Cosmology with the intergalactic medium

Matteo Viel - INAF/OATs Helsinki Institute of Physics 28th September 2016

QUESTION

Why should we care about intergalactic medium cosmology?

QUANTITATIVE IGM COSMOLOGY

1) It probes the dynamical growth at the smallest scales (LCDM crisis? LCDM extensions?)

2) ...but also large scales via BAO geometrical measurements (Lya-Lya or cross Quasar-Lya)

3) IGM sink and reservoir of baryons test bed for **galaxy formation** feedback models

<u>The Lyman- α forest</u>

Lyman- α absorption is the main manifestation of the IGM

Tiny neutral hydrogen fraction after reionization.... But large cross-section

The Intergalactic Medium: Theory vs. Observations

	ΤΟΡΙϹ	DATA	THEORY	RESULTS
E	<u>3AOs</u>	QSO Lya flux and coss correlation with QSOs 3D analysis - low res	Mocks	Clear detection, small tension with Planck
<u>C</u>	<u>Cosmic neutrinos</u>	IGM QSO Spectra low res 1D flux power	N-body/hydro sims	$\Sigma \ \mathrm{m_v}$ < 0.12 eV
	<u>Cold dark matter</u> Coldness	IGM QSO Spectra high res 1D flux Power	N-body/hydro sims	m _{WDM} > 3.3 keV (thermal cross. sect.)
I I	<u>ow redshift</u> yman-α forest	COS data at z=0.15	Hydro sims	HM01 background + "hot" gas

$$P_{1D}(k) = \frac{1}{2\pi} \int_k^\infty P_{3D}(x) x dx$$

High redshift (and small scales): possibly closer to linear behaviour

RESULTS FROM BOSS/SDSS-III

BAOs at z=2.3

New regime to be probed with Lyman- α forest in 3D

SDSS-II

SDSS-III

$P_{qF}(\mathbf{k}) = b_q \left[1 + \beta_q \mu_k^2 \right] b_F \left[1 + \beta_F \mu_k^2 \right] P(k)$

6% precision measurement of D_A/r_d 3% precision measurement of D_H/r_d

Delubac et al. 14

RESULTS FROM BOSS/SDSS-III

NEUTRINOS

MASSIVE NEUTRINOS

COSMOLOGICAL NEUTRINOS : NON-LINEAR MATTER POWER

THE NEUTRINO HALO?

Villaescusa-Navarro, Bird, Garay, Viel, 2013, JCAP, 03, 019 Marulli, Carbone, Viel+ 2011, MNRAS, 418, 346

COSMOLOGICAL NEUTRINOS : MASS FUNCTION

Halo mass function in massive neutrino cosmologies is better described by the CDM field rather than the matter field. It becomes universal and bias becomes scale independent if CDM is used

Castorina+14 Costanzi+14

NEUTRINOS IN THE IGM

N-body + hydro sims

Neutrino induced non-linear suppression understood and reproduced also with simple halo modelling (Massara+ 15)

Degeneracies with s8 are present

Neutrino induced effects on RSD (Marulli+11), BAOs (Peloso+15), mass functions and bias (Castorina+14) investigated

FROM IGM ONLY:

 $\Sigma m_{v} < 0.9 \text{ eV}(2\sigma)$

Viel, Haehnelt, Springel 2010 Rossi+ 14, Villaescusa-Navarro+14

METHOD

DATA: thousands of low-res. Spectra for neutrino constraints. Few tens for cold dark matter coldness

SIMULATIONS: Gadget-III runs: 20 and 60 Mpc/h and (512³,786³,896³)

Cosmology parameters: σ_8 , n_s , Ω_m , H_0 , $m_{WDM,}$ + neutrino mass Astrophysical parameters: z_{reio} , UV fluctuations, T_0 , γ , $\langle F \rangle$ Nuisance: resolution, S/N, metals

METHOD: Monte Carlo Markov Chains likelihood estimator + very conservative assumptions for the continuum fitting and error bars on the data

Parameter space: second order Taylor expansion of the flux power

$$P_F(k,z;\mathbf{p}) = P_F(k,z;\mathbf{p}^0) + \sum_{i}^{N} \frac{\partial P_F(k,z;p_i)}{\partial p_i} \Big|_{\mathbf{p}=\mathbf{p}^0} (p_i - p_i^0) + \text{second order}$$

GROWTH OF STRUCTURES AT HIGH REDSHIFT

Constraint on neutrino masses from SDSS-III/BOSS Ly α forest and other cosmological probes

1D Flux power spectrum evolution

Nathalie Palanque-Delabrouille,^{4,4} Christophe Yèche,⁴ Julien Lesgourgues,^{4,2,4} Graziano Rossi,^{4,7} Arnaud Borde,⁴ Matteo Viel,^{4,4} Eric Aubourg,¹ David Kirkby,⁷ Jean-Marc LeGoff,⁴ James Rich,⁴ Natalie Roe,⁸ Nicholas P. Ross,⁸ Donald P. Schneider,^{1,4} David Weinberg⁴

BAYESIAN ANALYSIS

Parameter	(1) Ly α + H_0^{Gaussian} ($H_0 = 67.3 \pm 1.0$)	(2) Lyα + Planck TT+lowP	(3) Lya + Planck TT+10wP + BAO	(4) Lyα + Planck TT+TE+EE+IowP + BAO
σ_8	0.831 ± 0.031	0.833 ± 0.011	0.845 ± 0.010	0.842 ± 0.014
ns	0.938 ± 0.010	0.960 ± 0.005	0.959 ± 0.004	0.960 ± 0.004
Ω_m	0.293 ± 0.014	0.302 ± 0.014	0.311 ± 0.014	0.311 ± 0.007
H0 (km s ⁻¹ Mpc ⁻¹)	67.3 ± 1.0	68.1 ± 0.9	67.7 ± 1.1	67.7 ± 0.6
$\sum m_{\nu}$ (eV)	< 1.1 (95% CL)	< 0.12 (95% CL)	< 0.13 (95% CL)	< 0.12 (95% CL)
Reduced χ^2	0.99	1.04	1.05	1.05

COLDNESS OF COLD DARK MATTER

Viel, Becker, Bolton, Haehnelt, 2013, PRD, 88, 043502

THE COSMIC WEB in WDM/LCDM scenarios

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 log (I+6_{mi})

z=0
$$\frac{T_x}{T_{\nu}} = \left(\frac{10.75}{g_*(T_D)}\right)^{1/3} < 1$$

$$k_{
m FS} = rac{2\pi}{\lambda_{
m FS}} \sim 5 \, {
m Mpc}^{-1} \left(rac{m_x}{1 \, {
m keV}}
ight) \left(rac{T_
u}{T_x}
ight)$$

$$\omega_x = \Omega_x h^2 = \beta \left(\frac{m_x}{94 \,\text{eV}}\right)$$
$$\beta = (T_x/T_\nu)^3$$

z=2

 $k_{\rm FS} \sim 15.6 \frac{h}{\rm Mpc} \left(\frac{m_{\rm WDM}}{1 {\rm keV}}\right)^{4/3} \left(\frac{0.12}{\Omega_{\rm DM} h^2}\right)^{1/3} \label{eq:kFS}$

z=5

MV, Markovic, Baldi & Weller 2013 Markovic & MV, 2014

DARK MATTER DISTRIBUTION

GAS DISTRIBUTION

HI DISTRIBUTION

THE HIGH REDSHIFT WDM CUTOFF

 $\delta_{F} = F/\langle F \rangle - 1$

RESULTS FOR WDM MASS

SDSS + MIKE + HIRES CONSTRAINTS

Joint likelihood analysis

SDSS data from McDonald05,06 not BOSS

INTENSITY MAPPING: HI in emission

1022

Proton-electron spin alignment in Hydrogen ground state Rare "spin-flip" transition (~10⁻⁷ yr⁻¹) emits λ=21.1cm line

Could be the next LSS tracer with SKA down to z=0 from reionization era

WDM SUPPRESSION in 21cm INTENSITY MAPPING

Carucci, Villaescusa, MV, Lapi 2015

BAOs in intensity mapping

$$P_{
m 21cm}(k,z)=b_{
m 21cm}^2(z)P_{
m m}(k,z)$$

BAOs in intensity mapping - II

Realistic SKA forecast including foreground removal and treatment of noise show: H(z) could be determined at z=0.6,1,1.6,2.5 with error of 2.4%,1.5%,1.9%,3.1%

Alonso, Villaescusa-Navarro, MV 2016

Line widths distribution

Line widths distribution very interesting: on the low side even for somewhat extreme feedback models

Hotter CGM at low-z than obtained from the low-z evolution of hydro sims?

CONCLUSIONS

BAOs: clear detection, sytematics under control, tension with Planck (statistical fluctuations or systematics)?

NEUTRINOS:

no support for non zero neutrino masses from IGM data total neutrino mass <0.12 eV 2σ C.L.

WDM:

consistency with cold dark matter > 3.3 keV relics 2σ C.L.

LOW-z Lyman-alpha: exquisite UV thermometer