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Success of  Inflation +ΛCDM

• ΛCDM is in very good agreement with CMB observations

• Perturbations consistent with simple single-field inflation:

Planck Collaboration: The Planck mission
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Fig. 9. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94 % of the sky. The best-fit base⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties. From Planck Collaboration XIII (2015).

Fig. 10. Frequency-averaged T E (left) and EE (right) spectra (without fitting for T–P leakage). The theoretical T E and EE spectra
plotted in the upper panel of each plot are computed from the best-fit model of Fig. 9. Residuals with respect to this theoretical model
are shown in the lower panel in each plot. The error bars show ±1� errors. The green lines in the lower panels show the best-fit
temperature-to-polarization leakage model, fitted separately to the T E and EE spectra. From Planck Collaboration XIII (2015).

cosmological information if we assume that the anisotropies are
purely Gaussian (and hence ignore all non-Gaussian informa-
tion coming from lensing, the CIB, cross-correlations with other
probes, etc.). Carrying out this procedure for the Planck 2013
TT power spectrum data provided in Planck Collaboration XV
(2014) and Planck Collaboration XVI (2014), yields the number
826 000 (which includes the e↵ects of instrumental noise, cos-
mic variance and masking). The 2015 TT data have increased
this value to 1 114 000, with T E and EE adding a further 60 000

and 96 000 modes, respectively.4 From this perspective the 2015
Planck data constrain approximately 55 % more modes than in
the 2013 release. Of course this is not the whole story, since
some pieces of information are more valuable than others, and
in fact Planck is able to place considerably tighter constraints on
particular parameters (e.g., reionization optical depth or certain

4Here we have used the basic (and conservative) likelihood; more
modes are e↵ectively probed by Planck if one includes larger sky frac-
tions.
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✓ perturbations close to  
Gaussian: 

✓ 5.6σ deviation from scale invariance: 

Image:  Planck 2015
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Constraining inflation models

• Current CMB data is very precise          we can constrain inflation models 

• The predictions of  a given model depend on when observable scales left the horizon - 
need to know        when constraining models       

Planck Collaboration: Constraints on inflation 55

Fig. 54. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck alone and in combination with its cross-
correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

further improving on the upper limits obtained from the different
data combinations presented in Sect. 5.

By directly constraining the tensor mode, the BKP likeli-
hood removes degeneracies between the tensor-to-scalar ratio
and other parameters. Adding tensors and running, we obtain

r0.002 < 0.10 (95 % CL, Planck TT+lowP+BKP) , (168)

which constitutes almost a 50 % improvement over the Planck
TT+lowP constraint quoted in Eq. (28). These limits on tensor
modes are more robust than the limits using the shape of the
CTT
` spectrum alone owing to the fact that scalar perturbations

cannot generate B modes irrespective of the shape of the scalar
spectrum.

13.1. Implications of BKP on selected inflationary models

Using the BKP likelihood further strengthens the constraints
on the inflationary parameters and models discussed in Sect. 6,
as seen in Fig. 54. If we set ✏3 = 0, the first slow-roll pa-
rameter is constrained to ✏1 < 0.0055 at 95 % CL by Planck
TT+lowP+BKP. With the same data combination, concave po-
tentials are preferred over convex potentials with log B = 3.8,
which improves on log B = 2 obtained from the Planck data
alone.

Combining with the BKP likelihood strengthens the con-
straints on the selected inflationary models studied in Sect. 6.
Using the same methodology as in Sect. 6 and adding the BKP
likelihood gives a Bayes factor preferring R2 over chaotic in-
flation with monomial quadratic potential and natural inflation
by odds of 403:1 and 270:1, respectively, under the assumption
of a dust equation of state during the entropy generation stage.
The combination with the BKP likelihood further penalizes the
double-well model compared to R2 inflation. However, adding

Table 17. Results of inflationary model comparison using the
cross-correlation between BICEP2/Keck Array and Planck. This
table is the analogue to Table 6, which did not use the BKP like-
lihood.

Inflationary Model ln B0X

wint = 0 wint , 0

R + R2/6M2 . . . +0.3
n = 2 �6.0 �5.6
Natural �5.6 �5.0
Hilltop (p = 2) �0.7 �0.4
Hilltop (p = 4) �0.6 �0.9
Double well �4.3 �4.2
Brane inflation (p = 2) +0.2 0.0
Brane inflation (p = 4) +0.1 �0.1
Exponential inflation �0.1 0.0
SB SUSY �1.8 �1.5
Supersymmetric ↵-model �1.1 +0.1
Superconformal (m = 1) �1.9 �1.4

BKP reduces the Bayes factor of the hilltop models compared
to R2, because these models can predict a value of the tensor-to-
scalar ratio that better fits the statistically insignificant peak at
r ⇡ 0.05. See Table 17 for the Bayes factors of other inflationary
models with the same two cases of post-inflationary evolution
studied in Sect. 6.

13.2. Implications of BKP on scalar power spectrum

The presence of tensors would, at least to some degree, require
an enhanced suppression of the scalar power spectrum on large
scales to account for the low-` deficit in the CTT

` spectrum. We
therefore repeat the analysis of an exponential cut-off studied

)

N⇤

• Large class of  models with non-minimal gravity sectors are in good 
agreement with observations, e.g. R2, Higgs, α-attractors 

Image:  Planck 2015

Two things to note:



When did observable scales leave the horizon?

• To determine        we need to know how the universe evolves after inflation, but…N⇤

…we still know very little about the reheating epoch, during which the 
inflaton energy is converted into the matter of  our universe. 

• We don’t have to worry about the microphysics - just need: 1. Effective e.o.s.

2

where aend is the value of the scale factor at the end of
inflation and ak is its value when the scale k equalled aH
during inflation.2 We will use Nhor to indicate N(a0H0).

To determine the number of e-foldings corresponding
to a scale measured in terms of the present Hubble scale,
we need a complete model for the history of the Uni-
verse. At least from nucleosynthesis onwards, this is now
well in place, but at earlier epochs there are consider-
able uncertainties. At this stage, we make the following
simple assumptions for the sequence of events after infla-
tion, considering possible alternatives in the next section.
We assume that inflation is followed by a period of re-
heating, during which the Universe expands as matter
dominated (this assumption is not true in all models —
see subsection II C). This then gives way to a period of
radiation domination, which according to the Standard
Cosmological Model lasts until a redshift of a few thou-
sand before giving way to matter domination, and then
finally at a redshift below one to a cosmological constant
or quintessence dominated era. We assume sudden tran-
sitions between these epochs, labelling the end of the re-
heating period by ‘reh’ and the matter–radiation equality
epoch by ‘eq’. This is illustrated in Figure 1.

We can therefore write

k

a0H0
=

akHk

a0H0
= e−N(k) aend

areh

areh

aeq

Hk

Heq

aeqHeq

a0H0
(2)

Some useful factors are (see e.g. Ref. [4])

aeqHeq

a0H0
= 219 Ω0h ; (3)

Heq = 5.25 × 106 h3 Ω2
0H0 ; (4)

H0 = 1.75 × 10−61 h mPl with h ≃ 0.7 (5)

Using the slow-roll approximation during inflation to
write H2

k ≃ 8πVk/3m2
Pl, we obtain

N(k) = − ln
k

a0H0
+

1

3
ln

ρreh

ρend
+

1

4
ln

ρeq

ρreh

+ ln

√

8πVk

3m2
Pl

1

Heq
+ ln 219Ω0h . (6)

which agrees with Refs. [4, 5] while being more precise
about the prefactor. In fact ultimately the dependence
on the matter density Ω0 will cancel out, and though a
dependence on h remains this parameter is now accu-
rately determined by observations.

2 As discussed by Liddle, Parsons and Barrow [3], it makes more
logical sense to define the amount of inflation as the ratio of aH,
rather than a. More on that later; for now we follow the standard
usage.
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FIG. 1: A plot of ln(H−1/a) versus ln a shows the different
epochs in the e-foldings calculation. The solid curve shows the
evolution from the initial horizon crossing to the present, with
the dashed lines showing likely extrapolations into the past
and future. The condition for inflation is that ln(H−1/a) be
decreasing. Lines of constant Hubble parameter (not shown)
lie at 45 degrees (running top left to bottom right). The limit
of exponential inflation gives a line at this angle, otherwise
the inflation line is shallower. During reheating and matter
domination H−1/a ∝ a1/2, while during radiation domina-
tion H−1/a ∝ a. The recent domination by dark energy has
initiated a new era of inflation. The horizontal dotted line
indicates the present horizon scale. The number of e-foldings
of inflation is the horizontal distance between the time when
H−1/a first crosses that value and the end of inflation.

A. A plausible upper limit

The evolution of the Universe as described above is a
plausible model for its entire history. Nevertheless, there
are significant uncertainties in applying Eq. (6). Vk is
a quantity we would hope to extract from the perturba-
tions, but presently only upper limits exist, as the density
perturbation amplitude depends on a combination of the
potential and its slope, being unable to constrain either
separately. Detection of primordial gravitational waves,
which so far has not been achieved, is needed to break
this degeneracy. We do not know how prolonged the re-
heating epoch might be, which is needed to determine
ρreh, nor how much lower the energy density ρend at the
end of inflation might be as compared to Vk.

Nevertheless, we can impose a plausible maximum
on the number of e-foldings by making an assumption,
namely that there is no significant drop in energy density
during these last stages of inflation, so that Vk = ρend.
Note however that this is not the correct way to maximize
Eq. (6), a topic we return to in subsection II D, and so is
a non-trivial assumption. Having made it, the inflation
line in Figure 1 lies at 45 degrees, and we can maximize
the number of e-foldings by assuming that reheating is
instantaneous, so that ρreh = ρend. Focussing now on the
current horizon scale, this gives a maximum number of
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• In the context of  modified gravity, field theory in curved space-time and higher-
dimensional unifying particle physics theories, non-minimal coupling between scalar 
fields and the Ricci scalar is common 

Models with non-minimal coupling

Sf (R) = d 4 x∫ −g f (R)

SHiggs = d 4 x∫ −g
1

2
M pl

2 + ξh2( )R + ...⎡
⎣⎢

⎤
⎦⎥

⇒ d 4 x∫ −g(ΦR + ...)• e.g.

Φ = df / dR( )
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Figure 2: Models of conformal inflation based on generalizations of the Starobinsky model, with

F (�/�) ⇠ �2n

�2n�2
(�+�)2

, n = 1, 2, 3, 4.

4 Universality of conformal inflation

In this section we will describe the roots of the universality of predictions of conformal inflation in

a more general way. But first of all, we will consider some instructive examples, which will help to

explain the main idea of our approach.
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Figure 3: Flattening of the sinusoidal potential V (�) near the boundary of the moduli space � =
p
6

by boost in the moduli space, V (�) ! V (
p
6 tanh 'p

6

). Inflationary plateau of the function V (�)

appears because of the exponential stretching of the last growing part of the sinusoidal function V (�).

Consider a sinusoidal function F (�/�) ⇠ sin(a + b�) and check what will happen to it after the

boost V (�) ! V (
p
6 tanh 'p

6

). As we see from the Fig. 3, the main part of the stretch of the potential

occurs very close to the boundary of moduli space, near � =
p
6. The rising segment of the sinusoidal

function bends and forms a plateau, which has an ideal form for the slow-roll inflation. However, if the

last segment of the sinusoidal function were falling down, its stretching would produce an exponentially

decreasing curve rapidly approaching dS space. This possibility does not lead to slow roll inflation

9

Planck Collaboration: Constraints on inflation 55

Fig. 54. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck alone and in combination with its cross-
correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

further improving on the upper limits obtained from the different
data combinations presented in Sect. 5.

By directly constraining the tensor mode, the BKP likeli-
hood removes degeneracies between the tensor-to-scalar ratio
and other parameters. Adding tensors and running, we obtain

r0.002 < 0.10 (95 % CL, Planck TT+lowP+BKP) , (168)

which constitutes almost a 50 % improvement over the Planck
TT+lowP constraint quoted in Eq. (28). These limits on tensor
modes are more robust than the limits using the shape of the
CTT
` spectrum alone owing to the fact that scalar perturbations

cannot generate B modes irrespective of the shape of the scalar
spectrum.

13.1. Implications of BKP on selected inflationary models

Using the BKP likelihood further strengthens the constraints
on the inflationary parameters and models discussed in Sect. 6,
as seen in Fig. 54. If we set ✏3 = 0, the first slow-roll pa-
rameter is constrained to ✏1 < 0.0055 at 95 % CL by Planck
TT+lowP+BKP. With the same data combination, concave po-
tentials are preferred over convex potentials with log B = 3.8,
which improves on log B = 2 obtained from the Planck data
alone.

Combining with the BKP likelihood strengthens the con-
straints on the selected inflationary models studied in Sect. 6.
Using the same methodology as in Sect. 6 and adding the BKP
likelihood gives a Bayes factor preferring R2 over chaotic in-
flation with monomial quadratic potential and natural inflation
by odds of 403:1 and 270:1, respectively, under the assumption
of a dust equation of state during the entropy generation stage.
The combination with the BKP likelihood further penalizes the
double-well model compared to R2 inflation. However, adding

Table 17. Results of inflationary model comparison using the
cross-correlation between BICEP2/Keck Array and Planck. This
table is the analogue to Table 6, which did not use the BKP like-
lihood.

Inflationary Model ln B0X

wint = 0 wint , 0

R + R2/6M2 . . . +0.3
n = 2 �6.0 �5.6
Natural �5.6 �5.0
Hilltop (p = 2) �0.7 �0.4
Hilltop (p = 4) �0.6 �0.9
Double well �4.3 �4.2
Brane inflation (p = 2) +0.2 0.0
Brane inflation (p = 4) +0.1 �0.1
Exponential inflation �0.1 0.0
SB SUSY �1.8 �1.5
Supersymmetric ↵-model �1.1 +0.1
Superconformal (m = 1) �1.9 �1.4

BKP reduces the Bayes factor of the hilltop models compared
to R2, because these models can predict a value of the tensor-to-
scalar ratio that better fits the statistically insignificant peak at
r ⇡ 0.05. See Table 17 for the Bayes factors of other inflationary
models with the same two cases of post-inflationary evolution
studied in Sect. 6.

13.2. Implications of BKP on scalar power spectrum

The presence of tensors would, at least to some degree, require
an enhanced suppression of the scalar power spectrum on large
scales to account for the low-` deficit in the CTT

` spectrum. We
therefore repeat the analysis of an exponential cut-off studied
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• Given that inflation models with non-minimal coupling are favoured by observations, we 
consider reheating in models with the following action:

Reheating in models with non-minimal coupling

• Have allowed for multiple fields with a non-flat field space.  The presence of  multiple 
fields is expected in the context of  HEP unifying theories.

• We would like to determine: 1. Equation of  state during reheating
2. The duration of  reheating, i.e. �

Due to the non-minimal coupling we get reheating even in the absence of  direct 
couplings between     and matter, i.e.~� Sm = Sm (gµ⌫ , Xm)

• This is gravitational reheating.  We will consider this minimal setup where  
Sm = Sm (gµ⌫ , Xm)

3. Evolution of     through reheating⇣

S =

Z
d

4
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p
�g

(
f(~�)

2
R� 1

2
habg
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@µ�
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b � V
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• Reason for gravitational reheating is most clear in Einstein frame:

Interaction terms in the Einstein frame
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Gravitational reheating after multi-field inflation

I. ACTIONS AND INTERACTIONS

The type of action that we consider takes the form

S =

Z
d4x
p
�g

⇢
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� 1
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• e.g. if  in the Jordan frame we consider matter to consist of  fermions and scalar fields:
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Explicit interaction terms

• Transforming to the Einstein frame:
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Â

�

↵A
�

�

=

a1/3

6M2
pl

X

A

m2
A

�

↵A
0

�2
(12)

Gravitational reheating after multi-field inflation

I. ACTIONS AND INTERACTIONS

S� =

Z

d4x
p
�g

⇢

�1

2

gµ⌫@µ�@⌫�� U(�)

�

(1)

S = �
Z

d4x
p
�g

n

 
 !
/D  +m   

o ⇣

/D = eµ↵�
↵
(@µ � �µ � igAµ)

⌘

. (2)

�µ = �(1/2)⌃↵�e�↵rµe�� is the spinor connection

The type of action that we consider takes the form

S =

Z

d4x
p
�g

⇢

f(�)R

2

� 1

2

habg
µ⌫@µ�

a@⌫�
b � V

�

+ Smatter, (3)

Under the conformal transformation g̃µ⌫ = ⌦

2gµ⌫ , with ⌦

2
= f(�)/M2

pl, we can re-write the above action

in the Einstein frame as

S =

Z

d4x
p

�g̃
(

M2
pl
˜R

2

� 1

2

Sabg̃
µ⌫@µ�

a@⌫�
b � ˜V

)

+

˜Smatter (4)

where

S�̃ =

Z

d4x
p

�g̃
⇢

�1

2

g̃µ⌫Dµ�̃D⌫ �̃�
U(�)

⌦

4

�

⇣

Dµ = @µ + �̃@µ(ln⌦)
⌘

(5)

S ̃ = �
Z

d4x
p

�g̃
⇢

˜ 
 !̃
/D ˜ +

m 

⌦

˜ ˜ 

�

⇣

˜/D = ẽµ↵�
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↵
(@µ � �µ � igAµ)

⌘

(6)

Sab =
M2

pl

f

✓

hab +
3fafb
2f

◆

, ˜V =

M4
plV

f2
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Gravitational reheating after multi-field inflation

I. ACTIONS AND INTERACTIONS
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Â

�

↵A
�

�

=

a1/3

6M2
pl

X

A

m2
A

�

↵A
0

�2
(12)

Ω2 =
f

M pl
2

"

#
$

%

&
'

Explicit interaction terms



• First consider dynamics in the Einstein frame, where the inflatons are minimally coupled

Background dynamics of  oscillating inflatons

• Assume ordinary matter fields are not present initially

) Dynamics of        determined by the Einstein frame potential    ̃V (~�)�a

Assume fields oscillate about a minimum of            at the end of  inflation) Ṽ (~�)
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• Assuming an FLRW metric: 

Background dynamics of  oscillating inflatons
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Universe essentially evolves like matter-dominated universe during reheating  
i.e.
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• Would like to use the E.F. results to determine dynamics in Jordan frame.

Background dynamics in the Jordan frame

• Under the conformal transformation we have:  (                       )⌦2 = f(�)/M2
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On average, evolution of  H in the Jordan frame is like that of  matter-dominated 
universe, but there is an oscillatory component that is not suppressed
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• A single-field example with                              and

Background dynamics comparison
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• In the flat-space QFT approach to determining decay rates we view the oscillating scalar 
fields as a collection of  massive zero-momentum particles that decay into matter

Bogoliubov approach:  scalar case

-  Presents itself  naturally in the Einstein frame 
-  Is limited to the perturbative regime 

• An alternative approach is based on QFT in a time-varying classical background 
Let us begin by considering the      field in the Jordan frame:
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Commutation relations satisfied if

Hamiltonian diagonalised, with

• On choosing appropriate mode-functions:
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Bogoliubov approach:  scalar case



• The Bogoliubov approach is more widely applicable, but we can still consider the 
perturbative regime where                              ,                    and�k(⌘) ⌧ 1 ↵k(⌘)� 1 ⌧ 1
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Bogoliubov approach:  scalar case
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E.F.

J.F.

…but                and          

• Almost trivial to see that the calculation is the same if  we start in the Einstein frame:
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To see equivalence:  Eom gives                  .  Substitute back into action and take 

Starobinsky’s inflation

• As a simple example, let us consider Starobinsky’s R2 inflation model:
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• It can be re-expressed as a scalar-tensor theory:

Relevant quantities are:



Starobinsky’s inflation

• Assuming daughter particles to be light          dominant decay channel is into scalars:)
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• Assuming instant thermalisation, use this to determine the reheating temperature:
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Summary

• CMB data is now so precise that in order to constrain inflationary models we need to 
correctly determine how long before the end of  inflation observable scales left the horizon.

• This in turn requires us to know about the post-inflation evolution of  the universe, 
including reheating. 

• Inflation models with non-minimal coupling are well motivated and observationally favoured, 
so it is important to study reheating in this class of  models, and to determine observable 
consequences of  having multiple fields.

• In this class of  models, even in the absence of  direct coupling between the inflaton sector 
and matter, reheating can take place gravitationally.

• We have developed a formulation of  multi-field gravitational particle production using the 
Bogoliubov approach, which can be applied to both perturbative reheating and preheating. 

Thank you!


