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Outline:

Part 1: Going beyond the Newtonian 
approximation in N-body simulations. 
[Including radiation perturbations.] 

Part 2: The intrinsic matter bispectrum in 
second order perturbation theory, numerical 
solution and analytical insights.



Cosmological inference
Given some data D and some model M(…), 
what are the bounds on the parameters of M? 

Solve Einstein-Boltzmann equations 106 times.
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The problem

Large Scale Structure 
(LSS) formation is a 
nonlinear process. 

Nonlinear Einstein-
Boltzmann system not 
numerically tractable.

Credits: Horizon project



Newtonian approximation

Solve Newtonian equations 
of motion for non-
relativistic particles on a 
background that expands 
according to General 
Relativity. 

Can we go beyond this 
approximation?



Gauges in General Relativity

The metric g
μν

 is a 
symmetric 4 by 4 tensor 
having 10 d.o.f. 

SVT decomposition: 4 
scalar, 4 vector and 2 
tensor d.o.f. 

Diffeomorphism invariance 
 
removes 2 scalar and 2 
vector d.o.f. 
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Newtonian gauge:

Synchronous gauge:



Newtonian equations:
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The N-body gauge
There exist a unique gauge 
where N-body simulations are 
correct to first order in PT!  

… assuming radiation 
perturbations can be 
neglected. 

1505.04756: Fidler, Rampf, 
TT, Crittenden, Koyama, 
Wands.



The Poisson equation

There exist a one-
parameter family of 
gauges with Newtonian 
equations of motion. 

But N-body gauge is the 
only one with no “volume 
deformation” HL.

In simulation:

r2
�

N
= 4⇡Ga2⇢̄�N .

In a comoving gauge:

r2
� = 4⇡Ga2⇢̄�,

� = �N + 3HL



How to deal with radiation?
Just ignore? Start sufficiently late?  
Add gamma to N-body simulation?



Newtonian motion

Solve for the difference induced by radiation 
perturbations using e.g. CLASS. 1606.05588: Fidler, TT, 
Rampf, Crittenden, Koyama and Wands. 



Newtonian motion gauges
The condition for 
Newtonian motion is simply  

Using the Euler equation, 
this condition becomes: 

Some remaining gauge 
freedom.

~v = ~vN

�Nm = �N � �



Nonlinear feedback?
Implement the gamma term 
directly in N-body 

Compare with linear 
Newtonian motion 
computation in CLASS 

1610.04236 : Brandbyge, 
Rampf, TT, Leclercq, 
Fidler and Hannestad

sim   theory    z
99.0

65.7

39.0

15.7

 0.0

Newtonian motion 
gauge agrees with 
direct approach!



Initial conditions for N-body
N-body simulations are 
initialised through a trick 
known as “backscaling”. 

Can we understand 
backscaling using the 
Newtonian motion gauge 
framework? 

1702.03221: Fidler, TT, Rampf, 
Crittenden, Koyama, Wands.



What is backscaling?



Boundary condition
The Newtonian motion gauge condition is equivalent to  

In the absence of radiation, S=0 and ζ is constant so  

N-body gauge has                       so we can match the 
boundary condition with   

When S in non-zero, we add a time-dependence to the 
coefficients (variation of constants).

(@⌧ +H) ḢT � 4⇡Ga2⇢̄cdm (HT � 3⇣) = S

HT(⌧) = CHT
+ D+(⌧) + CHT
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A few additional details
Variation of constants ansatz:  

Solutions that satisfy boundary condition: 
 

W is the Wronskian 

HT = CHT
+ (⌧)D+(⌧) + CHT

� (⌧)D�(⌧) + 3⇣

CHT
± (⌧) = ±

⌧finalZ

⌧

S̃(⌧̃)D⌥(⌧̃)W (⌧̃)�1d⌧̃

W = D+Ḋ� � D�Ḋ+.



The growing mode
Second order ODE for the linear Newtonian 
density contrast: 

If radiation can be ignored we have

D̈ + HḊ � 3
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Growing and decaying



Reconstructing the metric



gevolution comparison
The code gevolution by 
Julian Adamek et. al. is an 
N-body code based on a 
weak-field expansion of 
GR. 

Radiation was not included 
in v1.0 but has now been 
included in v1.1.

a b

a b



Including radiation
1702.03221: Adamek, 
Brandbyge, Fidler, 
Hannestad, Rampf, TT. 

We compare relative matter 
power spectra between 
simulations that included 
radiation and those that 
did not.
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Part 1 conclusions

Radiation perturbations can be included 
consistently in various ways. 

(Relativistic) Backscaling works very well in 
LCDM!
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Abstract.We present a fully relativistic calculation of the matter bispectrum at second order
in cosmological perturbation theory assuming a Gaussian primordial curvature perturbation.
For the first time we perform a full numerical integration of the bispectrum for both baryons
and cold dark matter using the second-order Einstein-Boltzmann code, song. We review
previous analytical results and provide an improved analytic approximation for the second-
order kernel in Poisson gauge which incorporates Newtonian nonlinear evolution, relativistic
initial conditions, the e↵ect of radiation at early times and the cosmological constant at late
times. Our improved kernel provides a percent level fit to the full numerical result at late
times for most configurations, including both equilateral shapes and the squeezed limit. We
show that baryon acoustic oscillations leave an imprint in the matter bispectrum, making a
significant impact on squeezed shapes.
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Part 2
Based on 1602.05933



Bispectrum reminder
Homogeneous three-point 
function: 

In Fourier space:
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Observing primordial ICs
The intrinsic bispectrum 
acts as a foreground for 
the primordial bispectrum. 

The intrinsic bispectrum 
should be computed and 
subtracted.



Why is this interesting?
1. No prim. bisp. for Gaussian ICs. 

2. Simplest inf. predicts almost 
Gaussian ICs. 

3. Departures produced by more 
complicated setups. 

4. Non-Gaussianity may 
distinguish classical versus 
quantum generation of ICs.

Martin and Vennin [1510.04038] 
Maldacena [1508.01082]



Perturbation theory
The intrinsic bispectrum is 
generated by non-linear 
evolution. 
 
 

Fluid equations: 
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A few details…Perturbative solution: 
 
 

2nd order PDE for  

Separation of variables: 

2nd order PDE for 
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Computing the bispectrum

Second order density in Fourier space: 

Compute                       analytically 
[Villa&Rampf:1505.04782] 

Compute                       numerically using SONG: 
https://github.com/coccoinomane/song
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2
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K(k1, k2, k)

K(k1, k2, k)

https://github.com/coccoinomane/song


Squeezed problem

Two large modes: OK! 

Two small modes: OK! 

Small + large: problem!



Baryon Acoustic Oscillations



What went wrong?



Separate Universes
Assume that the long 
wavelength mode is 
constant for all scales of 
interest. 

Absorb long wavelength in 
background by local 
change of coordinates.

KP,+ = KP,VR � 1
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Squeezed configuration
K
�
k, 10�5Mpc�1, k

�



Full kernel at redshift z=0



Conclusions for part 2

1% accurate analytic formula for bispectrum. 

Fast and accurate numerical code SONG. 

Future: Observables and initial conditions for 
N-body simulations.


