

Structure formation under the spell of General Relativity
Thomas Tram, Aarhus University

Outline:

- Part 1: Going beyond the Newtonian approximation in N -body simulations. [Including radiation perturbations.]
- Part 2: The intrinsic matter bispectrum in second order perturbation theory, numerical solution and analytical insights.

Cosmological inference

- Given some data D and some model M(...), what are the bounds on the parameters of M ?
- Solve Einstein-Boltzmann equations 10^{6} times.

$$
\begin{array}{lll}
\Omega_{\mathrm{cdm}} & \Omega_{b} & H_{0} \\
z_{\text {reio }} & A_{s} & n_{s} \\
(\ldots) & &
\end{array}
$$

The problem

- Large Scale Structure (LSS) formation is a nonlinear process.
- Nonlínear EinsteínBoltzmann system not numerically tractable.

Newtonian approximation

- Solve Newtonían equations of motion for nonrelativistic particles on a background that expands according to General Relativity.
- Can we go beyond this approximation?

Gauges in General Relativity

- The metric $g_{\mu v}$ is a symmetric 4 by 4 tensor having 10 d.o.f.
- SVT decomposítion: 4 scalar, 4 vector and 2 tensor d.o.f.
- Diffeomorphism invariance

$$
\mathbf{x}^{\mu} \rightarrow \mathbf{x}^{\mu}+\epsilon^{\mu}
$$

removes 2 scalar and 2 vector d.o.f.

$$
\begin{gathered}
g_{00}=-a^{2}(1+2 A) \\
g_{0 i}=-a^{2} B_{i} \\
g_{i j}=a^{2}\left[\delta_{i j}\left(1+2 H_{\mathrm{L}}\right)\right. \\
\\
\left.\quad-2 H_{\mathrm{T} i j}\right]
\end{gathered}
$$

Newtonían gauge:

$$
H_{T}^{(0)}=H_{T}^{(1)}=B^{(0)}=0
$$

Synchronous gauge:
$A=B^{(0)}=B^{(1)}=0$

The N-body gauge

- There exist a unique gauge where N -body simulations are correct to first order in PT!
- ... assuming radiation perturbations can be neglected.
- 1505.04756: Fidler, Rampf, TT, Crittenden, Koyama, Wands.

Newtonian equations:

$$
\begin{aligned}
& \dot{\delta}+\nabla \cdot \vec{v}=0 \\
&\left(\frac{\partial}{\partial \eta}+\frac{\dot{a}}{a}\right) \vec{v}=\nabla \Phi . \\
& N \text {-body gauge: } \\
& \dot{\delta}+\nabla \cdot \vec{v}=0, \\
&\left(\frac{\partial}{\partial \eta}+\frac{\dot{a}}{a}\right) \vec{v}=\nabla \Phi+\nabla \gamma .
\end{aligned}
$$

The Poisson equation

- There exist a oneparameter family of gauges with Newtonian equations of motion.
- But N-body gauge is the only one with no "volume deformation" H_{L}.

In simulation:

$\nabla^{2} \Phi^{N}=4 \pi G a^{2} \bar{\rho} \delta^{N}$

In a comoving gauge:

$$
\begin{aligned}
\nabla^{2} \Phi & =4 \pi G a^{2} \bar{\rho} \delta, \\
\delta & =\delta^{N}+3 H_{L}
\end{aligned}
$$

How to deal with radiation?

Just ignore? Start sufficiently late?
Add gamma to N-body simulation?

Newtonian motion

- Solve for the difference induced by radiation perturbations using e.g. CLASS. 1606.05588: Fidler, TT, Rampf, Crittenden, Koyama and Wands.

Newtonian motion gauges

- The condition for

Newtonian motion is simply

$$
\vec{v}=\vec{v}^{N}
$$

- Using the Euler equation, this condition becomes:

$$
\gamma^{\mathrm{Nm}}=\Phi^{N}-\Phi
$$

- Some remaining gauge freedom.

Nonlinear feedback?

- Implement the gamma term directly in N-body
- Compare with linear Newtonían motion computation in CLASS
- 1610.04236 : Brandbyge, Rampf, TT, Leclercq, Fidler and Hannestad

Newtonian motion gauge agrees with direct approach!

Initial conditions for N -body

- N -body símulations are initialised through a trick known as "backscaling".
- Can we understand backscaling using the Newtonían motíon gauge framework?
- 1702.03221: Fidler, TT, Rampf, Crittenden, Koyama, Wands.

What is backscaling?

Boundary condition

- The Newtonian motion gauge condition is equivalent to

$$
\left(\partial_{\tau}+\mathcal{H}\right) \dot{H}_{\mathrm{T}}-4 \pi G a^{2} \bar{\rho}_{\mathrm{cdm}}\left(H_{\mathrm{T}}-3 \zeta\right)=S
$$

- In the absence of radiation, $\mathrm{S}=\mathrm{O}$ and ζ is constant so

$$
H_{\mathrm{T}}(\tau)=C_{+}^{H_{\mathrm{T}}} D_{+}(\tau)+C_{-}^{H_{\mathrm{T}}} D_{-}(\tau)+3 \zeta
$$

- N -body gauge has $H_{\mathrm{T}}(\tau)=3 \zeta$ so we can match the boundary condition with $C_{+}^{H_{\mathrm{T}}}=C_{-}^{H_{\mathrm{T}}}=0$
- When S in non-zero, we add a time-dependence to the coefficients (varíation of constants).

A few additional details

- Variation of constants ansatz:

$$
H_{\mathrm{T}}=C_{+}^{H_{\mathrm{T}}}(\tau) D_{+}(\tau)+C_{-}^{H_{\mathrm{T}}}(\tau) D_{-}(\tau)+3 \zeta
$$

- Solutions that satisfy boundary condition:

$$
C_{ \pm}^{H_{\mathrm{T}}}(\tau)= \pm \int_{\tau}^{\tau_{\text {final }}} \tilde{S}(\tilde{\tau}) D_{\mp}(\tilde{\tau}) W(\tilde{\tau})^{-1} \mathrm{~d} \tilde{\tau}
$$

- Wis the Wronskian $W=D_{+} \dot{D}_{-}-D_{-} \dot{D}_{+}$.

The growing mode

- Second order ODE for the linear Newtonian density contrast:

$$
\ddot{D}+\mathcal{H} \dot{D}-\frac{3}{2} \frac{H_{0} \Omega_{m}}{a} D=0
$$

- If radiation can be ignored we have

$$
\begin{gathered}
D_{+}(a)=\frac{5}{2} H_{0} \Omega_{m} \frac{\mathcal{H}}{a} \int_{0}^{a} \frac{d a^{\prime}}{\mathcal{H}^{3}\left(a^{\prime}\right)}=a_{2} F_{1}\left(\frac{1}{3}, 1, \frac{11}{6},-\frac{\Omega_{m}}{\Omega_{\Lambda}} a^{3}\right) \\
D_{\text {approx }} \quad D_{\text {analytic }}
\end{gathered}
$$

Growing and decaying

Reconstructing the metric

$$
\begin{array}{lll}
-k=10^{-5} \mathrm{Mpc}^{-1} & -k=0.001 \mathrm{Mpc}^{-1} & -k=0.1 \mathrm{Mpc}^{-1} \\
-k=10^{-4} \mathrm{Mpc}^{-1} & -k=0.01 \mathrm{Mpc}^{-1} & -\cdots z=99
\end{array}
$$

gevolution comparison

- The code gevolution by Julían Adamek et. al. is an N -body code based on a weak-field expansion of GR.
- Radiation was not íncluded in vi.O but has now been included in v.1.

Including radiation

- 1702.03221: Adamek, Brandbyge, Fidler, Hannestad, Rampf, TT.
- We compare relative matter power spectra between simulations that included radiation and those that did not.

Part 1 conclusions

- Radiation perturbations can be included consistently in various ways.
- (Relativistic) Backscaling works very well in LCDM!

The Intrinsic Matter Bispectrum in Λ CDM

Thomas Tram, ${ }^{a}$ Christian Fidler, ${ }^{b}$ Robert Crittenden, ${ }^{a}$ Kazuya Koyama, ${ }^{a}$ Guido W. Pettinari ${ }^{a, c}$ and David Wands ${ }^{a}$
${ }^{a}$ Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, United Kingdom
${ }^{b}$ Catholic University of Louvain - Center for Cosmology, Particle Physics and Phenomenology (CP3) 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgium
${ }^{c}$ Department of Physics \& Astronomy, University of Sussex, Brighton BN1 9QH, UK
E-mail: thomas.tram@port.ac.uk

Part 2

Based on 1602.05933

Bispectrum reminder

- Homogeneous three-point function:
$\xi(\mathbf{r}, \mathbf{s})=\langle R(\mathbf{x}) R(\mathbf{x}+\mathbf{r}) R(\mathbf{x}+\mathbf{s})\rangle$
- In Fourier space:

$$
\begin{aligned}
\left\langle R\left(\mathbf{k}_{\mathbf{1}}\right) R\left(\mathbf{k}_{\mathbf{2}}\right) R\left(\mathbf{k}_{\mathbf{3}}\right)\right\rangle & =\iiint d \mathbf{x} d \mathbf{y} d \mathbf{z} e^{-i\left(\mathbf{k}_{\mathbf{1}} \cdot \mathbf{x}+\mathbf{k}_{\mathbf{2}} \cdot \mathbf{y}+\mathbf{k}_{\mathbf{3}} \cdot \mathbf{z}\right)}\langle R(\mathbf{x}) R(\mathbf{y}) R(\mathbf{z})\rangle \\
& =(2 \pi)^{3} \delta^{D}\left(\mathbf{k}_{\mathbf{1}}+\mathbf{k}_{\mathbf{2}}+\mathbf{k}_{\mathbf{3}}\right) \iint d \mathbf{r} d \mathbf{s} e^{-i\left(\mathbf{k}_{\mathbf{2}} \cdot \mathbf{r}+\mathbf{k}_{\mathbf{3}} \cdot \mathbf{s}\right)} \xi(\mathbf{r}, \mathbf{s}) \\
& =(2 \pi)^{3} \delta^{D}\left(\mathbf{k}_{\mathbf{1}}+\mathbf{k}_{\mathbf{2}}+\mathbf{k}_{\mathbf{3}}\left(B\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)\right)\right.
\end{aligned}
$$

Observing primordial ICs

- The intrinsic bispectrum acts as a foreground for the primordial bispectrum.
- The intrinsic bispectrum should be computed and subtracted.

Why is this interesting?

1. No prim. bisp. for Gaussian ICs.
2. Simplest inf. predicts almost Gaussian ICs.
3. Departures produced by more complicated setups.
4. Non-Gaussianity may distinguish classical versus quantum generation of ICs.

Martin and Vennin [1510.04038] Maldacena [1508.01082]

Perturbation theory

- The intrinsic bispectrum is generated by non-linear evolution.
$\delta(\tau, \mathbf{x})=\delta^{(1)}+\frac{1}{2} \delta^{(2)}+\cdots$
$\theta(\tau, \mathbf{x})=\theta^{(1)}+\frac{1}{2} \theta^{(2)}+\cdots$
- Fluid equations:
$\dot{\delta}=-\partial_{j}\left[(1+\delta) \partial_{j} \nabla^{-2} \theta\right]$

$\dot{\theta}=-\mathcal{H} \theta-\partial_{i} \partial_{j} \nabla^{-2} \theta \partial_{j} \partial_{i} \nabla^{-2} \theta-\partial_{j} \nabla^{-2} \theta \partial_{j} \theta-\frac{3}{2} \frac{H_{0}^{2} \Omega_{m}}{a} \delta$,
- Perturbative solution:

A few details...

$\dot{\delta}=-\partial_{j}\left[(1+\delta) \partial_{j} \nabla^{-2} \theta\right]$
$\dot{\theta}=-\mathcal{H} \theta-\partial_{i} \partial_{j} \nabla^{-2} \theta \partial_{j} \partial_{i} \nabla^{-2} \theta-\partial_{j} \nabla^{-2} \theta \partial_{j} \theta-\frac{3}{2} \frac{H_{0}^{2} \Omega_{m}}{a} \delta$,

- 2nd order PDE for $\delta^{(1)}(\tau, \mathbf{x})$:

$$
\ddot{\delta}^{(1)}+\mathcal{H} \dot{\delta}^{(1)}=\frac{3}{2} \frac{H_{0}^{2} \Omega_{m}}{a} \delta^{(1)}
$$

- Separation of variables:
$\delta^{(1)}(\tau, \mathbf{x}) \equiv D(\tau) \tilde{\delta}(\mathbf{x})$
- 2nd order PDE for $\delta^{(2)}(\tau, \mathbf{x})$:
$\ddot{\delta}^{(2)}=-\mathcal{H} \dot{\delta}^{(2)}+2\left(\mathcal{H} \dot{D} D+\ddot{D} D+\dot{D}^{2}\right)\left[\partial_{j} \nabla^{-2} \tilde{\delta} \partial_{j} \tilde{\delta}+\tilde{\delta}^{2}\right]+$
$+\frac{3}{2} \frac{H_{0}^{2} \Omega_{m}}{a} \delta^{(2)}+2 \dot{D}^{2}\left[\partial_{i} \partial_{j} \nabla^{-2} \tilde{\delta} \partial_{i} \partial_{j} \nabla^{-2} \tilde{\delta}+\partial_{j} \nabla^{-2} \tilde{\delta} \partial_{j} \tilde{\delta}\right]$

Computing the bispectrum

- Second order density in Fourier space:
$\frac{1}{2} \delta^{(2)}(\tau, \mathbf{k})=\int \frac{d \mathbf{k}_{1} d \mathbf{k}_{2}}{(2 \pi)^{3}} \delta^{D}\left(\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}\right) \mathcal{K}\left(k_{1}, k_{2}, k\right) \delta^{(1)}\left(\mathbf{k}_{1}\right) \delta^{(1)}\left(\mathbf{k}_{2}\right)$
- Compute $\mathcal{K}\left(k_{1}, k_{2}, k\right)$ analytically
[Villa\&Rampf:1505.04782]
- Compute $\mathcal{K}\left(k_{1}, k_{2}, k\right)$ numerically using SONG: https://github.com/coccoínomane/song

Squeezed problem

- Two large modes: OK!
- Two small modes: OK!
- Small + large: problem!

Baryon Acoustic Oscillations

What went wrong?

Separate Uníverses

- Assume that the long wavelength mode is constant for all scales of interest.
- Absorb long wavelength in background by local
 change of coordinates.
$\mathcal{K}_{P,+}=\mathcal{K}_{P, \mathrm{VR}}-\frac{1}{2}\left(f+\frac{3 u}{2}\right)\left[\frac{\mathcal{H}^{2}}{k^{2}}+3 f \frac{\mathcal{H}^{4}}{k^{4}}\right] \frac{d \log T}{d \log k}\left(\frac{k_{2}}{k_{1}}-\frac{k_{1}}{k_{2}}\right)^{2}$

Squeezed configuration $\mathcal{K}\left(k, 10^{-5} \mathrm{Mpc}^{-1}, k\right)$

Full kernel at redshift $z=0$

Conclusions for part 2

- 1% accurate analytic formula for bispectrum.
- Fast and accurate numerical code SONG.
- Future: Observables and initial condítions for N -body simulations.

