Gravitational reheating after multi-field inflation

Jonathan White, KEK Japan
based on Phys. Rev. D 92, 023504 (2015) in collaboration with Yuki Watanabe, NIT Japan

C HELSINKI INSTITUTE OF PHYSICS, 9th March 2016

Success of Inflation $+\Lambda$ CDM

- Λ CiDM is in very good agreement with CMB observations
- Perturbations consistent with simple single-field inflation:

Planck 2015 \& BICEP2/Keck Oct. 2015
$\checkmark 5.6 \sigma$ deviation from scale invariance: $\quad n_{s}=0.9655 \pm 0.0062$
\checkmark perturbations close to Gaussian:

$$
f_{N L}^{l o c a l}=0.8 \pm 5.0
$$

\checkmark perturbations close to adiabatic:

$$
\left|\alpha_{n o n-a d}\right|<\mathcal{O}(1 \%)
$$

\checkmark tensor modes constrained:

$$
r_{0.05}<0.07
$$

Constraining inflation models

- Current CMB data is very precise \Rightarrow we can constrain inflation models

Two things to note:

- The predictions of a given model depend on when observable scales left the horizon need to know N_{*} when constraining models
- Large class of models with non-minimal gravity sectors are in good agreement with observations, e.g. R^{2}, Higgs, α-attractors

When did observable scales leave the horizon?

- To determine N_{*} we need to know how the universe evolves after inflation, but... ...we still know very little about the reheating epoch, during which the inflaton energy is converted into the matter of our universe.
- We don't have to worry about the microphysics - just need:

1. Effective e.o.s.

$$
N_{*} \approx 67-\ln \left(\frac{k}{a_{0} H_{0}}\right)+\frac{1}{4} \ln \left(\frac{V_{*}^{2}}{M_{\mathrm{Pl}}^{4} \rho_{\mathrm{end}}}\right)
$$

2. Duration

$$
\begin{aligned}
& +\underbrace{\frac{\left.\rho_{\mathrm{rh}}\right)}{\ln \left(\frac{\rho_{\mathrm{reh}}}{\rho_{\mathrm{end}}}\right)} \quad w_{\mathrm{rh}}}_{\frac{\mathrm{rhh}}{\frac{\Delta N_{r h}}{4}\left(3 w_{r h}-1\right)}}=\frac{1}{\Delta N_{\mathrm{rh}}} \int_{N_{\mathrm{end}}}^{N_{\mathrm{rh}}} \frac{p\left(N^{\prime}\right)}{\rho\left(N^{\prime}\right)} d N^{\prime}
\end{aligned}
$$

- Under the instant decay approximation reheating ends when $\Gamma \approx 3 H \rightarrow \rho_{\mathrm{rh}}=\frac{\Gamma^{2} M_{\mathrm{Pl}}^{2}}{3}$

Models with non-minimal coupling

- In the context of modified gravity, field theory in curved space-time and higherdimensional unifying particle physics theories, non-minimal coupling between scalar fields and the Ricci scalar is common
- e.g.

$$
\begin{aligned}
& S_{f(R)}=\int d^{4} x \sqrt{-g} f(R) \Rightarrow \int d^{4} x \sqrt{-g}(\Phi R+\ldots) \\
& S_{\text {Higgs }}=\int d^{4} x \sqrt{-g}\left[\frac{1}{2}\left(M_{p l}{ }^{2}+\xi h^{2}\right) R+\ldots\right] \quad(\Phi=d f / d R)
\end{aligned}
$$

- Make conformal transformation: $\tilde{g}_{\mu \nu}=\Omega^{2} g_{\mu \nu}$

$$
\Rightarrow \quad S=\int d^{4} x \sqrt{-\tilde{g}}\left(\frac{M_{p l}^{2}}{2} \tilde{R}-\frac{1}{2} s(\varphi)(\partial \varphi)^{2}-\tilde{V}\right)
$$

1. Flattening of potential

$$
\begin{aligned}
\tilde{V} & =V / \Omega^{4} \\
\phi & =M_{\mathrm{Pl}} \sqrt{3 / 2} \ln \varphi
\end{aligned}
$$

2. Rescaling of field

\Rightarrow Ideal for inflation

- All predict

$$
n_{s}=1-\frac{2}{N_{*}} \quad r=\frac{12}{N_{*}^{2}}
$$

but N_{*} depends on reheating, which is different for different models

Reheating in models with non-minimal coupling

- Given that inflation models with non-minimal coupling are favoured by observations, we consider reheating in models with the following action:

$$
S=\int d^{4} x \sqrt{-g}\left\{\frac{f(\vec{\phi})}{2} R-\frac{1}{2} h_{a b} g^{\mu \nu} \partial_{\mu} \phi^{a} \partial_{\nu} \phi^{b}-V\right\}+S_{m}
$$

- Have allowed for multiple fields with a non-flat field space. The presence of multiple fields is expected in the context of HEP unifying theories.
- We would like to determine:

1. Equation of state during reheating
2. The duration of reheating, i.e. Γ
3. Evolution of ζ through reheating

Due to the non-minimal coupling we get reheating even in the absence of direct couplings between $\vec{\phi}$ and matter, i.e. $S_{m}=S_{m}\left(g_{\mu \nu}, X_{m}\right)$

- This is gravitational reheating. We will consider this minimal setup where $S_{m}=S_{m}\left(g_{\mu \nu}, X_{m}\right)$

Interaction terms in the Einstein frame

- Reason for gravitational reheating is most clear in Einstein frame:

$$
\begin{array}{r}
g_{\mu \nu}=\frac{M_{p l}^{2}}{f} \tilde{g}_{\mu \nu} \Rightarrow \quad S=\int d^{4} x \sqrt{-\tilde{g}}\left[\frac{M_{\mathrm{Pl}}^{2}}{2} \tilde{R}-\frac{1}{2} S_{a b} \tilde{g}^{\mu \nu} \partial_{\mu} \phi^{a} \partial_{\nu} \phi^{b}-\tilde{V}(\vec{\phi})\right]+S_{m}\left(\frac{M_{\mathrm{Pl}}^{2}}{f(\vec{\phi})} \tilde{g}_{\mu \nu}, X_{m}\right) \\
S_{a b}=\frac{M_{p l}^{2}}{f}\left(h_{a b}+\frac{3 f_{a} f_{b}}{2 f}\right) \quad \tilde{V}=\frac{M_{p l}^{4} V}{f^{2}} \quad \text { Explicit interaction terms }
\end{array}
$$

- e.g. if in the Jordan frame we consider matter to consist of fermions and scalar fields:

$$
\begin{aligned}
& S_{\chi}=\int d^{4} x \sqrt{-g}\left\{-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \chi \partial_{\nu} \chi-U(\chi)\right\} \\
& S_{\psi}=-\int d^{4} x \sqrt{-g}\left\{\bar{\psi} \overleftrightarrow{\not D} \psi+m_{\psi} \bar{\psi} \psi\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \not D=e_{\alpha}^{\mu} \gamma^{\alpha}\left(\partial_{\mu}-\Gamma_{\mu}-i g A_{\mu}\right) \\
& \Gamma_{\mu}=-(1 / 2) \Sigma^{\alpha \beta} e_{\alpha}^{\lambda} \nabla_{\mu} e_{\beta \lambda}
\end{aligned}
$$

- Transforming to the Einstein frame: $\left(\Omega^{2}=\frac{f}{M_{p l}^{2}}\right)$

$$
\begin{aligned}
& S_{\tilde{\chi}}=\int d^{4} x \sqrt{-\tilde{g}}\left\{-\frac{1}{2} \tilde{g}^{\mu \nu} \mathcal{D}_{\mu} \tilde{\chi} \mathcal{D}_{\nu} \tilde{\chi}-\left(\frac{U(\chi)}{\Omega^{4}}\right)\right\} \\
& S_{\tilde{\psi}}=-\int d^{4} x \sqrt{-\tilde{g}}\left\{\tilde{\tilde{\psi}} \overleftrightarrow{\mathscr{D}} \tilde{\psi}+\frac{m_{\psi}}{\Omega} \tilde{\psi} \tilde{\psi}\right\}
\end{aligned}
$$

Explicit interaction terms

$$
\mathcal{D}_{\mu}=\partial_{\mu}+\tilde{\chi} \partial_{\mu}(\ln \Omega) \quad \tilde{D}=\tilde{e}_{\alpha}^{\mu} \gamma^{\alpha}\left(\partial_{\mu}-\Gamma_{\mu}-i g A_{\mu}\right) \quad \tilde{\psi}=\Omega^{-3 / 2} \psi, \quad \tilde{\chi}=\frac{\chi}{\Omega} \quad \tilde{e}_{\alpha}^{\mu}=\frac{e_{\alpha}^{\mu}}{\Omega}
$$

Background dynamics of oscillating inflatons

- First consider dynamics in the Einstein frame, where the inflatons are minimally coupled
- Assume ordinary matter fields are not present initially

\Rightarrow Dynamics of ϕ^{a} determined by the Einstein frame potential $\tilde{V}(\vec{\phi})$

\Rightarrow Assume fields oscillate about a minimum of $\tilde{V}(\vec{\phi})$ at the end of inflation
\Rightarrow Decompose $\phi^{a}=\phi_{\mathrm{vev}}^{a}+\sigma^{a}$ and expand the E.F. action:

$$
S=\int d^{4} x \sqrt{-\tilde{g}}\left\{\frac{M_{p l}^{2} \tilde{R}}{2}-\left.\frac{1}{2} S_{a b}\right|_{\mathrm{vev}} \tilde{g}^{\mu \nu} \partial_{\mu} \sigma^{a} \partial_{\nu} \sigma^{b}-\left.\frac{1}{2} \tilde{V}_{a b}\right|_{\mathrm{vev}} \sigma^{a} \sigma^{b}\right\}
$$

To diagonalise the action we introduce the mass eigen-basis: $\quad \sigma^{a}=\alpha^{A} e_{A}^{a}$

$$
\begin{gathered}
\tilde{V}_{b}^{a} e_{A}^{b} \equiv S^{a c} \tilde{V}_{c b} e_{A}^{b}=m_{\hat{A}}^{2} e_{A}^{a} \\
\Rightarrow \quad S=\int d^{4} x \sqrt{-\tilde{g}}\left\{\frac{M_{\mathrm{Pl}}^{2} \tilde{R}}{2}-\frac{1}{2} \delta_{A B}\left(\tilde{g}^{\mu \nu} \partial_{\mu} \alpha^{A} \partial_{\nu} \alpha^{B}+m_{\hat{A}}^{2} \alpha^{A} \alpha^{B}\right)\right\}
\end{gathered}
$$

Background dynamics of oscillating inflatons

- Assuming an FLRW metric: $\quad d \tilde{s}^{2}=-d \tilde{t}^{2}+\tilde{a}^{2} \delta_{i j} d x^{i} d x^{j}$

$$
\Rightarrow \quad \frac{d^{2}}{d \tilde{t}^{2}}\left(\tilde{a}^{3 / 2} \alpha^{A}\right)+\left[m_{A}^{2}-\left(\frac{9}{4} \tilde{H}^{2}+\frac{3}{2} \frac{d \tilde{H}}{d \tilde{t}}\right)\right]\left(\tilde{a}^{3 / 2} \alpha^{A}\right)=0
$$

- Assuming $m_{A}^{2} \gg \tilde{H}^{2}, d \tilde{H} / d \tilde{t} \quad \Rightarrow \quad \alpha^{A} \simeq \frac{\alpha_{0}^{A}}{\tilde{a}^{3 / 2}} \cos \left[m_{A} \tilde{t}+d_{A}\right]$

$$
\tilde{H}^{2}=\frac{1}{6 M_{\mathrm{Pl}}^{2}} \sum_{A}\left[\left(\frac{d \alpha^{A}}{d \tilde{t}}\right)^{2}+m_{A}^{2}\left(\alpha^{A}\right)^{2}\right]=\sum_{A} \frac{\left(\alpha_{0}^{A}\right)^{2} m_{A}^{2}}{6 M_{\mathrm{Pl}}^{2} \tilde{a}^{3}}\left(1+\frac{3 \tilde{H}}{2 m_{A}} \sin \left(2\left(m_{A} \tilde{t}+d_{A}\right)\right)+\mathcal{O}\left(\tilde{H}^{2} / m_{A}^{2}\right)\right)
$$

Universe essentially evolves like matter-dominated universe during reheating
i.e. $\omega_{r h}=0$

Oscillatory component of \tilde{H} is sub-leading order in \tilde{H} / m_{A}

$$
\frac{d \tilde{H}}{d \tilde{t}} \simeq-\frac{3}{2} \tilde{H}^{2}\left(1-\frac{1}{\tilde{H}^{2}} \sum_{A} \frac{\left(\alpha_{0}^{A}\right)^{2} m_{A}^{2}}{6 M_{\mathrm{Pl}}^{2} \tilde{a}^{3}} \cos \left(2\left(m_{A} \tilde{t}+d_{A}\right)\right)\right)
$$

$d \tilde{H} / d \tilde{t}$ has an oscillatory component even at leading order, but $d \tilde{H} / d \tilde{t} \sim \mathcal{O}\left(\tilde{H}^{2}\right)$

Background dynamics in the Jordan frame

- Would like to use the E.F. results to determine dynamics in Jordan frame.
- Under the conformal transformation we have: $\left(\Omega^{2}=f(\phi) / M_{p l}^{2}\right)$

$$
\begin{aligned}
d \tilde{s}^{2} & =-d \tilde{t}^{2}+\tilde{a}^{2}(\tilde{t}) \delta_{i j} d \tilde{x}^{i} d \tilde{x}^{j}=\Omega^{2} d s^{2}=\Omega^{2}\left(-d t^{2}+a^{2}(t) \delta_{i j} d x^{i} d x^{j}\right) \\
& \Rightarrow \quad \tilde{a}=\Omega a, \quad d \tilde{t}=\Omega d t, \quad d \tilde{x}^{i}=d x^{i} \quad \text { and } \quad \tilde{H}=\frac{1}{\Omega}\left(H+\frac{\dot{\Omega}}{\Omega}\right)
\end{aligned}
$$

- Assuming $\left.f\right|_{\mathrm{vev}}=M_{\mathrm{Pl}}^{2}$ and expanding: $\quad f=M_{p l}^{2}\left(1+\frac{f_{A} \alpha^{A}}{M_{P l}^{2}}+\frac{1}{2} \frac{f_{A B} \alpha^{A} \alpha^{B}}{M_{P l}^{2}}+\ldots\right)$

$$
\Rightarrow \quad H \simeq \tilde{H}\left(1+\frac{1}{\tilde{H}} \sum_{A} \frac{f_{A}}{2 M_{\mathrm{P} 1}^{2}} \frac{\alpha_{0}^{A} m_{A}}{\tilde{a}^{3 / 2}} \sin \left(m_{A} \tilde{t}+d_{A}\right)\right)
$$

On average, evolution of H in the Jordan frame is like that of matter-dominated universe, but there is an oscillatory component that is not suppressed
$\Rightarrow \quad \dot{H} \sim \mathcal{O}\left(m_{A} \tilde{H}\right)$ compared to $d \tilde{H} / d \tilde{t} \sim \mathcal{O}\left(\tilde{H}^{2}\right)$ in Einstein frame

Background dynamics comparison

- A single-field example with $\alpha_{0}=0.1 M_{\mathrm{Pl}}$ and $\frac{f_{\alpha}}{2 M_{\mathrm{Pl}}}=0.1$

Bogoliubov approach: scalar case

- In the flat-space QFT approach to determining decay rates we view the oscillating scalar fields as a collection of massive zero-momentum particles that decay into matter
- Presents itself naturally in the Einstein frame
- Is limited to the perturbative regime
- An alternative approach is based on QFT in a time-varying classical background Let us begin by considering the χ field in the Jordan frame:

$$
S_{\chi}=\int d t d^{3} x a^{3} \frac{1}{2}\left[\dot{\chi}^{2}-\frac{1}{a^{2}}(\nabla \chi)^{2}-m_{\chi}^{2} \chi^{2}\right]
$$

In quantising the field we use conformal time $a d \eta=d t$ and define the canonically normalised field $u=a \chi$

$$
\begin{gathered}
S_{u}=\int d \eta d^{3} x \frac{1}{2}\left[u^{\prime 2}-(\nabla u)^{2}-\left(a^{2} m_{\chi}^{2}-\frac{a^{\prime \prime}}{a}\right) u^{2}\right] \\
\Rightarrow \quad u_{k}^{\prime \prime}+w_{k}^{2} u_{k}=0 \quad \text { with } \quad w_{k}^{2}=k^{2}+a^{2} m_{\chi}^{2}-\frac{a^{\prime \prime}}{a} \longleftarrow \frac{a^{\prime \prime}}{a}=a^{2}\left(\dot{H}+2 H^{2}\right)
\end{gathered}
$$

Bogoliubov approach: scalar case

- On choosing appropriate mode-functions:

$$
u_{k}(\eta)=\frac{\alpha_{k}(\eta)}{\sqrt{2 w(\eta)}} \exp \left[-i \int_{-\infty}^{\eta} d \eta^{\prime} w_{k}\left(\eta^{\prime}\right)\right]+\frac{\beta_{k}(\eta)}{\sqrt{2 w(\eta)}} \exp \left[i \int_{-\infty}^{\eta} d \eta^{\prime} w_{k}\left(\eta^{\prime}\right)\right]
$$

\Rightarrow E.o.m. are satisfied if

$$
\begin{aligned}
& \alpha_{k}^{\prime}(\eta)=\frac{w_{k}^{\prime}}{2 w_{k}} \exp \left[2 i \int_{-\infty}^{\eta} d \eta^{\prime} w_{k}\left(\eta^{\prime}\right)\right] \beta_{k}(\eta) \\
& \beta_{k}^{\prime}(\eta)=\frac{w_{k}^{\prime}}{2 w_{k}} \exp \left[-2 i \int_{-\infty}^{\eta} d \eta^{\prime} w_{k}\left(\eta^{\prime}\right)\right] \alpha_{k}(\eta)
\end{aligned}
$$

$\Rightarrow \quad$ Commutation relations satisfied if $\quad\left|\alpha_{k}\right|^{2}-\left|\beta_{k}\right|^{2}=1$
$\Rightarrow \quad$ Hamiltonian diagonalised, with $\quad E_{k}=w_{k}\left(1 / 2+\left|\beta_{k}(\eta)\right|^{2}\right)$
$\Rightarrow \quad$ We interpret $\left|\beta_{k}(\eta)\right|^{2}$ as the number density of particles

Even if $\beta_{k}=0$ initially, $\beta_{k}(\eta)$ evolves away from zero if $w_{k}^{\prime} \neq 0$

$$
\Rightarrow \quad \text { corresponds to particle production }
$$

Bogoliubov approach: scalar case

- The Bogoliubov approach is more widely applicable, but we can still consider the perturbative regime where $f_{A} \alpha^{A} /\left(2 M_{\mathrm{Pl}}^{2}\right) \ll 1, \beta_{k}(\eta) \ll 1$ and $\alpha_{k}(\eta)-1 \ll 1$

$$
\beta_{k}(\eta) \simeq \int_{\eta_{0}}^{\eta} d \eta^{\prime} \frac{w_{k}^{\prime}}{2 w_{k}} \exp \left[-2 i \int_{-\infty}^{\eta^{\prime}} d \eta^{\prime \prime} w_{k}\left(\eta^{\prime \prime}\right)\right]
$$

- Evaluate $\beta_{k}(\eta)$ using the stationary phase approx.

$$
\text { Stationary when } w_{k}=\frac{\tilde{a} m_{A}}{2} \quad \Rightarrow \quad \frac{k^{2}}{\tilde{a}^{2}\left(\eta_{k}^{A}\right)}=\frac{m_{A}^{2}}{4}\left(1-\frac{4 m_{\chi}^{2}}{m_{A}^{2}}\right)
$$

k / \tilde{a} corresponds to momentum of produced particle, so this agrees with what we expect from kinematics

- Determine the decay rate into $\tilde{\chi}$ using the continuity equation in the E.F.

$$
\tilde{\nabla}^{\mu} \tilde{T}_{\mu \nu}^{(\tilde{\chi})}=-\frac{\Omega_{\nu}}{\Omega} \tilde{T}^{(\tilde{\chi})} \Rightarrow \quad \text { we recover } \quad \tilde{\Gamma}_{\alpha^{A} \rightarrow \chi \chi}=\frac{\left[f_{A}\left(2 m_{\chi}^{2}+m_{A}^{2}\right)\right]^{2}}{128 \pi M_{p l}^{4} m_{A}}\left(1-\frac{4 m_{\chi}^{2}}{m_{A}^{2}}\right)^{1 / 2}
$$

Bogoliubov approach: scalar case

- Almost trivial to see that the calculation is the same if we start in the Einstein frame:

$$
S_{\tilde{\chi}}=\int d \tilde{t} d^{3} x \tilde{a}^{3} \frac{1}{2}\left[\left(\frac{d \tilde{\chi}}{d \tilde{t}}\right)^{2}-\frac{1}{\tilde{a}^{2}}(\nabla \tilde{\chi})^{2}-\left(m_{\chi}^{2}-\frac{f_{A} \alpha^{A}}{2 M_{\mathrm{Pl}}^{2}}\left(m_{A}^{2}+2 m_{\chi}^{2}\right)\right) \tilde{\chi}^{2}\right]
$$

- Use conformal time, $\tilde{a} d \eta=d \tilde{t}$, and define canonically normalised field $\tilde{u}=\tilde{a} \tilde{\chi}$

$$
S_{\tilde{u}}=\int d \eta d^{3} x \frac{1}{2}\left[\tilde{u}^{\prime 2}-(\nabla \tilde{u})^{2}-\left(\tilde{a}^{2}\left(m_{\chi}^{2}-\frac{f_{A} \alpha^{A}}{2 M_{\mathrm{Pl}}^{2}}\left(m_{A}^{2}+m_{\chi}^{2}\right)\right)-\frac{\tilde{a}^{\prime \prime}}{\tilde{a}}\right) \tilde{u}^{2}\right]
$$

\ldots but $\tilde{a}=\Omega a$ and $\tilde{\chi}=\chi / \Omega \quad \Rightarrow \quad \tilde{u}=u$
\Rightarrow Whichever frame we start in ultimately we need to solve $u_{k}^{\prime \prime}+w_{k}^{2} u_{k}=0$ However, the interpretation is different
J.F. $w_{k}^{2}=k^{2}+a^{2} m_{\chi}^{2}-\frac{a^{\prime \prime}}{a} \Rightarrow$ time-dependence of w_{k} due to oscillatory a - gravitational particle production interpretation
E.F. $w_{k}^{2}=k^{2}+\tilde{a}^{2}\left(m_{\chi}^{2}-\frac{f_{A} \alpha^{A}}{2 M_{\mathrm{Pl}}^{2}}\left(m_{A}^{2}+2 m_{\chi}^{2}\right)\right)-\frac{\tilde{a}^{\prime \prime}}{\tilde{a}} \Rightarrow \begin{aligned} & \text { time-dependence of } w_{k} \text { due to explicit } \\ & \text { interaction terms }\end{aligned}$

Starobinsky's inflation

- As a simple example, let us consider Starobinsky's \mathbb{R}^{2} inflation model:

$$
S_{S}=\frac{M_{\mathrm{Pl}}^{2}}{2} \int d^{4} x \sqrt{-g}\left(R+\frac{1}{6 M^{2}} R^{2}\right)
$$

- It can be re-expressed as a scalar-tensor theory:

$$
S_{S}=\int d^{4} x \sqrt{-g}\left[\frac{M_{\mathrm{Pl}}^{2}}{2}\left(1+\frac{\xi \phi}{M_{\mathrm{Pl}}^{2}}\right) R-\lambda^{2} \phi^{2}\right]
$$

To see equivalence: Eom gives $\phi=\frac{\xi R}{4 \lambda^{2}}$. Substitute back into action and take $M^{2}=\frac{4 \lambda^{2}}{3 \xi^{2}} M_{\mathrm{Pl}}^{2}$
Relevant quantities are:

$$
\begin{gathered}
f=M_{\mathrm{Pl}}^{2}\left(1+\frac{\xi \phi}{M_{\mathrm{Pl}}^{2}}\right) \quad \tilde{V}=\frac{\lambda^{2} \phi^{2}}{\left(1+\frac{\xi \phi}{M_{\mathrm{Pl}}^{2}}\right)^{2}} \quad S_{\phi \phi}=\frac{3 \xi^{2}}{2 M_{\mathrm{Pl}}^{2}\left(1+\frac{\xi \phi}{M_{\mathrm{Pl}}^{2}}\right)^{2}} \\
\phi_{\mathrm{vev}}=\left.0 \quad S^{\phi \phi} \tilde{V}_{\phi \phi}\right|_{\mathrm{vev}}=M^{2} \quad \alpha=\sqrt{\frac{3}{2}} \frac{\xi}{M_{\mathrm{Pl}}} \phi \quad f_{\alpha}=\sqrt{\frac{2}{3}} M_{\mathrm{Pl}}
\end{gathered}
$$

Starobinsky's inflation

- Assuming daughter particles to be light \Rightarrow dominant decay channel is into scalars:

$$
\tilde{\Gamma} \simeq \frac{N_{s} f_{\alpha}^{2} M^{3}}{128 \pi M_{\mathrm{Pl}}^{4}}
$$

- Assuming instant thermalisation, use this to determine the reheating temperature:
- Define end of reheating when $\tilde{\Gamma}=3 \tilde{H} \quad \Rightarrow \quad \tilde{\rho}_{\mathrm{rh}}=\frac{1}{3} \tilde{\Gamma}^{2} M_{\mathrm{Pl}}^{2}=\frac{\pi^{2}}{30} g_{*}\left(T_{\mathrm{rh}}\right) T_{\mathrm{rh}}^{4}$

$$
\Rightarrow \quad T_{\mathrm{rh}} \simeq 3.7 \times 10^{9} \mathrm{GeV}
$$

- Compare this with Higgs inflation, where $T_{\text {rh }} \sim 10^{13} \mathrm{GeV}$ due to nongravitational coupling Bezrukov + Gorbunov '12
- This affects how many e-folds before end of inflation observable scales left the Horizon:

$$
\Delta N_{*} \simeq \frac{1}{3} \ln \left(\frac{T_{\mathrm{rh}}\left(\mathrm{R}^{2}\right)}{T_{\mathrm{rh}}(\mathrm{~h})}\right) \simeq-3 \quad \Rightarrow \quad \begin{aligned}
\text { Higgs-inflation: } n_{s}=0.967, & r=0.0032 \\
R^{2} \text {-inflation: } n_{s}=0.965, & r=0.0036
\end{aligned}
$$

Summary

- CMB data is now so precise that in order to constrain inflationary models we need to correctly determine how long before the end of inflation observable scales left the horizon.
- This in turn requires us to know about the post-inflation evolution of the universe, including reheating.
- Inflation models with non-minimal coupling are well motivated and observationally favoured, so it is important to study reheating in this class of models, and to determine observable consequences of having multiple fields.
- In this class of models, even in the absence of direct coupling between the inflaton sector and matter, reheating can take place gravitationally.
- We have developed a formulation of multi-field gravitational particle production using the Bogoliubov approach, which can be applied to both perturbative reheating and preheating.

Thank you!

