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INTRO I: F(R) GRAVITY


Einstein-Hilbert Action:


Quadratic actions like


are motivated by renormalizability. So why not 


Not always equivalent to scalar-tensor gravity: example


Weyl rescaling to the Einstein frame:
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In Jordan frame we have the solution (for flat RW metric)


Interpolates between a de Sitter space (        ) with 
arbitrary cosmological constant and a radiation-dominated 
Universe (          ) with R = 0  i.e. 


                          


thus the Weyl transformations not well-defined.


Except for these cases, f(R) gravity is classically equivalent 
to Brans-Dicke theory with              .  (see De Felice’s 
review). No definitive proof yet that the equivalence 
between J and E frame extends at the quantum level. 
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INTRO II: SCALE INVARIANCE


Cosmological observations tells us that               ,                      
so the spectrum of curvature perturbation is 

quasi scale-invariant, and that


This can be easily obtained in the Starobinski model


The pure quadratic term is renormalizable and ghost-free.


Strumia et al.: Nature does not contain any scale; mass 
scales are generated by quantum effects. 

Gravitational ghosts are present [JHEP06(2014)080].
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What is the “best” inflationary f(R) in vacuum?


[MR et al. JCAP08(2014)015]



The equations of motion for
on a flat RW spacetime are:

Slow-roll parameters in terms of the function

Fix              , use   as parameter and solve for  
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S =

Z
d

4
x

p
gf(R)

F (R) =
df(R)

dR

nS � 1 =
16C(3↵+ 2)↵02

↵2(↵+ 2)4
� 16(2 + 2↵+ (3C + 5)↵2)↵0

↵(↵+ 2)4
� 16C↵00

↵(↵+ 2)3
� 24↵2(↵2 + ↵+ 1)

(↵+ 2)4

r =
48↵2

(↵+ 2)2
�

32
�
10⇡2 � 24C2 + 36C2↵� 96� 3⇡2↵

�
↵02

(↵+ 2)6
+

+
192↵

�
8C + 8C↵� 3⇡2↵2 + 8C↵2 + 30↵2

�
↵0

(↵+ 2)6
+

32↵
�
12C2 � ⇡2

�
↵00

(↵+ 2)5

f(R) = f0R
⇣ , ⇣ =

4� ↵� ↵0

2(1� ↵)� ↵0

ns = 0.9603 r ↵(N)

↵(N) = F 0/F



                              

Recall: f(R) = f0R

⇣ , ⇥ =
4� �� �0

2(1� �)� �0

 inflationary
Universe

✏̃ ⌧ 1 ✏̃ = 1

N0

ns = 0.9603

f(R) ⇠ R⇣



It has been proven that for the Euclidean action

The 1-loop quantum corrections around de Sitter space 
amounts to

For           :

However one can show that for this form

[G.Cognola et al. JCAP02(2005)010]
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Should we throw away log corrections? Maybe not if sum!
[MR et al PRD 91, 123527, 2015]

We cannot prove this formula but we can motivate it:

Non-minimally coupled Higgs with Coleman Weinberg terms. 
During slow-roll we ignore kinetic terms so e.o.m. gives

Solve for the scalar field (Lambert function), expand and 
find
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Slow-roll parameters for f(R) theories:

When applied to our model
we find

independent of all parameters! The amplitude instead:

evaluated at the horizon exit. Comparing with data we find 
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Planck 2015
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Dynamical system evolution for the model

There is one stable attractor corresponding to the pole 
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Spontaneous and classical 
breaking of scale-invariance

[MR & L. Vanzo, PRD 94, 024009, 2016]
[G. Tambalo & MR, 1610.06478]



Scale-invariant scalar tensor theory

effective potential for fixed R:

Max and min corresponds to fixed points:

EOM in terms of efolding 
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There are only two fixed points:

                           H = arbitrary, saddle point 

                           H = arbitrary, stable point

We used the condition

Which implies that, at the stable fixed point:

Recall:

At the stable fixed point the scalar field is stabilised and 
the mass scale emerges. Symmetry is spontaneously broken 
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reheating

reheating



The Hubble parameter stabilises at
It cannot be the present cosmological constant. It would 
require a huge fine-tuning for the other parameters since:

Rather,          can be seen as the initial condition for the 
subsequent reheating phase. We can write

and for                       and           we find
Also, the e-folding number is fixed by the initial condition
 
For 50/60 efolds inflation needs to begin very close to the 
unstable fixed point
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Reheating and/or Preheating scenarios

Reheating via scalar field decay              . Assume that

Around the fixed point with we replace

the decay rate can be estimated as

The process stops at            at reheating temperature of   
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There are two pre-heating channels via parametric 
resonance. Take a massless scalar field minimally coupled:

usual oscillator with time-dependent frequency

Adiabaticity parameter:              when small no particle 
production. We have:

since the scalar field oscillates we expect large burst of 
particles when the field becomes small. This is the typical 
case of parametric resonance.
But there is another channel!
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Introduce the variable

The occupation number is

The Klein-Gordon equation becomes

We can solve the eom near the stable fixed point

Then:
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We have two interesting regimes for the solutions of

   - Amplification: when              then 

this is the usual case when               becomes large.

H -  Amplification: if/when H vanishes then (     arbitrary)

Can be solved with Bessel’s functions and: 
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The analysis can be repeated in the Einstein frame:

The “scalaron”:

Unstable fixed point at

Stable fixed point at
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ROAD AHEAD

- Perturbations (CMG, grav. waves, non-gaussianities)

- Add other scale invariant fields (e.g. radiation)

- Preheating and/or reheating

- Understand quantum effects

- Is spatial curvature admissible? 

- Bouncing solutions?



CONCLUSIONS

‣ Scale-invariance can be a fundamental symmetry of Nature.

‣ The symmetry breaking can occur via quantum effects or 

spontaneous (classical) symmetry breaking.

‣ Inflationary Universe is an ideal laboratory to test 

fundamental scale-invariance and its breaking.

‣ Work has been done in black hole thermodynamics too (MR 

et al, Entropy 17 (2015) 5145, PRD91 (2015) 104004)

‣ Many interesting questions arise in scale-invariant theories. 



KIITOS!



Extra material



Quasi-scale invariant attractors 
(MR et al, PRD 93, 024040 (2016)) 

 We consider the non-canonical Linde-like Lagrangian (p > 0) 

The the first Hubble flow parameters are 

 Then we have: 

M. Rinaldi - Trento U.

In this paper we explore the inflationary predictions of a class of non-analytic potential
f admitting logarithmic singularities. As we shall see, in this case we find a distinct class of
attractors that fit the data and predict, at the leading order, the universal relation

r =
8

3
(1� ns) , (1.3)

which is the same as associated with a linear potential in the canonical Einstein frame. Such
potentials precisely correspond to the convex-concave divide in the (r, ns) plane 1.

In the case of the �-attractors, the fundamental origin of the parameter � is related to
supergravity and provides sound phenomenological predictions.

In our case, the common origin of the class of attractors that will be discussed below
can be found in the Jordan frame, where the Lagrangian turns out to be a deformation of the
simplest scale invariant gravity theory: L ⇥ ⌅

gR2, and the scale invariant scalar-tensor theory
first discussed in [13], where the breaking of scale invariance by quantum corrections was also
suggested. Deformations that softly break the scale invariance during inflation were already
considered in terms of gravitational one-loop corrections [14, 15] therefore it is tempting to
consider this class of attractors as the manifestation of loop-corrected quadratic gravity.

The paper is organized as follows: in sec. 2 we lay down the formalism that will be used,
and, in particular, we compute the appropriate slow-roll parameters for non-canonical scalar
kinetic term in the Einstein frame. In sec. 3 we discuss the known case of analytic potentials,
along the lines of [10]. In sec. 4 we consider potentials with logarithmic singularities and
show, in sec. 5, how these are related to quasi scale-invariant gravity. We conclude in sec. 7
with some considerations.

2 Slow-roll parameters for actions with non-canonical scalar kinetic term

Our starting point is the action in the Einstein frame with a non-canonical kinetic term for
the inflaton used in [10], namely
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Lagrangian for the self interacting scalar ⇥ instead consists of the usual kinetic term multiplied
by a function with a pole of order p in ⇥ at ⇥ = 0, while Ap is an arbitrary constant. Of
course, one should remember that the presence of this pole singularity is field re-definition
dependent, but nonetheless is very useful for the discussion of the slow-roll approximation.
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plane, yields the straight line (1.3), called convex-concave divide.
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where the prime stands for a derivative with respect to N . Within the slow-roll approximation,
these parameters are related to the observables [17]. In particular, the spectral index ns and
the tensor-to-scalar ratio r are respectively given by

ns ⇥ 1� 2�1 � �2, (2.9)
r ⇥ 16�1 . (2.10)

In our case, with the help of equations (2.2) and (2.3), we find that, in the slow-roll regime,
the Hubble flow reads
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Let us note that these expressions for the Hubble flow parameters di✓er from the standard
ones (i.e. the ones computed with a canonical kinetic term in the Lagrangian), which we call
�̃1 and �̃2. The latter are related to the former by �̃1 = �1(p = 0) and �̃2 = �2(p = 0). These
formulae are all we need to analyze the classes of attractors corresponding to analytic and
non-analytic potentials.

3 Analytical potentials

The class of models considered in [10] corresponds to an arbitrary p > 1 and analytic potentials
at ⇥ = 0. Within the slow-roll approximation, we expand V (⇥) = c0 + c1⇥, and we assume
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M. Rinaldi - Trento U.

Quasi-scale invariant attractors 

The alpha-attractors required an analytic potential at the pole. 
Here we consider non-analytic potentials:  

At leading order, these yield                  

That is the same as for  

Is this just a coincidence? 

4 Non-analytic potentials

A distinct class of models is the one for which, in the slow roll approximation, ⇥2 is, at the
leading term, a function of ⇥1 only, and satisfies the relation

⇥2 ⇥ 4⇥1 . (4.1)

This holds true as soon as

pV� + 2⇤V�� = 0 , (4.2)

which implies that
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Thus, the condition (4.1) is not so ad hoc as it might appear, since it corresponds to a large
class of potentials in the non-canonical frame with a branch point at ⇤ = 0. This feature
clearly shows that this class does not belong to the one of �-attractors.

The interesting property of this class of potentials is that r and ns are, for any value of
p, and within our approximation, related by

r =
8

3
(1� ns) , (4.4)

as follows immediately from eqs. (2.9) and (2.10). This implies that, for ns ⇥ 0.968, the
tensor-to-scalar ratio is fixed to r ⇥ 0.085, which is a prediction consistent with the latest
data but distinct from the one of the �-models.

For the special case p = 2, also the number of e-foldings is fixed. On using eq. (2.11),
we find that ⇥1 = 1/(4N) hence, ns = 0.968 implies N ⇥ 47.

For the case p ⇤= 2 we instead find that

⇥1 =
1

2pN
, (4.5)

and

r =
8

pN
, ns = 1� 3

pN
. (4.6)

We conclude that the class of non-analytic potentials (4.3) yields the universal relation (4.4).
Each point on this line is fixed uniquely by the value of the parameter Np, which for the
quoted mean value of the tilting by Planck, is within the 68% confidence interval 78.32 <
Np < 114.07.

If we perform the canonical rescalings (3.8) or (3.9) we find that the potential in the
canonical Lagrangian takes the linear form

V (⌅) = a+ b⌅ . (4.7)

This is not surprising as the relation (4.4) is precisely the one that separates concave from
convex potentials in the (r, ns) plane and corresponds to linear potentials. This result might
seem rather trivial if one just considers the Einstein frame. Indeed, we must go to the Jordan
frame to appreciate the fundamental nature of these potentials.
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(in absence of gravity, see, for example [24]), namely

feff(R) =
R2

[

1 + γ ln
(

R2

µ2

)] . (4)

The scale µ, which has the dimension of a squared mass, is necessary to make the logarithm

dimensionless. Of course there is now a troublesome pole at Rdiv = µ exp(−1/2γ), but with

the reasonable assumption that γ ≪ 1 this is in the region of such a small curvature that

the effects induced by the Higgs and other standard model fields cannot be ignored and a

different physics should sets in. In any case, we will show below that inflation occurs entirely

at R > Rdiv, independently of the value of γ. So, even if we are not really able to fully justify

this choice of the Lagrangian (some arguments in favor of this choice will be given in the

next Section) we feel authorized in using it during the inflationary phase. However, we

may anticipate that the surprising feature of (4) is that it yields an inflationary phase such

that the spectral index, its running, and the tensor-to-scalar ratio depend exclusively on the

number of e-folds. The only constraint that relates γ and µ comes from amplitude of the

scalar power spectrum.

INFLATION IN f(R) THEORIES

In order to obtain the inflationary observables, we introduce a simple and transparent for-

malism that is valid for all f(R) theories. Let us consider the generic action in Jordan frame

(for reviews on f(R) gravity see e.g. [25–27])

SJ =

∫

d4x
√

|g|f(R). (5)

Our goal is to express the usual inflationary observables in both Einstein and Jordan frame

in a simple and universal form. The only vacuum equation of motion for a homogeneous

and isotropic Universe with metric ds2 = −dt2 + a2dx⃗2 is

3XH2 =
1

2
(XR− f)− 3HẊ , (6)

where the dot represents a derivative with respect to the (Jordan frame) cosmic time t,

H = a−1ȧ is the Hubble function, R ≡ 6(2H2 + Ḣ), and X ≡ df(R)/dR. The conformal

transformation g̃µν = Xgµν brings the action (5) into the canonical form in Einstein frame

SE =

∫

d4x
√

|g̃|
[

M2

2
R̃−

1

2
(∂̃φ̃)2 − V (φ̃)

]

, (7)
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Transform to Jordan frame:  

Go on-shell in slowroll approx: 

If we perform the canonical rescalings (22) or (23) we find that the potential in the

canonical Lagrangian takes the linear form

V (⌃) = a+ b⌃ . (30)

This is not surprising as the relation (27) is precisely the one that separates concave from

convex potentials in the (r, ns) plane and that corresponds to linear potentials. This result

might seem a bit trivial if we restrict to the Einstein frame. In fact, we need to move to the

Jordan frame to have a glimpse of the fundamental nature of these potentials.

V. QUASI-SCALE INVARIANCE AND NON-ANALYTIC POTENTIAL

We now analyze the results of the previous section in Jordan frame. Let us first consider

the p = 2 case. Upon the conformal transformation gµ⇥ ⇥ A�1/2
2 ⇧ gµ⇥ , the Lagrangian (4)

can be cast in the form

LJ =
⌅
�g

⇧
⌅⇧2R� 1

2
(⌦⇧)2 � ⇥⇧4

⇤
1� � ln

⇧2

µ2

⌅⌃
, (31)

where ⌅ = M2/(2A2) and the parameters µ and ⇥ depend on the arbitrary parameters V0

and ⇧0 in eq. (26). Both ⌅ and ⇥ are dimensionless, therefore the Lagrangian above is scale

invariant when � = 0. In general, for any value of �, we can interpret this model as a scale-

invariant scalar-tensor theory with an additional logarithmic one-loop quantum correction,

which depends on the arbitrary mass scale µ2, along the lines of the model studied in [13].

It is interesting to note that, on shell and in the slow roll approximation, this model is

equivalent to the modified gravity Lagrangian

f(R) =
⌅
�gR2

⇤
1� � ln

R

µ2

⌅�1

, (32)

proposed in [8], where the relation (27) was also found. To see this, it is su⇥cient to neglect

the kinetic term (slow-roll approximation) and find the equation of motion for ⇧, which

trivially reads

⇥⇧2 =
2⌅R

� � 4
⌥
1� � ln

�
⇤2

µ2

⇥� . (33)

At the lowest order, this equation gives ⇥⇧2 ⇤ 2⌅R/(�� 4), and by substituting back in the

Lagrangian, one finds the on-shell expression (32).
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In the case when p ⌃= 0, we find

LJ =
⌥
�g

�
⇤p⌅

pR� 1

2
(�⌅)2 � ⇥p⌅

2p+ 2
p�1

⇥
, (34)

where ⇤p = M2/(2Ap) and ⇥p = V0A�2
p ⌅(p�2)/p

0 . This Lagrangian is scale invariant only in

the limit p ⌅ 2. In any other case, we can proceed as before, by computing the equation

of motion for ⌅ in the slow-roll approximation (�⌅)2 ⇧ 0, and substituting back into the

Lagrangian. As a result, one finds that the on-shell expression has the simple form

L ⇥ ⌥
gR2�� , (35)

where

� =
2� p

p2 � p+ 2
. (36)

This model was considered in [9], where it was shown that, in the class of f(R) theories,

this form of the Lagrangian with � ⇤ 1 (i.e. p . 2 in our case) is the one that best fits the

experimental values of ns and r. Also in this case, the small deviation from scale invariance

can be explained by one-loop corrections.
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5 Quasi-scale invariance and non-analytic potential

We now analyze the results of the previous section in the Jordan frame. Let us first consider
the p = 2 case. With the conformal transformation gµ⇤ ⌃ A�1/2

2 ⌃ gµ⇤ , the Lagrangian (2.1)
can be cast in the form

LJ =
�
�g

⇧
⇧⌃2R� 1

2
(↵⌃)2 � ⇤⌃4

⇤
1 + ⇥ ln

⌃2

µ2

⌅⌃
(5.1)

where ⇧ = M2/(2A2) and the parameters µ and ⇤ depend on the arbitrary parameters V0

and ⌃0 in eq. (4.3). Both ⇧ and ⇤ are dimensionless, therefore the Lagrangian above is scale
invariant when ⇥ = 0. In general, for any value of ⇥, we can interpret this model as a scale-
invariant scalar-tensor theory with an additional logarithmic one-loop quantum correction,
which depends on the arbitrary mass scale µ2, along the lines of the model studied in [13].
Broken scale invariance has also been investigated in references [18–20], and in within the so
called Agravity in [22, 23].

It is interesting to note that, on shell and in the slow roll approximation, this model is
equivalent to the modified gravity Lagrangian

f(R) =
�
�g �R2

⇤
1 + ⇥ ln

R

µ2

⌅�1

+ · · · , (5.2)

proposed in [14] (for similar models, see [21]), where the relation (4.4) was also found. To
see this, it is su�cient to neglect the kinetic term (slow-roll approximation) and obtain the
equation of motion for ⌃, which then reads

⇤⌃2 =
⇧R

2
�
1 + �

2 + ⇥ ln
�
⌅2

µ2

⇥⇥ . (5.3)

As shown in [14], the solution to this implicit relation is given by the series expansion of the
Lambert function 2 for large values of the argument, which in the present case has the form

⇤⌃2=
⇧R

2

⇧
1 +

⇥

2
+ ⇥ ln

⇤
R2

µ̄4

⌅
� ⇤⇥ ln ln

⇤
R2

µ̄4

⌅
+ · · ·

⌃�1

with ⇤⇥ ⇧ ⇥ ⇧ 1 and a slightly di�erent mass scale µ̄, where the dots are terms of order
⇤⇥ lnj lnR/ lnk R, 1 ⇤ j < k. Upon substitution in the Lagrangian (5.1) we get the form (5.2)
times a slowly varying factor (in the variable R) given by ratios of logarithmic expressions.

For the case when p ⌥= 2, the conformal transformation is gµ⇤ ⌃ gµ⇤A
�1/2
p ⌃p/2, and we

find

LJ =
�
�g

⇧
⇧p⌃

pR� 1

2
(↵⌃)2 � ⇤p⌃

2p+ 2
p�1

⌃
, (5.4)

where ⇧p = M2/(2Ap) and ⇤p = V0A�2
p ⌃(p�2)/p

0 . In any other case, we can proceed as before,
by computing the equation of motion for ⌃ in the slow-roll approximation, and substituting
back into the Lagrangian. As a result, one finds that the on-shell expression has the simple
form

L ⌅ �
gRnp , (5.5)

2The Lambert function is defined as the function z � W (z), solution of WeW = z.
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where

np = 2 +
2� p

p2 � p+ 2
. (5.6)

In [15], we studied the class of f(R) models that best fit the observed values for ns and we
found the simple result

f(R) = R� , ⇤ =
4� �� �⇥

2(1� �)� �⇥ , (5.7)

where � is a function of the e-folding number N and the prime stands for the derivative with
respect to N . In the limit for constant �, the exponent reduces to ⇤ ⇥ 2 + O(a) thus the
Lagrangian again tends to a deformation of R2, in line with (5.6). From [15] we know that the
approximation � = const is not very accurate as it leads to r ⌅ 0.3 and that, to have a more
precise prediction, one needs to consider third-order slow-roll parameters. Even in this case,
however, the e�ective exponent is still very close to 2. Thus, the important message is that at
leading term in the slow-roll parameters non-analytic potentials lead to quasi-scale-invariant
theories in the Jordan frame and to linear inflationary potential in the canonical Einstein
frame.

6 Generalized non-analytic potentials

The non-analytic potentials analyzed in the previous sections were obtained through the
condition (4.1), which might seem too restrictive. A more general non-analytic potential can
have the form

V = V0

�
⌅

⌅0

⇥(2�p)/2⇧

q

aq

⇤
ln

�
⌅

m

⇥⌅q
, (6.1)

where the logarithmic terms are generically expected from loop quantum corrections. Here,
aq are real coe⌫cients and m is the mass scale beyond which corrections become relevant. Let
us now determine to what extent the relation between ns and r is a�ected by these quantum
corrections. For simplicity, we study the potential

V = V0

�
⌅

⌅0

⇥(2�p)/2 ⇤
1 + a ln

�
⌅

m

⇥⌅
, (6.2)

which is su⌫cient to illustrate the main e�ect. On using the formalism explained in Sec. 2,
we compute ⇥1 and ⇥2 and Taylor expand to first order around a = 0. We then use these
expressions to compute r and ns, which depend on a and on ⌅. Finally, we combine the
results to eliminate the ⌅-dependence, and find

r ⌅ 8

3
(1� ns)�

32(1� ns)a

9(p� 2)
+O(a2) , (6.3)

which again yields eq. (4.4) in the a ⇤ 0 limit. For p = 2 this formula does not apply. In fact,
in this case we fall back to the case of the simple logarithmic potential studied in the previous
section. In general, for p ⇧= 0, we conclude that also with (small) quantum corrections our
prediction is robust: to the leading order, logarithmic and power-law non-analytic potentials
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In this paper we explore the inflationary predictions of a class of non-analytic potential
f admitting logarithmic singularities. As we shall see, in this case we find a distinct class of
attractors that fit the data and predict, at the leading order, the universal relation

r =
8

3
(1� ns) , (1.3)

which is the same as associated with a linear potential in the canonical Einstein frame. Such
potentials precisely correspond to the convex-concave divide in the (r, ns) plane 1.

In the case of the �-attractors, the fundamental origin of the parameter � is related to
supergravity and provides sound phenomenological predictions.

In our case, the common origin of the class of attractors that will be discussed below
can be found in the Jordan frame, where the Lagrangian turns out to be a deformation of the
simplest scale invariant gravity theory: L ⇥ ⌅

gR2, and the scale invariant scalar-tensor theory
first discussed in [13], where the breaking of scale invariance by quantum corrections was also
suggested. Deformations that softly break the scale invariance during inflation were already
considered in terms of gravitational one-loop corrections [14, 15] therefore it is tempting to
consider this class of attractors as the manifestation of loop-corrected quadratic gravity.

The paper is organized as follows: in sec. 2 we lay down the formalism that will be used,
and, in particular, we compute the appropriate slow-roll parameters for non-canonical scalar
kinetic term in the Einstein frame. In sec. 3 we discuss the known case of analytic potentials,
along the lines of [10]. In sec. 4 we consider potentials with logarithmic singularities and
show, in sec. 5, how these are related to quasi scale-invariant gravity. We conclude in sec. 7
with some considerations.

2 Slow-roll parameters for actions with non-canonical scalar kinetic term

Our starting point is the action in the Einstein frame with a non-canonical kinetic term for
the inflaton used in [10], namely

L =
⌅
�g

�
M2

2
R� Ap

2⇥p
(⇧⇥)2 � V (⇥)

⇥
. (2.1)

Here M is the Planck mass and the Einstein gravitational term is the usual one. The scalar
Lagrangian for the self interacting scalar ⇥ instead consists of the usual kinetic term multiplied
by a function with a pole of order p in ⇥ at ⇥ = 0, while Ap is an arbitrary constant. Of
course, one should remember that the presence of this pole singularity is field re-definition
dependent, but nonetheless is very useful for the discussion of the slow-roll approximation.

In the slow-roll approximation (⇥̈ ⇤ ⇥̇2 ⇤ Ḣ ⇤ 0), the equations of motion corresponding
to the above Lagrangian, read

3M2H2 ⇤ V (⇥) , (2.2)

3H2Ap

⇥p

d⇥

dN
⇤ �V� , (2.3)

1Suppose that V ⇥ �n, then V�� ⇥ n(n � 1)�n�2. For n > 1 (n < 1) one has V�� > 0 (V�� < 0) and the
potential is called convex (concave). The case n = 1 corresponds to a linear potential, which, on the (r, ns)
plane, yields the straight line (1.3), called convex-concave divide.
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4 Non-analytic potentials

A distinct class of models is the one for which, in the slow roll approximation, ⇥2 is, at the
leading term, a function of ⇥1 only, and satisfies the relation

⇥2 ⇥ 4⇥1 . (4.1)

This holds true as soon as

pV� + 2⇤V�� = 0 , (4.2)

which implies that

V (⇤) = V0 ln

�
⇤

⇤0

⇥
, p = 2 (4.3)

V (⇤) = V0

�
⇤

⇤0

⇥(2�p)/2

, p > 2 .

Thus, the condition (4.1) is not so ad hoc as it might appear, since it corresponds to a large
class of potentials in the non-canonical frame with a branch point at ⇤ = 0. This feature
clearly shows that this class does not belong to the one of �-attractors.

The interesting property of this class of potentials is that r and ns are, for any value of
p, and within our approximation, related by

r =
8

3
(1� ns) , (4.4)

as follows immediately from eqs. (2.9) and (2.10). This implies that, for ns ⇥ 0.968, the
tensor-to-scalar ratio is fixed to r ⇥ 0.085, which is a prediction consistent with the latest
data but distinct from the one of the �-models.

For the special case p = 2, also the number of e-foldings is fixed. On using eq. (2.11),
we find that ⇥1 = 1/(4N) hence, ns = 0.968 implies N ⇥ 47.

For the case p ⇤= 2 we instead find that

⇥1 =
1

2pN
, (4.5)

and

r =
8

pN
, ns = 1� 3

pN
. (4.6)

We conclude that the class of non-analytic potentials (4.3) yields the universal relation (4.4).
Each point on this line is fixed uniquely by the value of the parameter Np, which for the
quoted mean value of the tilting by Planck, is within the 68% confidence interval 78.32 <
Np < 114.07.

If we perform the canonical rescalings (3.8) or (3.9) we find that the potential in the
canonical Lagrangian takes the linear form

V (⌅) = a+ b⌅ . (4.7)

This is not surprising as the relation (4.4) is precisely the one that separates concave from
convex potentials in the (r, ns) plane and corresponds to linear potentials. This result might
seem rather trivial if one just considers the Einstein frame. Indeed, we must go to the Jordan
frame to appreciate the fundamental nature of these potentials.
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p2 � p+ 2
. (5.6)
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