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Einstein’s GR is well behaved in IR, but UV is Pathetic;
Aim is to address the UV aspects of Gravity



Energy Ladder :
Very Little do we know about Gravity
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No departure from Newtonian Gravity
up to

107° m ~ 100 (eV)™t or, M ~ ()_2 eV



Einstein GraV1ty

Is there any‘ Wfly to smear
the Smgularjty due toa




Cosmological Singularity

l\we could imagine going back
The Big Bang, :intkne,beforethe Big Bang,
a singularity \> lbut we encounter a singularity.
v/

Space

The conven tional theory.

Big Bang Singularity, Space Time have an edge
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‘ * A singularity would always imply
focusing of geodesics, but focusing alone
cannot imply a singularity

“Inflation does not solve the singularity problem”



UV Mod1ﬁcat10n of Gravity

UV is Pathological,
IR Part is Safe

Gravity requires modification at small distances
and at early times

While keeping the General Covariance

analogous to
Born-Infeld

theoryof E& M



Maxwell’s Electromagnetism

Self energy of an
electron is infinite in 1/r-fall of Coulomb’s
Maxwell’s theory Potential

Quantum
Electrodynamics

QED Born-Infeld

Classical approach:



Born-Infeld resolves 1/r
singularity
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Dealing Gravity similar to QED is extremely hard

One loop pure gravitational action is renormalizable

Beyond two loops it is hard to compute, number of
Feynman diagrams increases rapidly

Quadratic Curvature Gravity is renormalizable, but
contains “Ghosts’”: Vacuum is Unstable

Utiyama, De Witt (1961), Stelle (1977)



Constructing Singularity Free &
Ghost Free version for Gravity

~ Consistent theory of Gravity around Constant Curvature

Backgrounds
~ Criteria for resolving Cosmological Singularity

~ Divergence structures in 1 and 2-loops in a scalar Toy

model

| Corrections in | :

GR is a good [ \/i UV becomes M D

approximation in IR immerbant



Consistent General Covariant
Quadratic Theories of Gravity with
Constant Curvature Backgrounds

Spin-2
“Perturbative Unitarity”
&
“Ghost Free”
Spin-0
“Tachyon Free”
. components
“Correct degrees of freedom in of a
Graviton Propagator” Graviton

Propagator



4th Derivative Gravity & Power Counting
renormalizability
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Massive Spin-0 &  Massive Spin-28 ( Ghost ) Stelle (1977)
Utiyama, De Witt (1961), Stelle (1977)

Modification of Einstein’s GR

Modification Extra propagating

o et degree of freedom

PI‘Opag ator Challenge: to get rid of the extra dof



Ghosts

Higher Order Derivative Theory Generically
Carry Ghosts ( -ve Risidue ) with real ¢“m?” ( No-
Tachyon) ¥

S = [d'z ¢ (O+m?)p =0
2 - ]- Propagator with first
A(p ) - p2(p2_|_m2) ~ p2 (p2_|_m2) order poles
R —— - BEEEE————

Ghosts cannot be cured order by order, finite terms in
perturbative expansion will always lead to Ghosts !!

(e~ _

L O No extra states other than the

original dof.
Moffat (1991), Tomboulis (1997), Tseytlin (1997),
Siegel (2003), Biswas, Grisaru, Siegel (2004),
Biswas, Mazumdar, Siegel (2006)




Higher order Construction of Gravity in
Any Arbitrary Background

S:SE+SQ
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Covariant derivatives Unknown Infinite
Functions of Derivatives

Vel 1 defined M nkowsk LirTit:

R~O(h) S, ~ / /=50 (h?)




Redundancies & Form
Factors
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UV completion of Starobinsky Inflation

+ + 4+ +

(1) GR up to quadratic in curvature
(3) Weyl Gravity
(3) F(R) Gravity Biswas, Mazumdar, Siegel, 2006,
(4) Gauss-Bonnet Gravity
(5) Ghost free Gravity Chialva, Mazumdar, 2013,

Koshelev, Modesto, Rachwal, Starobinsky, 2016



Linearised Equations of Motion around Minkowski

— [ d*z/=g [R+ RF1 ()R + R, Fo(O)R"™ + Ryy0pFs(0) R
— vctelialied “,—m

q, = — / d%[%hwa( O™ + hob(D)0,0,h*  (3)

+ he(D) 0,0, + %hd( )Oh + h™7 SO )808)\8,u81/hluy]
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1 R = (000l = 0,0,k — Ohy)
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Similar analysis has been derived for dS an AdS




Graviton Propagator around Minkowski

W(D)Oh + W(D)8,00,hS + (0) (10,01 + 9,0,h)
1
0 d@)0h + /(OO 0,030,0,h" = =7




Spin projection operators

Let us introduce Ph.D. Thesis by K. J. Barnes, 1963

P2 _ 1(9 e ) 1 - R. J. Rivers (1963)
T IR RRCAETT TRETNRET T TRY PR P. Van Nieuwenhuizen,
1
pl — E(QW Wy + 0wy, +0,,0,, +0,,0,,), Nucl.Phys. B60 (1973), 478.
P? - 59!“' 9[_;0 s 7)‘(3, — Cf)‘“.(x)po. s
0 1 0 1
Psw = ﬁgm (UPG 2 Pws = ﬁwm'epa ’ (16)

where the transversal and longitudinal projectors in the momentum space are respec-
tively
k,k, B k, k.,

2z W=

o K2 -
Note that the operators P' are in fact 4-rank tensors, ”PL‘,p o
the index notation here.

9;“' = Ny —

but we have suppressed

Out of the six operators four of them, {P?, 'Pl,'Pf, ’PS,}, form a complete set of pro-
jection operators:

p:lpg = 5£-i5(,b’P:; and P*+P'+P)+P)=1, (17)

w

For the above action, see:
0 0 10 10 0 0 010 10 )
PoPe =8Py, PuPy=06udiP,, PiP=06uP), -

Biswas, Koivisto, Mazumdar

1302.0533



Tree level Graviton Propagator

P* PY
(a — 3c)k?

e —— - - - . —am———

No new propagating degree of freedom
other than the massless Graviton

a(l) = c(0) = 2/(0) + F2(H) +2F3(H) = 0

- 1 _
sz/d%\ﬁ—g o+ RE(O)R — 5 R F>(0) Ry

L
L e ———— - -

Without loss of generality either /7, or Fo, or F3 =0



Well known Higher Derivative limits

( 1) GR: a(0) =c(0)=-b(0)=—-d(0)=1 é

o(0) = 1 — = Fo(0)0 — 275(0)0

2 lim 17 = (P?/k*) — (P /2k*) = Hgg
b(O) = -1+ %]’E(D)D + 273 (0)0 wﬁi——‘ —
1
c(0) =1+2FA(0O)0O+ - F(O)O C .
: (2) F(R) Gravity: J
d(0) = ~1 - 2A(O)0 - S FH(O)0 ) |
(D) = —27(0)0 — F(0)0 — 2F3(0)0. L(R) = L(0)+ L(0)R+ 5 L (O)R* + -
I ——— - ——— a=-b=1, c=—-d=1-L"(0)0
¥ P
= =% " warcomm T=Te*
(3) GB Gravity: o
C R—————
L =R+ a(0O)G. .
e b —d—1 (4) Weyl Gravity: }
M= gx L=R- LQC2 C2 = R, p0 R*P7 — 2R, R + %R2 \

a=-b=1-(k/m)?
¢c=—-d=1-(k/m)?/3 and f = —2(k/m)?/3

Biswas, Koivisto, Mazumdar B e P
1302.0532 = A= tmp) ~ 22~ Ter ™
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Complete Field Equations
Ghost-free gravity
2.3. The Complete Field Equations 9 = /d4m\/—_g (g T RFI(D)R + RMVJ:.?(D)R;W o CMVAU‘FS(D)C;AV/\U)

Following from this we find the equation of motion for the full action S in (1) to be a
combination of Sy, S,, S; and S3 above

Po% = G + 4G*°F\(O)R + g°° RF,(C)R — 4 (V*V* — g*°0) F,(O)R
= 2007 + g*(Q, + ) + 4R Fy(D)RM
— 9 RLF2 (D) R, — 4V, V¥ (Fo(Q)R*) + 20(F(Q)R*)
+ 20"V, V. (Fa(D)R*) — 2057 + g*2(Qy, + ) — 4457

— gP2CH Fy(O)Cruno +4C2, , Fo(D)CPH | R(m) = ™R
— 4R,y + 29,9, )(F3(D)CP=) — 2057 + g°*(Q3 + Q) — 8AS”
=T, (52)

where T is the stress energy tensor for the matter components in the universe and we

have defined the following symmetric tensors: .
o - Biswas, Conroy, Koshelev, Mazumdar

fo ZV“If“"V"R"'“"”.. 0, = Zfl ¥ ROReY, (53) 1308.2319 Class.Quant. Grav. (2014)

n=1 n=1 =0

n—1 n—1

o8 — Zfz' ZR,‘ u[l)Ru Sn—i=1) ), =i ZRMN R0 (54)

n=1 =0 =1 =0

n—1

Agd = Z fz\ Z[RUU R[ B|e|;a)(n—1-1) Ru(;(u[!]n;?)n(n-—l—l)]w ' (55)
n=1 =0
n—1
S)u i Zf Zcﬂ u(h(v vAo;d(n—1-1) Q; qu ZC}:‘;:'CPVM{" ~{) (56)
n=1 =0 n=1 =0
n—1
ui qu Z[Ch' (.3 opla)(n=I{-1) C,\T"‘;{Q(I)CAS}U;:(H—I—l)];u . (57)
n—l =0
The trace equation is often particularly useful and below we provide it for the general COS Mo I O g' Cal
action (1):
P= —R+ 120F,(Q)R + M0(FAQ)R) + 49,9, (F(0)R) Bouncing solution is
+2(Q7 + 20,) + 2, +2) + 2(Q), + 2€3) —4A,)] — 8A;
= T= guT™. ) known exactly
It is worth noting that we have checked special cases of our result against previous work
in sixth order gravity given in [24] and found them to be equivalent at least to the cubic Biswas’ Mazu mdar, Siegel, 2006,

order {see Appendix C for details).



Stability of Hamiltonian

Hamiltonian Analysis for Infinite Derivative
Field Theories and Gravity

Anupam Mazumdar “?, Spyridon Talaganis ¢, Ali Teimouri *

¢ Consortium for Fundamental Physics, Lancaster University,
Lancaster, LAl 4YDB, United Kingdom.
* Kapteyn Astronomical Institute, University of Groningen, e ———
9700 AV Groningen, The Netherlands. 2.1 Constraints for a singular system . . . . .. .. ........

2.2 First and second-class constraints . . . . . .. ... ... ...
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E-mail: a.mazumdar@lancaster.ac.uk, s.talaganis@lancaster.ac.uk, 3 Scalar field theory: a Toy model

3.1 Simple homogeneous scalar action . . . . . .. ... ... ...

a tei mouri@lanc aster.ac uk 3.2 Finite degrees of freedom and boundedness of the Hamiltonian
5 : g density . . .. e e e e e e e e
3.3 Scalar Lagrangian with covariant derivatives . . . . ... ...
3.4 Infinite derivative scalar field theory . . . . . .. .. ... ...
34.1 Gaussian kinetic term and propagator . .. ... ...

Abstract
x 3 = . ¢ 3 4 Infinite derivative gravity (IDG) 22|
Typically higher-derivative theories are unstable. Instabilities man- &1 ADMBOHAIEN i oseniieiaiie Pak Sain vk s

ifest themselves from extm propagating degrees of freedom, which are 4.2 ADM decomposition of an Infinite derivative gravity . . . . . .
‘ . ey o 2 a ‘ D 4.3 Equivalent action and decomposition . . . .. ... ... ...
unphysical. In this paper. we will investigate infinite derivative field

theories and study their true dynamical degrees of freedom via Hamil- e

5.1 Hamiltonian for f(R) gravity . .................

1701.01009v2 [hep-th] 18 Jan 2017

tonian a.na.lysns In particular, we will show that if the infinite deriva- 5.1.1 Classification of constraints for f(R) gravity . .. ...

. : SR . . 5.2 Number of physical degrees of freedom for f(R) gravity . . . . [:

tives can be captured by a Gaussian kinetic term, i.e. erponential of b Comsbmite BT e cognnt o f(R) gravity

entire function, then it is possible to prove that there are only finite 5.3.1 Classifications of constraints for IDG . . .. ......
== number of dynamical degrees of freedom. This conclusion is similar to 6 Physical degrees of freedom for IDG
> previous analyses which were performed in the context of Lagrangian 6.1 Choiceof F(O0) o ov vvi wiwm wvt wdi winions sk o e
o v . R : S5 S S 68 TON s ot e smeaennity CN SR B A
>< analysis. We will further extend our investigation into infinite deriva-
8 tive theory of gravity, and in particular concentrate on ghost free and Conclualon

singularity free theory of gravity, which has been studied extensively
in the Lagrangian approach. Here we will show from the Hamiltonian
perspective that there are only finite number of degrees of freedom.
For a homogeneous case, we will show that the Hamiltonian density
can be bounded form below.

Hamiltonian density
Auxiliary fields y; and

B{R — A) decomposition

C a w » =

Finding the physical degrees of freedom from propagator
analysis

& Bl Bl Bl B] EERI] E]



Gravitational




Gravitational Entropy

ds® = —f(r)dt* + f(r)"'dr® + r*dQ’°

oL
Sw = —8m 7{ ( > r)dQ?
v r=rpg, t=const OR iyt Q( )

W-—-- —_—

Wald (1990, 1993), lyer, Wald (1993)

A
red [1 + (2?1 + Fo + 2f3) R]
4G %0

Sw =

Holography is an IR effect

Higher order corrections yield zero entropy
“Ground State of Gravity”

Conroy, Mazumdar, Teimouri, 1503.05568, hep-th ( Phys. Rev. Lett. 2015)



Consistent theories of Gravity
around dS and Ads backgrounds

S:/d4$\/j,q- P0+ZP H(OzIQzI) ;
L e—

Most generic action - “Parlty Invariant” and “Torsion Free”
) R
4

R=R=const, R, = ,w,, (0594 — 0L,Gu0) }
"———w
7
M2
S = /d4x\/—g [TPR — A+ (R]-"l( )R+ S, Fo(O)SHY + Cryre F3(O ““0)] 3
e S

1

_ _ 1 _ V.
I ——— S “————--——J

For pure EH action, see D'Hoker, Freedman, Mathur, Matusis, Rastelli (hep-th/9902042)

Full Quadratic action, see: Biswass, Koshelev, Mazumdar, 1602.08475



Quadratic order Action
for spin-8 and spin-0 components

Sy = %/d$4\/—g ];Ilw (lj - %)
2

_ A _ R _ - R
{1 - ‘]@Acl,oR+ ']Wg [(D s E) fz(D) + 2 (D o 5) ]:3 (

L ———
1 ~ (- R
So E——/d$4\/:_§_¢ ( + —
2 3
2 = A
{1 5 WACI’OR M2 [2(3
p p
e ———
Minkowski limit matches
with our earlier propagator hi,, = %Mphj,,, ¢ = %Mpgb
I, = : , 4 IR ——
P {1- 3 R +2R 2]}
I, =3 Biswas, Koshelev, Mazumdar

{14 % (R + 3R ()]}

W- —

1602.08475
80th B’Day Celeb. of Carl Brans



Most generic Ghost FreeGraviton
Propagator in dS/AdS

r@ D=1+ Bene 2 1(0-2) noye2 (0-B) 5 (04 B)

4R : 2
b, A7 %
M; M;
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|
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[
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(VORI
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Biswas, Koshelev & AM, 1602.08475



Background Independent Action
of Quadratic Action of Gravity

S = /d%\/?g

R

54‘0&0(

+an(R, Ry Ry Fal

P e S —— -~ =

R,R,,) +o1(R, R, )RF1(

)RIUJV T &3(R, R,LLV)O/LVAJFSOMV)\J]

Proof is due



Newtonian Limit

p? PO O/
1= a0 =)=
S = /d% N é +R _6;”_%5_ L R—2R,, -e_MA;_ L] p

ds® = —(1 — 2<I>)dt2 (1 + 2W)dr-

O =V = erf(%>

2
R —

Biswas, Gerwick, Koivisto, Mazumdar, Phys. Rev. Lett. (2012)
(8r-qc/1110.5249)



Resolution of Singularity at short distances

a( ) — 67( ) Any Entire Function: V(D):—E—Za]\; <£>N

Einstein/Newtonian

Gm rM Gravitational
() =y = —erf | —
1x10% (r) (r) ro ( 2 ) Force Vanishes r— O
5.x 10-° 1.x<10° | 5 x10-°  1.=<10-4
r (metres)
%
mM < Mp > m < My Current Bound : M > 0.01 eV

Edholm, Koshelev, Mazumdar (2016)
Frolov & Zelnikov (2015)



Dynamical Aspects

Val eri Frol ov & Andrei Zel ni kov
St udi ed various aspects I n 5 papers
(2015, 2016)

Time

—

Concl usi on: A lunmp of matter w thout Hori zon
and wthout Singularity Iin a Linear regine




Cosmological Singularity can be
resolved in a Full Non-linear Regime

p— p— _|:| 1_ —

S:/d‘lx\ﬁ—g - R R+ A

a(t) S ClR -+ Co

A
a(t) = ag cosh (\/GMZ?Z t)

Biswas, Mazumdar, Siegel, JCAP (2006)




Cosmological Singularity can be
resolved without an Ansatz

a®
a®
a®
s

““““““ By The Def ocusi ng Theor em of
Ceneral Relativity
o 1

o 592 < =Ry, kP'EY J
Ei nstein-H | bert: R/WkakV — "JT;W]‘C“]CV
Ry k"k” 2 0, g + %92 <0 |
I nfinite derivat m;ﬁgf T
Rukik? <0, 242625
dr 2 Conroy, Koshelev, Mazumdar, 1604.01989



3 Criteria for Defocusing Null
Congruences without Ghosts & Tachyons

_ _ _ 2 0
FO0 py o o D) =@ piry . g oo £ 5
o@ T a@® g { ak? " (a— 30)k2
c(0) = a(?[)j ) [1+2(1—aMpz%0)a(0)] Massless Graviton
for: a=c

1

5= / d'zv/—g[M2R + RF,(O)R]
"—-—»————‘ —— :—N

N
D 4
N

(1) Infinite Derivatives ol m(—#?)= . [P"’_ 1 (PS i )],

Locality leads to Starobinsky Model, which “a a(—k?) | k2 2a(—k?) \ k2 k2 +m?
requires Tachyonic massive Spin-O states to Yo
resolve singularity, but it cannot give Inflation ! IS .
LS
o LS
(2) Massless Spin-2, % ,
_ 4. . /- 2 2
. . S—§/dﬂf —g[MpR+CR]
(3) Non-Tachyonic Massive
@ - 1 PO
Spin-0 Mpe = Tgp + .

2k2 +m?’
Conroy, Koshelev, Mazumdar, 1604.01989 IR




Quantum Aspects

How to make Gravity WV Finite ?
Coul d we make Gravity weak In U?

Sone I nteresting progress have been nade:

Gravitational entropy, Boundary action, Hamiltonian, Quantum loop corrections,
Ultra high energy scatterings, etc.



Toy model based on Symmetries

GR e.om : Juv — () Juv {

Around Minkowski space the
e.0o.m are invariant under:

D e ———

huw = (1 +€)h,, +enu, S

e

Construct a scalar field theory with infinite derivatives whose
e.0o.m are invariant under

¢ — (1

Stree = % / d*z(¢p0a(

)9)

1 1

— - —— =

(k%) =

€)p + €

a(0) = e /M

6a(0)6 — ;60,01 )M) s

e

()

k2ek?



Quantum aspects

Superficial degree of divergence goes as
=V — 1. Use Topological relation: L=14+1-V
EFE=1-—-1L E <0, for L >1

s g e~ - e e—————0

e At 1-loop, the theory requires counter term, the 1-
loop, & point function yields A divergence

e At 2-loops, the theory does not give rise to
additional divergences, the UV behaviour becomes
finite, at large external momentum, where dressed
propagators gives rise to more suppression than the
vertex factors

Talaganis, Biswas, Mazumdar, (2014)



Towards understanding the ultraviolet
behavior of quantum loops in
infinite-derivative theories of gravity

Spyridon Talaganis®, Tirthabir Biswas” and Anupam Mazumdar®

* Consortium for Fundamental Physics, Physics Department, Lancaster University,

Lancaster, LAI JYB, UK

¥ Department of Physics, Loyola University,
6363 St. Charles Avenue, Box 92,
New Orleans, LA 70118. USA

“ Département de Physique Théorique, Université de Genéve, 24, Quai E Ansermet,
1211 Genéve 4. Switzerland

Abstract

In this paper we will consider quantum aspects of a non-local, infinite deriva-
tive scalar field theory - a toy model depiction of a covariant infinite derivative.
non-local extension of Einstein's general relativity which has previously been
shown to be free from ghosts around the Minkowski background. The graviton
propagator in this theory gets an exponential suppression making it asymptoi-
ically free, thus providing strong prospects of resolving various classical and
quantum divergences. In particular. we will find that at 1-loop, the 2-point
function is still divergent, but once this amplitude is renormalized by adding
appropriate counter terms, the ultraviolet (UV) behavior of all other 1-loop
diagrams as well as the 2-loop, 2-point function remains well under control.
We will go on to discuss how one may be able to generalize our computations

arXiv:1412.3467v1 |hep-th] 10 Dec 2014

and arguments to arbitrary loops.
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Ultra High Energy Scatterings of

Scalar Gravitons

High-Energy Scatterings in Infinite-Derivative Field

Theory and Ghost-Free Gravity

Spyridon Talaganis and Anupam Mazumdar

Consortium for Fundamental Physics, Lancaster University, LA1 4YB

March 14, 2016

Abstract

In this paper, we will consider seattering diagrams in the context of infinite-
derivative theories. First, we examine a finite-order higher-derivative scalar field
theory and find that we cannot eliminate the external momentum divergences of
scattering diagrams in the regime of large external momenta. Then, we employ
an infinite-derivative scalar toy model and obtain that the external momentum
dependence of scattering diagrams is convergent as the external momenta be-
come very large. In order to eliminate the external momentum divergences,
one has to dress the bare vertices of the scattering diagrams by considering
renormalised propagator and vertex loop corrections to the bare vertices. Fi-
nally, we investigate scattering diagrams in the context of a scalar toy model
which is inspired by a ghost-free and singularity-free infinite-derivative theory
of gravity, where we conclude that infinite derivatives can eliminate the ex-
ternal momentum divergences of scattering diagrams and make the scattering
diagrams convergent in the ultraviolet.



Ultra High Energy Scatterings of many Scalar
Gravitons:  preliminary computations

2
M ~J g7 .ff
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54 1/2
R 4 ==
P \ Mess (12577, = 206) M

Non- Local ity can be spread out on
Bl ackhol e Hori zon scal e

. ——

re~1y~ (2GMgpor) > M

Conjecture : Gravity can be made weak not to form a trapped surface



Horizon-orNo-Horizon!
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Conclusions

We have constructed a CGhost Free & Singularity Free
Theory of Gavity.

Studying singularity theorens, Hawking radi ation, Non-
SI ngul ar Bounci ng Cosnology , ..... , many I nteresting
or obl ens has been studied in this franework.

Hol ography 1s not a property of WV, Dbecones part of an
R ef fect.

Quant um conput ati ons al so show that Infinite Derivative
Gravity can aneliorate UV behavi our.

Utra-H gh energy graviton scatterings do not bl ow up.

All these consequences have ramifications for
Blackhole, Inflation & Quantum aspects of Gravity:
Both are Time Dependent Problems



Extra Shdes



Asymptotically Free QCD

Attempts to melt hadrons THE HISTORY OF THE UNIVERSE

13.8 billion years ago, the universe was filled by a plasma of quarks and
gluons, which generated protons and neutrons and then atoms

Experiments begin to map the behavior of quarks and gluons at different temperatures and densities

] L . »
% i % . BARYON
TEMPERATURE " : ol - ' BEGINNING OF TIME AFTER AFTER TODAY
L] - b & - - b Big Bang 10 microseconds 380,000 years 13.8 billion years
] & . i - &
7TRILLION °C + ' LHC : a - ? i t
The most powerful accelerator at CERN : o i 1
# produces a plasma twice as hot as that ! Protons : '
' T ! Atoms !
produced at the RHIC. When its energy [ - 1 E L) 1 L |
doubles by 2018, it may be able to turn . ? ' F ' P '
- LY Sy L ] ree 1 ' 1
3.5TRILLION °C + the quark and gluon liquid into a gas 5 = - MESON 1 electrons : : ” : .
L L 1 ' | - 1
. A % * » Nl
) ‘ i 3
p v ¢ e o e W :
t . s ¥ . i - Quark  Antiquark : | :
5 - s s L] ‘4-1" # RHIC : &.,&M : Neu;rlons : ps :
' g8 o . -. ‘ T The RHIC accelerator Gluon : * J :
s.,i -_ ] ®  createda plasma of quarks 4 i - b | i I
ben bl r - g g and gluons for the first time & : : i & i :
Pl chionue T . o[ W ' ™ in 2005. Currently, the RHIC HADRONS i ! i ‘ ' . i
) * is being used to attempt to Quarks combine to i : P : g '
THE PLASMA ®  HADRONS , determine how phase shifts form particles called : : :
At temperatures Y occur at higher densities > hadrons. Hadrons i i i
over 2 trillion Y 5 ®  consisting of trios of } + = g e
degrees, a phase R ' - y uarks bound together
4 1 ) . THE FIRST THE FIRST THE FIRST
change occurs. A - by gluons are called
fadiohe bleak - PARTICLES HADRONS ATOMS
& ] baryons. Quark- : :
; K : : . The Universe The quarks The Universe cools
apart and their . . s antiquark pairs are :
quarks and gluons o » ? lled expands and cools combine to form down and electrons
- called mesons : ¢ A
behave like a liquid ; the plasma of quarks  hadrons, with combine with
» and gluons, protons and protons and
DENSITY 3 S5T e e which undergo neutrons being neutrons to
BERKELEYNATIONAL 3 phase change the most stable form atoms

SOURCE BROOKHAVEN NATIONAL LABORATORY LABORATORY

Can we realise Asymptotically Free Gravity?

Can we weaken Gravity at short distances and small
time scales?



Non-Singular Bouncing Solutions: UV completion of
Starobinsky Inflation

p— — _D — —
R M2
S:/d%\/?g L R+ A
= 2 m

Linear Solution

h ~ diag(0, Asin \t, Asin At, Asin \t) with A < 1

t

Non-Linear Solution

+—— PAST FUTURE ——

SR a(t) = cosh 1/ 21)

Fig 02

Biswas, Gerwick, Koivisto, Mazumdar,
Phys. Rev. Lett. (8r-qc/1110.5849) Biswas, Mazumdar, Siegel, JCAP (2006)



Nonlocal Gravity & Cosmological Singularity

; e e :
R v
SZ/d4x\/—g = I R+ A
A
a(t) = ag cosh (\/GMQZ t)
P
Cosmological S;'(:Ef;;‘fn
Constant at Bounce in tl:le Planck
ata!

N A1/4

t

Biswas, AM, PRD (2014)

“Einstein Gravity Does Not Permit Such Solution”



Hawking-Penrose Singularity
Theorems & RayChaudhuri Equation

ad 1 ,
102 < R kMKY 0 =V,kv |
R, k*EY = KT, kP kY General Relativity
dd 1
R..k'E” >0, - -6% <0

/ d*z/—g [R+ RF1(O)R + R F2(O)R*™ + RapFs(0)RF ]

| e ———— - e ———— R |
= 0\2 7 ¢
R k+kY = . (1_) KT kM (kz) Ff(OOR®E) |
e T T

Defocusing: Rl]jyk‘“ k¥ <0



Does Higgs Play a Role During
Inflation with Einstein Gravity ?

S ~ /\/gd%; R+E&RH” + -
¢~ O(10° — 10%)
S ~ / V9d'z [R+ a1 R? + aa R* Ry, + a3 R* 7 R0 |
Higgs is Lost in the Myriad of Gravitational
Terms !!!!

SM Higgs or 750 GeV Scalar at best plays a role of a
Curvaton, but not as an Inflaton



A~ M?

PRE-EXISTING UNIVERSE
Collapse due to gravity




Gravitational Entropy for (A)dS

S = 167‘(‘1G /dD$\/jg [R — 2A + o (RflR + RIU,I/JT_.QRMV + R/,LV)\O"FSR’LLVAO_)]
D
W D=0 =2)  ds? = —f(r)dt? + f(r) " dr? + r?dQ
- 202
fr=(1%z)
A(A)dS 9
S0 = S (1222 (DD~ 1)+ o, (D~ 1)+ 212,
D

For + «, dS entropy can be 0

This has important consequences for a non-singular cosmology



Gravitational Waves

w? (M L?)
r

Large r

hmat

*(ML? M
jszw ( >erf (T2P>

r

r = 0, No Singularity

Biswas, Gerwick, Koivisto, AM,
Phys. Rev. Lett. (8r-qc/1110.5249)



Where would you expect the
modifications?

/& S

Singularity is capped at the scale of
non-locality M < M,



Remnants of stringy Gravity

M, LYY~ R+ R 4+ &=gle) ]

Perturbative string theory has o’ & ¢4 corrections

W——

For all orders : String field theory

1 — loop in gy all orders in o'

Witten (1998) , Tseytlin (1995), Zwiebach (2000), Sigel (1998, 2003), ...



Loop quantum gravity
or
Dynamical Triangulation approach

v

Wilson loops

v

Non-local objects

It would be interesting to establish the connection



