dec}} \end{split}$$

 $z_{\rm model}(\hat{\bf n}_{\rm LG}) =$ anisotropic Szekeres LG frame redshift; $T_0 =$ present mean CMB temperature

• Constrain $\frac{T_{\text{model}}}{\gamma_{\text{LG}}(1-\beta_{\text{LG}}\cdot\hat{\mathbf{n}}_{\text{hel}})} - T_{\text{obs}}$ by Planck with sky mask

Large angle CMB anomalies?

Anomalies (significance increased after Planck 2013):

- power asymmetry of northern/southern hemispheres
- alignment of the quadrupole and octupole etc;
- Iow quadrupole power;
- parity asymmetry; ...

Critical re-examination required; e.g.

- Iight propagation through Hubble variance dipole foregrounds may differ subtly from Lorentz boost dipole
- dipole subtraction is an integral part of the map-making; is galaxy correctly cleaned?
- Freeman et al (2006): 1–2% change in dipole subtraction may resolve the power asymmetry anomaly.

Planck results arXiv:1303.5087

Boost dipole from second order effects

Original

Aberration (Exaggerated)

Modulation (Exaggerated)

Eppur si muove?

Planck Doppler boosting 1303.5087

- Dipole direction consistent with CMB dipole $(\ell, b) = (264^{\circ}, 48^{\circ})$ for small angles, $l_{\min} = 500 < l < l_{\max} = 2000$
- When $l < l_{max} = 100$, shifts to WMAP power asymmetry modulation dipole $(\ell, b) = (224^{\circ}, -22^{\circ}) \pm 24^{\circ}$

Non-kinematic dipole in radio surveys

- Effects of aberration and frequency shift also testable in large radio galaxy surveys (number counts)
- Rubart and Schwarz, arXiv:1301.5559, have conducted a careful analysis to resolve earlier conflicting claims of Blake and Wall (2002) and Singal (2011)
- Rubart & Schwarz result: kinematic origin of radio galaxy dipole ruled out at 99.5% confidence
- Our smoothed Hubble variance dipole in LG frame $(180 + \ell_d, -b_d) = (263^\circ \pm 6^\circ, 39^\circ \pm 3^\circ)$ for $r > r_o$ with $20 h^{-1} \leq r_o \leq 45 h^{-1}$ Mpc, or $(\text{RA}, \text{dec}) = (162^\circ \pm 4^\circ, -14^\circ \pm 3^\circ)$, lies within error circle of NVSS survey dipole found by Rubart & Schwarz, $(\text{RA}, \text{dec}) = (154^\circ \pm 21^\circ, -2^\circ \pm 21^\circ)$

Back to backreaction...

- Need to consider relative position of observers over scales of tens of Mpc over which $\delta \rho / \rho \sim -1$.
- GR is a local theory: gradients in spatial curvature and gravitational energy can lead to calibration differences between our rulers & clocks and volume average ones

What is a cosmological particle (dust)?

- In FLRW one takes observers "comoving with the dust"
- Traditionally galaxies were regarded as dust. However,
 - Neither galaxies nor galaxy clusters are homogeneously distributed today
 - Dust particles should have (on average) invariant masses over the timescale of the problem
- Must coarse-grain over expanding fluid elements larger than the largest typical structures [voids of diameter $30 h^{-1}$ Mpc with $\delta_{\rho} \sim -0.95$ are $\gtrsim 40\%$ of z = 0 universe]

$$\begin{array}{c} g_{\mu\nu}^{\rm stellar} \to g_{\mu\nu}^{\rm galaxy} \to g_{\mu\nu}^{\rm cluster} \to g_{\mu\nu}^{\rm wall} \\ \vdots \\ g_{\mu\nu}^{\rm void} \end{array} \right\} \to g_{\mu\nu}^{\rm universe}$$

Dilemma of gravitational energy...

In GR spacetime carries energy & angular momentum

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- On account of the strong equivalence principle, $T_{\mu\nu}$ contains localizable energy–momentum only
- Solution Kinetic energy and energy associated with spatial curvature are in $G_{\mu\nu}$: variations are "quasilocal"!
- Newtonian version, T U = -V, of Friedmann equation

$$\frac{\dot{a}^2}{a^2} + \frac{kc^2}{a^2} = \frac{8\pi G\rho}{3}$$

where $T = \frac{1}{2}m\dot{a}^2x^2$, $U = -\frac{1}{2}kmc^2x^2$, $V = -\frac{4}{3}\pi G\rho a^2x^2m$; $\mathbf{r} = a(t)\mathbf{x}$.

Cosmological Equivalence Principle

In cosmological averages it is always possible to choose a suitably defined spacetime region, the cosmological inertial region, on whose boundary average motions (timelike and null) can be described by geodesics in a geometry which is Minkowski up to some time-dependent conformal transformation,

$$\mathrm{d}s_{\mathrm{CIR}}^2 = a^2(\eta) \left[-\mathrm{d}\eta^2 + \mathrm{d}r^2 + r^2 \mathrm{d}\Omega^2 \right],$$

- Defines Cosmological Inertial Region (CIR) in which regionally isotropic volume expansion is equivalent to a velocity in special relativity
- Such velocities integrated on a bounding 2-sphere define *"kinetic energy of expansion"*: globally it has gradients

Finite infinity

- Define *finite infinity*, "*fi*" as boundary to *connected* region within which *average expansion* vanishes $\langle \vartheta \rangle = 0$ and expansion is positive outside.
- Shape of *fi* boundary irrelevant (minimal surface generally): could typically contain a galaxy cluster.

Statistical geometry...

Why is Λ **CDM so successful?**

- The early Universe was extremely close to homogeneous and isotropic
- Finite infinity geometry (2 15 h⁻¹Mpc) is close to spatially flat (Einstein–de Sitter at late times) – N–body simulations successful for bound structure
- At late epochs there is a simplifying principle Cosmological Equivalence Principle
- Hubble parameter (first derivative of statistical metric; i.e., connection) is to some extent a "gauge choice"
 - Affects 'local'/global H_0 issue
 - Has contributed to fights (e.g., Sandage vs de Vaucouleurs) H_0 depends on measurement scale
- Even on small scales there is a notion of uniform Hubble flow at expense of calibration of rulers AND CLOCKS

Timescape phenomenology

$$ds^{2} = -(1+2\Phi)c^{2}dt^{2} + a^{2}(1-2\Psi)g_{ij}dx^{i}dx^{j}$$

- Global statistical metric by Buchert average not a solution of Einstein equations
- Solve for Buchert equations for ensemble of void and finite infinity (wall) regions; conformally match radial null geodesics of finite infinity and statistical geometries, fit to observations
- Relative regional volume deceleration integrates to a substantial difference in clock calibration of bound system observers relative to volume average over age of universe
- Difference in *bare* (statistical or volume–average) and *dressed* (regional or finite–infinity) parameters

Bare cosmological parameters

J.A.G. Duley, M.A. Nazer & DLW, CQG 30 (2013) 175006: full numerical solution with matter, radiation

Apparent cosmic acceleration

Volume average observer sees no apparent cosmic acceleration

$$\bar{q} = \frac{2\left(1 - f_{\rm v}\right)^2}{(2 + f_{\rm v})^2}.$$

As $t \to \infty$, $f_v \to 1$ and $\bar{q} \to 0^+$.

A wall observer registers apparent cosmic acceleration

$$q = \frac{-\left(1 - f_{\rm v}\right)\left(8f_{\rm v}^{3} + 39f_{\rm v}^{2} - 12f_{\rm v} - 8\right)}{\left(4 + f_{\rm v} + 4f_{\rm v}^{2}\right)^{2}},$$

Effective deceleration parameter starts at $q \sim \frac{1}{2}$, for small f_v ; changes sign when $f_v = 0.5867...$, and approaches $q \rightarrow 0^-$ at late times.

Cosmic coincidence problem solved

Relative deceleration scale

gives an instantaneous 4-acceleration of magnitude $\alpha = H_0 c \bar{\gamma} \dot{\bar{\gamma}} / (\sqrt{\bar{\gamma}^2 - 1})$ beyond which *weak field cosmological general relativity* will be changed from Newtonian expectations: (i) as absolute scale nearby; (ii) divided by Hubble parameter to large z.

■ Relative volume deceleration of expanding regions of different local density/curvature, leads cumulatively to canonical clocks differing by $dt = \bar{\gamma}_w d\tau_w (\rightarrow \sim 35\%)$

Dressed "comoving distance" D(z)

Clarkson Bassett Lu test $\Omega_k(z)$

For Friedmann equation a statistic constant for all z

Left panel: CBL statistic from Sapone, Majerotto and Nesseris, PRD 90, 023012 (2015) Fig 8,

using existing data from SneIa (Union2) and passively evolving galaxies for H(z).

Right panel: TS prediction, with $f_{\rm V0} = 0.695^{+0.041}_{-0.051}$.

Clarkson Bassett Lu test with Euclid

- Projected uncertainties for ACDM model with *Euclid* + 1000 Snela, Sapone *et al*, arXiv:1402.2236v2 Fig 10
- Timescape prediction (green), compared to non-Copernican Gpc void model (blue), and *tardis* cosmology, Lavinto *et al* arXiv:1308.6731 (brown).
- Timescape prediction becomes greater than uncertainties for $z \leq 1.5$. (Falsfiable.)

Planck constraints $D_A + r_{drag}$

- Dressed Hubble constant $H_0 = 61.7 \pm 3.0 \, \text{km/s/Mpc}$
- **9** Bare Hubble constant $H_{w0} = \overline{H}_0 = 50.1 \pm 1.7$ km/s/Mpc
- Local max Hubble constant $H_{v0} = 75.2^{+2.0}_{-2.6}$ km/s/Mpc
- Present void fraction $f_{v0} = 0.695^{+0.041}_{-0.051}$
- **•** Bare matter density parameter $\bar{\Omega}_{M0} = 0.167^{+0.036}_{-0.037}$
- Dressed matter density parameter $\Omega_{\rm M0} = 0.41^{+0.06}_{-0.05}$
- Dressed baryon density parameter $\Omega_{\rm B0} = 0.074^{+0.013}_{-0.011}$
- Nonbaryonic/baryonic matter ratio $\Omega_{\rm C0}/\Omega_{\rm B0} = 4.6^{+2.5}_{-2.1}$
- Age of universe (galaxy/wall) $\tau_{w0} = 14.2 \pm 0.5 \, \text{Gyr}$
- Age of universe (volume-average) $t_0 = 17.5 \pm 0.6 \, \text{Gyr}$
- Apparent acceleration onset $z_{\rm acc} = 0.46^{+0.26}_{-0.25}$

CMB acoustic peaks, $\ell > 50$, full fit

- Use FLRW model prior to last scattering best matched to timescape equivalent parameters
- Use Vonlanthen, Räsänen, R. Durrer (2010) procedure to map timescape model d_A to FLRW reference d'_A

$$C_{l} = \sum_{\tilde{l}} \frac{2\tilde{l}+1}{2} C_{\tilde{l}}' \int_{0}^{\pi} \sin\theta \,\mathrm{d}\theta \,P_{\tilde{l}} \left[\cos(\theta \,d_{A}/d_{A}')\right] P_{\ell}(\cos\theta)$$
$$\approx \left(\frac{d_{A}'}{d_{A}}\right)^{2} C_{\frac{d_{A}'}{d_{A}}\ell}', \qquad \ell > 50$$

- Ignore $\ell < 50$ in fit (late ISW effect may well differ)
- Fit FLRW model that decelerates by same amount from last scattering til today (in volume-average time) – systematic uncertainties depending on method adopted_

Matching average expansion history

Determine FLRW scale factor (hatted) to match volume-average timescape one (barred) at all epochs

$$\begin{split} & \frac{\hat{a}_0}{\hat{a}} = \frac{\bar{a}_0}{\bar{a}} = \frac{T}{\bar{T}_0} = 1 + \bar{z} \\ & \text{BUT} \qquad \hat{H} \neq \bar{H}, \qquad \hat{\Omega}_{\text{M}} \neq \bar{\Omega}_M, \qquad \hat{\Omega}_{\text{R}} \neq \bar{\Omega}_R \end{split}$$

for most \bar{z} . However, for SOME FLRW solution set

$$\begin{split} \hat{H}_{0} &= \bar{H}_{0} \\ \hat{\Omega}_{M0} &= \bar{\Omega}_{M0} \implies \hat{\Omega}_{B0} = \bar{\Omega}_{B0} \\ \hat{\Omega}_{R0} &= \bar{\Omega}_{R0} = \frac{32\sigma_{B}\pi G}{3c^{3}\bar{H}_{0}^{2}} \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right] \bar{T}_{0}^{4} \end{split}$$

Ensures matter-radiation equality occurs at the same (bare) redshift, \overline{z}

Model matching detail

 $\textbf{ For general FLRW model } \hat{\Omega}_{_{\rm M}} + \hat{\Omega}_{_{\rm R}} + \hat{\Omega}_{_{\rm k}} + \hat{\Omega}_{_{\rm K}} = 1 \text{,}$

$$\Rightarrow \hat{\Omega}_{\Lambda 0} = 1 - \hat{\Omega}_{\mathbf{k} 0} - \bar{\Omega}_{\mathbf{M} 0} - \bar{\Omega}_{\mathbf{R} 0}$$

- One parameter left to constrain at early times $\hat{H} \simeq \bar{H}, \qquad \hat{\Omega}_{_{\rm M}} \simeq \bar{\Omega}_{_M}, \qquad \hat{\Omega}_{_{\rm R}} \simeq \bar{\Omega}_R$ BUT many choices with $\delta \hat{\Omega} \lesssim 10^{-5}$ in matched density parameters at $t_{
 m dec}$
- 1. A(\bar{H}_{dec}): Match Hubble parameter match at t_{dec}
- 2. A($\bar{r}_{\mathcal{H}}$): Match comoving particle horizon scale
- 3. A($\bar{\eta}_0$): Match of bare conformal time age of the Universe
- 4. A(t_0): Match of the bare age of the Universe
- 5. A($\hat{\Omega}_{\Lambda 0} = 0$): FLRW without Λ

Matching wall expansion history

- In timescape model geometry below finite infinity scales close to Einstein-de Sitter
- Alternative matching procedures based on matching wall geometry only
- Likely to give a better match for parameters affecting bound structures baryon–to–photon ratio $\eta_{B\gamma}$, spectral index n_s but not average expansion history
- Two methods analysed
 - 1. W(k = 0): Spatial curvature zero
 - 2. W($k \neq 0$): Initial (tiny) FLRW (negative) spatial curvature

CMB acoustic peaks, full Planck fit

M.A. Nazer + DLW, arXiv:1410.3470

CMB acoustic peaks: arXiv:1410.3470

- Likelihood $-\ln \mathcal{L} = 3925.16, 3897.90$ and 3896.47 for $A(\bar{H}_{dec})$, W(k = 0) and $W(k \neq 0)$ methods respectively on $50 \le \ell \le 2500$, c.f., Λ CDM: 3895.5 using MINUIT or 3896.9 using CosmoMC.
- $H_0 = 61.0 \text{ km/s/Mpc} (\pm 1.3\% \text{ stat}) (\pm 8\% \text{ sys});$ $f_{v0} = 0.627 (\pm 2.33\% \text{ stat}) (\pm 13\% \text{ sys}).$
- Previous $D_A + r_{drag}$ constraints give concordance for baryon–to–photon ratio $10^{10}\eta_{B\gamma} = 5.1 \pm 0.5$ with no primordial ⁷Li anomaly, Ω_{C0}/Ω_{B0} possibly 30% lower.
- Full fit driven by 2nd/3rd peak heights, Ω_{C0}/Ω_{B0} , ratio gives $10^{10}\eta_{B\gamma} = 6.08$ (±1.5% stat) (±8.5% sys).
- With bestfit values, primordial ⁷Li anomalous and BOSS z = 2.34 result in tension at level similar to Λ CDM

Back to the early Universe

- BUT backreaction in primordial plasma neglected
- Backreaction of similar order to density perturbations (10⁻⁵); little influence on background but may influence growth of perturbations
- First step: add pressure to new "relativistic Lagrangian formalism" (Buchert & coworkers, 2012-15)
- Dimensional reduction to 2 dimensions at high energy in many approaches to quantum gravity. Spacetime is relational structure: when all relations lightlike spacetime melts (mathematical challenge!)

Conclusion/Outlook

- A global FLRW geometry is a conceptual prison holding back most cosmologists
- Claim: FLRW geometry plus boosts falsified below SHS
- A 0.5% nonkinematic anisotropy on $\leq 65 h^{-1}$ Mpc scales has profound implications for cosmology
- On > $100 h^{-1}$ Mpc scales viable phenomenological models of backreaction timescape are possible
- New tests vis–à–vis Λ CDM; new challenges
- Quasilocal gravitational energy is one of the biggest unresolved mysteries of general relativity. Can we coarse grain Weyl to Ricci curvature quasilocally (building on N Uzun, arXiv:1602.07861)?
- "Modified Geometry" rather than "Modified Gravity"