

Structure formation under the spell of General Relativity Thomas Tram, Aarhus University

Outline:

 Part 1: Going beyond the Newtonian approximation in N-body simulations.
 [Including radiation perturbations.]

 Part 2: The intrinsic matter bispectrum in second order perturbation theory, numerical solution and analytical insights.

Cosmological inference

- Given some data D and some model M(...),
 what are the bounds on the parameters of M?
- Solve Einstein-Boltzmann equations 10⁶ times.

CLASS/CAMB

 $\Omega_b H_0$

 $z_{\rm reio}$ A_s n_s

 $\Omega_{\rm cdm}$

(...)

 $\int_{0}^{TT} \ell(\ell+1)/(2\pi)$

500

1000

1500

2000

The problem

- Large Scale Structure (LSS) formation is a nonlinear process.
- Nonlinear Einstein-Boltzmann system not numerically tractable.

Newtonian approximation

- Solve Newtonían equations of motion for nonrelativistic particles on a background that expands according to General Relativity.
- Can we go beyond this approximation?

Gauges in General Relativity

- The metric g_{µv} is a symmetric 4 by 4 tensor having 10 d.o.f.
- SVT decomposition: 4 scalar, 4 vector and 2 tensor d.o.f.
- Diffeomorphism invariance $\mathbf{x}^{\mu} \rightarrow \mathbf{x}^{\mu} + \boldsymbol{\epsilon}^{\mu}$ removes 2 scalar and 2 vector d.o.f.

$$g_{00} = -a^{2}(1+2A),$$

$$g_{0i} = -a^{2}B_{i},$$

$$g_{ij} = a^{2} \left[\delta_{ij} \left(1+2H_{\rm L}\right) -2H_{\rm T}_{ij}\right].$$

Newtonian gauge: $H_T^{(0)} = H_T^{(1)} = B^{(0)} = 0$ Synchronous gauge: $A = B^{(0)} = B^{(1)} = 0$

The N-body gauge

- There exist a <u>unique gauge</u> where N-body simulations are correct to first order in PT!
- ... assuming radiation
 perturbations can be
 neglected.
- 1505.04756: Fídler, Rampf, TT, Críttenden, Koyama, Wands.

Newtonian equations:

$$\dot{\delta} + \nabla \cdot \vec{v} = 0,$$
$$\left(\frac{\partial}{\partial \eta} + \frac{\dot{a}}{a}\right) \vec{v} = \nabla \Phi.$$

N-body gauge:

 $\dot{\delta} + \nabla \cdot \vec{v} = 0,$ $\left(\frac{\partial}{\partial \eta} + \frac{\dot{a}}{a}\right) \vec{v} = \nabla \Phi + \nabla \gamma.$

The Poisson equation

- There exist a oneparameter family of gauges with Newtonian equations of motion.
- But N-body gauge is the only one with no "volume deformation" H_L.

In simulation:

 $\nabla^2 \Phi^N = 4\pi G a^2 \bar{\rho} \delta^N.$

In a comoving gauge: $\nabla^2 \Phi = 4\pi G a^2 \bar{\rho} \delta,$ $\delta = \delta^N + 3H_L$

How to deal with radiation? Just ignore? Start sufficiently late? Add gamma to N-body simulation?

Newtonian motion

 Solve for the <u>difference</u> induced by radiation perturbations using e.g. CLASS. 1606.05588: Fidler, TT, Rampf, Crittenden, Koyama and Wands.

Newtonian motion gauges

- The condition for Newtonian motion is simply $\vec{v} = \vec{v}^N$
- Using the Euler equation, this condition becomes:

 $\gamma^{\rm Nm} = \Phi^N - \Phi$

 Some remaining gauge freedom.

Nonlinear feedback?

- Implement the gamma term dírectly ín N-body
- Compare with linear
 Newtonian motion
 computation in CLASS
- 1610.04236 : Brandbyge,
 Rampf, TT, Leclercq,
 Fídler and Hannestad

Newtonian motion gauge agrees with direct approach!

Initial conditions for N-body

- N-body símulations are initialised through a trick known as "backscaling".
- Can we understand
 backscaling using the
 Newtonian motion gauge
 framework?
- 1702.03221: Fídler, TT, Rampf,
 Críttenden, Koyama, Wands.

Boundary condition

- The Newtonian motion gauge condition is equivalent to

 (∂_τ + H) H_T 4πGa²ρ_{cdm} (H_T 3ζ) = S

 In the absence of radiation, S=0 and ζ is constant so

 H_T(τ) = C^{H_T}₊ D₊(τ) + C^{H_T}₋ D₋(τ) + 3ζ

 N-body gauge has H_T(τ) = 3ζ so we can match the
- boundary condition with $C_{+}^{H_{\rm T}} = C_{-}^{H_{\rm T}} = 0$
- When S in non-zero, we add a time-dependence to the coefficients (variation of constants).

A few additional details

- Variation of constants ansatz: H_T = C^{H_T}₊(τ)D₊(τ) + C^{H_T}₋(τ)D₋(τ) + 3ζ
 Solutions that satisfy boundary condition: C^{H_T}_±(τ) = ± ∫_τ<sup>τ_{final} S(τ)D_∓(τ)W(τ)⁻¹dτ
 </sup>
- W is the Wronskian $W = D_+ \dot{D}_- D_- \dot{D}_+$.

The growing mode

- Second order ODE for the linear Newtonian density contrast:
- $\ddot{D} + \mathcal{H}\dot{D} \frac{3}{2}\frac{H_0\Omega_m}{a}D = 0$ If radiation can be ignored we have $D_{\mu}(a) = \frac{5}{4}H_0\Omega \frac{\mathcal{H}}{a}\int_{a}^{a} \frac{da'}{da'} = a_{\mu}F_{\mu}\left(\frac{1}{a}+\frac{11}{a}-\Omega_m\right)$
- $D_{+}(a) = \frac{5}{2} H_{0} \Omega_{m} \frac{\mathcal{H}}{a} \int_{0}^{a} \frac{da'}{\mathcal{H}^{3}(a')} = a_{2} F_{1} \left(\frac{1}{3}, 1, \frac{11}{6}, -\frac{\Omega_{m}}{\Omega_{\Lambda}}a^{3}\right)$ $D_{\text{approx}} \qquad D_{\text{analytic}}$

Growing and decaying

Reconstructing the metric

gevolution comparison

- The code gevolution by Julian Adamek et. al. is an N-body code based on a weak-field expansion of GR.
- Radiation was not included in v1.0 but has now been included in v1.1.

Including radiation

- 1702.03221: Adamek,
 Brandbyge, Fídler,
 Hannestad, Rampf, TT.
- We compare relative matter power spectra between simulations that included radiation and those that did not.

Part 1 conclusions

 Radiation perturbations can be included consistently in various ways.

 (Relativistic) Backscaling works very well in LCDM!

The Intrinsic Matter Bispectrum in ΛCDM

Thomas Tram,^{*a*} Christian Fidler,^{*b*} Robert Crittenden,^{*a*} Kazuya Koyama,^{*a*} Guido W. Pettinari^{*a*,*c*} and David Wands^{*a*}

- ^aInstitute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, United Kingdom
- ^bCatholic University of Louvain Center for Cosmology, Particle Physics and Phenomenology (CP3) 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgium ^cDepartment of Physics & Astronomy, University of Sussex, Brighton BN1 9QH, UK

E-mail: thomas.tram@port.ac.uk

Based on 1602.05933

Part 2

Bispectrum reminder

- Homogeneous three-point function:
 - $\xi(\mathbf{r}, \mathbf{s}) = \langle R(\mathbf{x}) R(\mathbf{x} + \mathbf{r}) R(\mathbf{x} + \mathbf{s}) \rangle$
- In Fourier space:

 $\langle R(\mathbf{k_1})R(\mathbf{k_2})R(\mathbf{k_3}) \rangle = \iiint d\mathbf{x} d\mathbf{y} d\mathbf{z} e^{-i(\mathbf{k_1} \cdot \mathbf{x} + \mathbf{k_2} \cdot \mathbf{y} + \mathbf{k_3} \cdot \mathbf{z})} \langle R(\mathbf{x})R(\mathbf{y})R(\mathbf{z}) \rangle$ $= (2\pi)^3 \delta^D(\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3}) \iint d\mathbf{r} d\mathbf{s} e^{-i(\mathbf{k_2} \cdot \mathbf{r} + \mathbf{k_3} \cdot \mathbf{s})} \xi(\mathbf{r}, \mathbf{s})$ $= (2\pi)^3 \delta^D(\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3}) B(\mathbf{k_1}, \mathbf{k_2})$

Observing primordial ICs

- The intrinsic bispectrum acts as a foreground for the primordial bispectrum.
- The intrinsic bispectrum should be computed and subtracted.

Why is this interesting?

- 1. No prim. bisp. for Gaussian ICs.
- 2. Símplest inf. predicts almost Gaussian ICs.
- Departures produced by more complicated setups.
- 4. Non-Gaussianity may distinguish classical versus quantum generation of ICs.

Martín and Vennín [1510.04038] Maldacena [1508.01082]

Perturbation theory

- The intrinsic bispectrum is generated by non-linear evolution.
 - $\delta(\tau, \mathbf{x}) = \delta^{(1)} + \frac{1}{2}\delta^{(2)} + \cdots$ $\theta(\tau, \mathbf{x}) = \theta^{(1)} + \frac{1}{2}\theta^{(2)} + \cdots$
- Fluid equations:

 $\dot{\delta} = -\partial_j \left[(1+\delta)\partial_j \nabla^{-2}\theta \right]$

 $\dot{\theta} = -\mathcal{H}\theta - \partial_i\partial_j\nabla^{-2}\theta\partial_j\partial_i\nabla^{-2}\theta - \partial_j\nabla^{-2}\theta\partial_j\theta - \frac{3}{2}\frac{H_0^2\Omega_m}{a}\delta,$

 Perturbative solution: A few details... $\dot{\delta} = -\partial_i \left[(1+\delta)\partial_i \nabla^{-2}\theta \right]$ $\dot{\theta} = -\mathcal{H}\theta - \partial_i\partial_j\nabla^{-2}\theta\partial_j\partial_i\nabla^{-2}\theta - \partial_j\nabla^{-2}\theta\partial_j\theta - \frac{3}{2}\frac{H_0^2\Omega_m}{a}\delta,$ • 2nd order PDE for $\delta^{(1)}(\tau, \mathbf{x})$: $\ddot{\delta}^{(1)} + \mathcal{H}\dot{\delta}^{(1)} = \frac{3}{2} \frac{H_0^2 \Omega_m}{a} \delta^{(1)}$ Separation of variables: $\delta^{(1)}(\tau, \mathbf{x}) \equiv D(\tau)\tilde{\delta}(\mathbf{x})$ • 2nd order PDE for $\delta^{(2)}(\tau, \mathbf{x})$:

$$\begin{split} \ddot{\delta}^{(2)} &= -\mathcal{H}\dot{\delta}^{(2)} + 2\left(\mathcal{H}\dot{D}D + \ddot{D}D + \dot{D}^2\right) \left[\partial_j \nabla^{-2}\tilde{\delta}\partial_j \tilde{\delta} + \tilde{\delta}^2\right] + \\ &+ \frac{3}{2} \frac{H_0^2 \Omega_m}{a} \delta^{(2)} + 2\dot{D}^2 \left[\partial_i \partial_j \nabla^{-2}\tilde{\delta}\partial_i \partial_j \nabla^{-2}\tilde{\delta} + \partial_j \nabla^{-2}\tilde{\delta}\partial_j \tilde{\delta}\right] \end{split}$$

Computing the bispectrum

- Second order density in Fourier space: ¹/₂δ⁽²⁾(τ, k) = ∫ dk₁dk₂/(2π)³ δ^D(k - k₁ - k₂)K(k₁, k₂, k)δ⁽¹⁾(k₁)δ⁽¹⁾(k₂)
 Compute K(k₁, k₂, k) analytically [Villa&Rampf:1505.04782]
- Compute K(k₁, k₂, k) numerically using SONG: https://github.com/coccoinomane/song

Squeezed problem

Two large modes: OK!

Two small modes: OK!

Small + large: problem!

Baryon Acoustic Oscillations

What went wrong?

Separate Universes

- Assume that the long wavelength mode is constant for all scales of interest.
- Absorb long wavelength in background by local change of coordinates.

$$\mathcal{K}_{P,+} = \mathcal{K}_{P,\text{VR}} - \frac{1}{2} \left(f + \frac{3u}{2} \right) \left[\frac{\mathcal{H}^2}{k^2} + 3f \frac{\mathcal{H}^4}{k^4} \right] \frac{d\log T}{d\log k} \left(\frac{k_2}{k_1} - \frac{k_1}{k_2} \right)^2$$

Squeezed configuration $\mathcal{K}(k, 10^{-5} \mathrm{Mpc}^{-1}, k)$

Full kernel at redshift z=0

Conclusions for part 2

1% accurate analytic formula for bispectrum.
Fast and accurate numerical code SONG.
Future: Observables and initial conditions for <u>N-body simulations.</u>