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• Brief introduction to the standard cosmological model

• The observational data (SnIa, CMB, WL, ΒΑΟ)

• Dark Matter (DM) perturbations and their sound speed 
cs2, a phenomenological approach

• Constraints on other DM properties (w,cvis...)

• Conclusions



Einstein equations:

Cosmological Constant

Friedmann-Lemaitre-
Robertson-Walker 
(FLRW) metric:

Scale factor α(t):



The curvature:

Friedmann equations (1924):

Continuity equations:
(via Bianchi identities)

open

closed



Hubble (1929): The Universe is expanding

2nd  Friedmann equation:

Riess et al. (1998): ...and it's also accelerating!

Redshift of distant galaxies

Type Ia supernovae
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The known forms of matter

cannot explain the accelerated

expansion of the Universe!

Non-relativistic matter

Relativistic matter 
(photons etc)



Fractional density 
parameters: 

1st Friedmann equation:
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Weak lensing can 

measure the masses of

the clusters and the

dark matter 

distribution  

The Bullet Cluster with

the total mass contours



  NASA.gov



  

The lightcurves before... 

And after the corrections...



  



  

Charles Kowal (1968)Fritz Zwicky (1934-35):

            The first use of supernovae for measuring distances!



  

2002-07, 23 new SnIa at z>1, eg

First measurements at z>1!

Hubble telescope:



  

• The SnIa data are given in 

term of the dist. modulus:

• Theoretical prediction
 (flat universe)

• Minimization:

• Dark Energy can be 
described via w(z)



  



  

1) Created by the baryons falling in and out of the potential wells 
(due to the photons' pressure).

2) They happen at scales where galaxies are correlated.

3) These scales are known and can be used to measure the 
expansion history of the Universe. 



Correlation function: 

Related to the probability to find a galaxy at  r.

space.mit.edu

Probability to find two galaxies in positions 1 and 2 if they are 
uniformly distributed:

And if they are clustering:

ΒΑΟ!



space.mit.edu

Μatter power spectrum P(k)

If:

Then:

CAMB



  



  



  



A CMB map:

HealpixExpand in spherical harmonics:



  

Ωk=[-0.05, 0, 0.05]



  

Ωm=[0.2038, 0.2538, 0.3038] and H0=70

Ωmh^2=[0.099862, 0.124362, 0.148862]



• What is the nature of Dark Matter (DM) and what are 
its properties?

• What is the behaviour of the DM perturbations? 

• How can we use the aforementioned data?

• How compatible is the Standard Cosmological Model 
with the data?



Energy-momentum tensor 
for perfect fluid:

Equation of state w

Non-relativistic 
matter

Radiation

Sound of perturbations

 cs^2: 

Quintessence

“Usual” Dark Matter

 M. Kunz, S.N., I. Sawicki, arXiv: 1507.01486



If                    for DM, then this affects large structure in the

Universe!

Reason: There's a sound

horizon at scales: 

Two cases:

 M. Kunz, S.N., I. Sawicki, arXiv: 1507.01486

Outside the horizon => cs^2 is irrelevant.

Inside the horizon => cs^2 “behave like pressure” and 
try to erase the structures.



Methodology:

Split DM in two parts
Usual DM

DM with a cs^2

But keep the background

fixed to ΛCDM
(dark degeneracy)

 M. Kunz, S.N., I. Sawicki, arXiv: 1507.01486



It affects the power

spectrum P(k):

It also affects the CMB:

 M. Kunz, S.N., I. Sawicki, arXiv: 1507.01486
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Now, replace the usual DM

with the new one, which

now also has an EoS w

Can be small and 
constant (CDM)

DM can be relativistic (w~1/3) 
at early times (a<<1, z>>1)

For x~m/T we have:
When x<<1 -> w = 1/3, 
while for x>>1 we have 
w~1/a^2.

 M. Kunz, S.N., I. Sawicki, arXiv: 1604.05701

Can be small and 
constant (CDM)

= constant



The Boltzmann Hierarchy

(see Ma & Bertschinger)

(+f)...(-b) 

Background quantities: 

 M. Kunz, S.N., I. Sawicki, arXiv: 1604.05701



If relativistic                then

If non-relativistic:  

Equation of state: 

 M. Kunz, S.N., I. Sawicki, arXiv: 1604.05701



Pressure and density 

Perturbations:

                   is weakly varying, see Komatsu arXiv:1003.0942  

So, if non-relativistic: 

 M. Kunz, S.N., I. Sawicki, arXiv: 1604.05701



 M. Kunz, S.N., I. Sawicki, arXiv: 1604.05701

Other change: 

Some remain the same: 



 M. Kunz, S.N., I. Sawicki, arXiv: 1604.05701

DM will behave like neutrinos: 



 M. Kunz, S.N., I. Sawicki, arXiv: 1604.05701
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Initially relativistic DM



Initially relativistic DM

 M. Kunz, S.N., I. Sawicki, arXiv: 1604.05701



Constant w

 M. Kunz, S.N., I. Sawicki, arXiv: 1604.05701



 M. Kunz, S.N., I. Sawicki, arXiv: 1604.05701

Constant w



• Brief intro and discussion of the data (SnIa, CMB, 
WL, BAO).

• Discussion of DM perturbations and their effects on 
large scale structure.

• Constraints on the sound speed of DM: ΔΩc~0.017 
(6.6% of total DM) with cs^2~10^-4.4

• Constraints on DM EoS w(z):  

     Constant w: w~0, cs^2<10^-6

     Initially relativistic (WDM): m>100eV, cs^2<10^-7  
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