
Testing General Relativity on Cosmological Scales

Ruth Durrer

Université de Genève
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Introduction

The CMB

CMB sky as seen by Planck

Dℓ = ℓ(ℓ+ 1)Cℓ/(2π)

The Planck Collaboration:

Planck results 2015 XIII
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Ruth Durrer (Université de Genève, DPT & CAP) Testing GR in Cosmology Helsinki, February 22, 2017 3 / 36



Introduction

M. Blanton and the Sloan Digital Sky Survey Team.
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Galaxy power spectrum from the Sloan Digital Sky Survey (BOSS)

from Anderson et al. ’12

SDSS-III (BOSS)

power spectrum.

Galaxy surveys ≃
matter density fluctuations,

biasing and redshift space

distortions.
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Introduction

But...

We have to take fully into account that all observations are made on our past

lightcone which is itself perturbed.

We see density fluctuations which are further away from us, further in the past.

We cannot observe spatial distances, we measure 2 angles and a redshift.
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potential.

Not only the number of galaxies but also the volume is distorted.

The angles we are looking into are not the ones into which the photons from a

given galaxy arriving at our position have been emitted.

For small galaxy catalogs, these effects are not very important, but when we go

out to z ∼ 1 or more, they become relevant. Already for SDSS which goes out to
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Introduction

But...

We have to take fully into account that all observations are made on our past

lightcone which is itself perturbed.

We see density fluctuations which are further away from us, further in the past.

We cannot observe spatial distances, we measure 2 angles and a redshift.

The measured redshift is perturbed by peculiar velocities and by the gravitational

potential.

Not only the number of galaxies but also the volume is distorted.

The angles we are looking into are not the ones into which the photons from a

given galaxy arriving at our position have been emitted.

For small galaxy catalogs, these effects are not very important, but when we go

out to z ∼ 1 or more, they become relevant. Already for SDSS which goes out to

z ≃ 0.2 (main catalog) or even z ≃ 0.7 (BOSS).

But of course much more for future surveys like DES, DESI Euclid, LSST and SKA.
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Introduction

Future surveys like DESI Euclid, LSST and SKA.

DESI (2018)

LSST (construction started, operation: 2022)
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Introduction

Euclid (launch 2020)
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Introduction

SKA (2018 · · · 202X)
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Cosmological distances

In a Friedmann Universe the (comoving) radial distance is

r(z) =

∫ z

0

dz′

H(z′)
=

1

H0

∫ z

0

dz′

√

Ωm(1 + z′)3 +ΩK (1 + z′)2 +ΩΛ

In cosmology we infer distances by measuring redshifts and calculating them, via this

relation. The result depends on the cosmological model.
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Depending on the observational situation we measure directly r(z) or

dA(z) =
1

(1 + z)
χK (r(z)) the angular diameter distance

dL(z) = (1 + z)χK (r(z)) the luminosity distance.

At small redshift all distances are d(z) = z/H0 +O(z2), for z ≪ 1. At larger redshifts,

the distance depends strongly on ΩK , ΩΛ, · · · .

Whenever we convert a measured redshift and angle into a length scale, we make

assumptions about the underlying cosmology.
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What are very large scale galaxy catalogs really measuring?

If we convert the measured

ξ(θ, z1, z2) to a power spectrum, we

have to introduce a cosmology, to

convert angles and redshifts into

length scales.

r(z1, z2, θ)
(K=0)
=

√

r 2
1 + r 2

2 − 2r1r2 cos θ.

ri = r(zi) =
∫ zi

0
dz

H(z)

(Figure by F. Montanari)

Observed
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What are very large scale galaxy catalogs really measuring?

True Wm = 0.24

Wrong Wm = 0.3

Wrong Wm = 0.5
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(Figure from Di Dio, Montanari, RD, Lesgourgues, [arXiv:1308.6186] )
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What are very large scale galaxy catalogs really measuring?

We now consider fluctuations in the matter distribution and in the geometry first to

linear order. (See C. Bonvin & RD , 2011; Challinor & Lewis, 2011, J. Yoo et al. 2009;

J. Yoo 2010)

Ruth Durrer (Université de Genève, DPT & CAP) Testing GR in Cosmology Helsinki, February 22, 2017 13 / 36



What are very large scale galaxy catalogs really measuring?

We now consider fluctuations in the matter distribution and in the geometry first to

linear order. (See C. Bonvin & RD , 2011; Challinor & Lewis, 2011, J. Yoo et al. 2009;

J. Yoo 2010)

For each galaxy in a catalog we measure

(θ, φ, z) = (n, z) + info about mass, spectral type...
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We can count the galaxies inside a redshift bin and small solid angle, N(n, z) and

measure the fluctuation of this count:

∆(n, z) =
N(n, z)− N̄(z)

N̄(z)
.

ξ(θ, z, z′) = 〈∆(n, z)∆(n′, z′)〉 , n · n
′ = cos θ .

This quantity is directly measurable ⇒ gauge invariant.
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number

density fluctuations to 1st order

∆(n, z) = Ds − 2Φ+Ψ+
1

H

[

Φ̇ + ∂r (V · n)
]

+

(

Ḣ

H2
+

2

r(z)H

)

(

Ψ+ V · n +

∫ r(z)

0

dr(Φ̇ + Ψ̇)

)

+
1

r(z)

∫ r(z)

0

dr

[

2 −
r(z)− r

r
∆Ω

]

(Φ + Ψ).

( C. Bonvin & RD ’11)
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✞

✝

☎

✆
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Redshift space distortions in the BOSS survey

(from Reid et al. ’12)
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The angular power spectrum of galaxy density fluctuations

For fixed z, we can expand ∆(n, z) in spherical harmonics,

∆(n, z) =
∑

ℓm

aℓm(z)Yℓm(n), Cℓ(z, z
′) = 〈aℓm(z)a

∗

ℓm(z
′)〉.

ξ(θ, z, z′) = 〈∆(n, z)∆(n′, z′)〉 =
1

4π

∑

ℓ

(2ℓ+ 1)Cℓ(z, z
′)Pℓ(cos θ)

cos θ = n · n
′
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The transversal power spectrum

The transverse power spectrum, z′ = z (from Bonvin & RD ’11)
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 0.1, ∆z = 0.01

(from Bonvin & RD ’11)
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 3,∆z = 0.3
(from Bonvin & RD ’11)
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The radial power spectrum
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Measuring the lensing potential

At z = z′ density and rsd dominate the signal. In both, the transversal and the radial

power spectrum, the potential terms are relevant only at very low ℓ .

At z < z′ we truly measure 〈D(z)κ(z′)〉.

κ(n, z) = −

∫ r(z)

0

dr(r(z)− r)

r(z)r
∆2Ψ(rn, z)
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Measuring the lensing potential

Well separated redshift bins measure mainly the lensing-density correlation:

〈∆(n, z)∆(n′, z′)〉 ≃ 〈∆L(n, z)δ(n′, z′)〉 z > z
′

∆L(n, z) = (2 − 5s(z))κ(n, z)

full

only local

local-lensing
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Testing GR with the lensing potential
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Neglecting the lensing potential biases cosmological parameters
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Measuring the relativistic terms via cross-correlations of LSSD galaxies

standard parameters fixed

Alonso & Ferreira

[1507.03550]
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Measuring the relativistic terms with Quasar-Ly-α cross correlations
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The antisymmetric part of the

quasar–Ly-α cross correlation function.

Contrary to the quasars, the Ly-α signal

has no lensing term.

The relativistic term is dominated by the

Doppler contribution.

V. Iršič, E. Di Dio & M. Viel

[1510.03436]
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2nd order number counts

In LSS, on intermediate scales, weakly non-linear effects become important. We can

calculate them by going to 2nd order.
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3 different groups:

D. Bertacca, R. Maartens, and C. Clarkson [1405.4403,1406.0319]

J. Yoo and M. Zaldarriaga [1406.4140]

E. Di Dio, G. Marozzi, F. Montanari & RD [1407.0376]
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2nd order number counts

The dominant terms are (∝ (k/H)4Ψ2)

(Di Dio, Marozzi, Montanari & RD, [1510.04202], Nielsen & RD [1606.02113])

∆(2)Leading(n, z) ≃ δ(2) +H−1∂2
r v

(2) − 2κ(2) +H−2
(

∂2
r v
)2

+H−2∂r v∂
3
r v

+H−1
(

∂r v∂rδ + ∂2
r v δ

)

− 2δκ+∇aδ∇
aψ

+H−1
(

−2∂2
r v κ+∇a∂

2
r v∇aψ

)

+ 2 (κ)2 − 2∇bκ∇
bψ

−
2

r(z)

∫ r(z)

0

dr
r(z)− r

r
∆2

(

∇bΨ1∇bΨ1

)

− 4

∫ r(z)

0

dr

r
∇aΨ1∇aκ .

∆(1)Leading = δ(1)ρ +
1

Hs
∂2

r v
(1) − 2κ(1)

ψ = −2

∫ r(z)

0

dr
r − r(z)

r(z)r
Ψ , κ = −∆2ψ

Ψ1 =
1

r(z)

∫ r(z)

0

drΨ
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The bispectrum

B (n1,n2,n3, z1, z2, z3) = 〈∆(n1, z1)∆ (n2, z2)∆ (n3, z3)〉

Expanding in spherical harmonics gives

B (n1,n2,n3, z1, z2, z3) =
∑

B
m1m2m3
ℓ1ℓ2ℓ3

(z1, z2, z3)Yℓ1m1
(n1)Yℓ2m2

(n2)Yℓ3m3
(n3) .

Statistical isotropy fully determines the m-dependence of these coefficients,

B
m1m2m3
ℓ1ℓ2ℓ3

(z1, z2, z3) = G
m1,m2,m3
ℓ1,ℓ2,ℓ3

bℓ1,ℓ2,ℓ3
(z1, z2, z3) ,

where G
m1,m2,m3
ℓ1,ℓ2,ℓ3

is the Gaunt integral.
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The bispectrum: Newtonian terms
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(Di Dio, RD, Marozzi & Montanari, [1510.04202] )

The well known

Newtonian terms
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The bispectrum: Newtonian-Lensing terms

ℓ
0 100 200 300 400

0.8 0.9 1.0 1.1 1.2

10
-19

10
-16

10
-13

z

b
κδ ℓ,ℓ,ℓ(1

,1
,z
)

0.8 0.9 1.0 1.1 1.2

10
-19

10
-16

10
-13

z

b
v
'κ ℓ,ℓ,ℓ(1

,1
,z
)

0.8 0.9 1.0 1.1 1.2

10
-19

10
-16

10
-13

z

b
∇δ∇

ψ ℓ,ℓ,ℓ(1
,1
,z
)

0.8 0.9 1.0 1.1 1.2

10
-19

10
-16

10
-13

z

b
∇v'∇

ψ ℓ,ℓ,ℓ(1
,1
,z
)

(Di Dio, RD, Marozzi & Montanari, [1510.04202] )

Terms containing Newtonian and lensing contributions.
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The bispectrum: Lensing terms
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(Di Dio, RD, Marozzi & Montanari, [1510.04202] )

Pure lensing contributions.
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The bispectrum
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(Di Dio, RD, Marozzi & Montanari, [1510.04202] )

(density-density , density-lensing , lensing-lensing)
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Conclusions

So far cosmological LSS data mainly determined ξ(r), or equivalently P(k) or

B(k1, k2, k3). These are easier to measure (less noisy) but:

• they require an fiducial input cosmology converting redshift and angles to length

scales,

r =
√

r(z)2 + r(z′)2 − 2r(z)r(z′) cos θ .

This complicates especially the determination of error bars in parameter estimation

• it is not evident how to correctly include lensing in the bispectrum.
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and bℓ1,ℓ2,ℓ2
(z1, z2, z3) from the data.

These 3d quantities will of course be more noisy, but they also contain more

information.

These spectra are not only sensitive to the matter distribution (density) but also to

the velocity (redshift space distortions) and to the perturbations of spacetime

geometry (lensing) .
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Conclusions

Using the antisymmetric part of the correlation function for different tracers is a

promising tool to detect the relativistic terms (grav. potential).
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Conclusions

Using the antisymmetric part of the correlation function for different tracers is a

promising tool to detect the relativistic terms (grav. potential).

The spectra Cℓ(z, z
′) and bℓ1,ℓ2,ℓ2

(z1, z2, z3) depend sensitively and in several

different ways on dark energy (growth factor, distance redshift relation), on the

matter and baryon densities, bias etc.

Extracting the density, velocity and the gravitational potentials by clever

combinations of measurements provides a new route to not only estimate

cosmological parameters but to test general relativity on cosmological scales.
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