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Pu 'POSE: understand the accuracy of parameters
determination for a coalescence event

Outline

|. binaries coalescences as GWV sources
2. a little bit of data analysis
3. GWI50914: first event, a peculiar one
4. Conclusions & future prospects:

a. other events

b. more detectors



|. Gravitational waves in binary systems
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Even more precise tests
from double pulsars



Coalescence signal
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Other interesting sources/kinds of GW'’s

® Continuos: non axisymmetric rotating NS
® Bursts: supernovae

® Stochastic



2. How to extract the signal from the noise
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we need a precise knowledge the phase

ANVANWAWA /\ A ' A (\ ‘
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVATATANL) JM

\

| ‘V\NVWV\A/J‘ T T L—,—-I
Y ¥ .

Inspiral Mergeor Ringdown
2 : ' no analve, model |H-t‘tllr|>::linll theorv

(quasi)circular motion
Elw(t)] = —Pyulw(t)] = w(t) = Pgu(t)

t v(t) 1 dFE dv B
D (1) = / w(r)dr = — / (o) s Godo [ 5 e

0

at least 3PN: 3rd order expansion in v
T

is required as accuracy for the inspiral phase



3.GWI150914:

‘live’ detection of coalescence
of two ~ 30M, BH’s




3.GWI150914:

‘live’ detection of coalescence
of two ~ 30M, BH’s

® First GW detection
® First (?) direct observation of a heavy stellar BH

® First observation of collision of two BH’s

® First evidence for O(10%) M BH’s



High masses: <I0
cycles observed in a
few milliseconds
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Properties of the binary black hole merger GW150914

1602.03840

The LIGO Scientific Collaboration and The Virgo Collaboration
(compiled 12 February 2016)

On September 14. 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a
gravitational-wave transient (GW 150914); we characterise the properties of the source and its parameters.
The data around the time of the event were analysed coherently across the LIGO network using a suite
of accurate waveform models that describe gravitational waves from a compact binary system in general
relativity. GW 150914 was produced by a nearly equal mass binary black hole of masses 2615 M, and
29" % M (for each parameter we report the median value and the range of the 90% credible interval). The
dimensionless spin magnitude of the more massive black hole is bound to be < 0.7 (at 90%
The luminosity distance to the source is 4107 }50 Mpe, corresponding to a redshift 0.0915 0%
standard cosmology. The source location is constrained to an annulus section of 590 deg?, primarily in
the southern hemisphere. The binary merges into a black hole of mass 627§ M and spin 0.67* 023 This

black hole is significantly more massive than any other known in the stellar-mass regime.
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arrival direction:
somewhere in the
southern emisphere
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1602.03841

Tests of general relativity with GW 150914

The LIGO detection of GW 150914 provides an unprecedented opportunity to study the two-body motion of a
compact-object binary in the large velocity, highly nonlinear regime, and to witness the final merger of the binary
and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations
to determine whether GW 150914 is consistent with a binary black-hole merger in general relativity. We find
that the final-remnant’s mass and spin. determined from the inspiral and post-inspiral phases of the signal,
are mutually consistent with the binary black-hole solution in general relativity. The data following the peak
of GW150914 are consistent with the least-damped quasi-normal-mode inferred from the mass and spin of the
remnant black hole. By using waveform models that allow for parameterized general-relativity violations during
the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical
regime and, bound. for the first time several high-order post-Newtonian coefficients. We constrain the graviton
Compton wavelength in a hypothetical theory of gravity in which the graviton is massive and place a 90%-
confidence lower bound of 10" km. Within our statistical uncertainties. we find no evidence for violations of
general relativity in the genuinely strong-field regime of gravity.

* Power excess after subtraction

e Graviton mass

* Polarization
* Consistency inspiral vs. merger vs. ringdown ‘/
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1602.03841

Tests of general relativity with GW 150914

The LIGO detection of GW 150914 provides an unprecedented opportunity to study the two-body motion of a
compact-object binary in the large velocity, highly nonlinear regime, and to witness the final merger of the binary
and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations
to determine whether GW 150914 is consistent with a binary black-hole merger in general relativity. We find
that the final-remnant’s mass and spin. determined from the inspiral and post-inspiral phases of the signal,
are mutually consistent with the binary black-hole solution in general relativity. The data following the peak
of GW150914 are consistent with the least-damped quasi-normal-mode inferred from the mass and spin of the
remnant black hole. By using waveform models that allow for parameterized general-relativity violations during
the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical
regime and, bound, for the first time several high-order post-Newtonian coefficients. We constrain the graviton
Compton wavelength in a hypothetical theory of gravity in which the graviton is massive and place a 90%-
confidence lower bound of 10" km. Within our statistical uncertainties. we find no evidence for violations of
general relativity in the genuinely strong-field regime of gravity.

* Power excess after subtraction

e Graviton mass

¢ Polarization
* Consistency inspiral vs. merger vs. rlngdown ‘/

* PN parameter deviations
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*PN parameter deviations:
0.5PN PN
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*PN parameter deviations:
0.5PN PN
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4. Conclusions
and future prospects I:
other events

® more cycles: more precision in parameters
determination.

® spin orientation: possible precession effects



4. Conclusions

and future prospects |l
more detectors

® higher detection rate, good also for
constraining PN deviations

® arrival direction
® degeneracy breaking in measured amplitude:
* distance

* polarisation



e Full 01 analysis released soon

e ()2 with VIRGO starting fall 2016
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