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Inflation: sowing the seeds
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Quantum mechanical perturbations present during inflation become temperature perturbations on the cosmic 
microwave background, and later galaxies thanks to the attraction of gravity

By design, the background is almost the same between inflation models. The perturbations may discriminate 
between models



How much have we learnt 
from the precision era?

• Planck completes a trilogy of CMB experiments 

• Planck: 25 times better sensitivity and 3 times better resolution than WMAP,  
the previous best experiment
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We observe so much yet see so little…

• It is a highly non trivial and remarkable and disappointing 
statement that we can explain the statistical property of 107 
CMB pixels with just two primordial numbers (+ background 
parameters)

• We have only measured the amplitude and spectral index of 
the power spectrum

• Is this evidence that inflation was simple?
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Questions
• Is inflation the correct paradigm? 

• If yes, how likely is the existence of more than one light 
scalar field? 

• If there was more than one light scalar field, how likely 
are we to have already observed this? 

• Given that we haven’t, how likely are we to detect it in 
the future? 

• How likely is it undetectable, even in principle? 
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The key Planck plot for inflation
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Again for single-field inflation
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Bicep and Keck

A plateau model of inflation, V`` changes sign 
between when observable modes cross the 
horizon, and the end of inflation
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General multifield inflation
If the perturbations from a field other than the inflation dominate

r ⌧ 16✏V , ns � 1 = �2✏V + 2⌘�

Two classes of preferred models: 

1. Single-field inflation with a 
plateau potential 

2. Two field inflation, inflation field 
with quartic potential, very light 
second field 

3. No inflaton potential is 
generically a good fit in both the 
single field and spectator field 
limits
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What about non-Gaussianity?

• Sometimes presented as a “definitive” test of 
multifield inflation before Planck 

• How likely was 10<fNL<30 really? Compared to 
fNL>30?  

• What can we learn from a non-detection?  

• With r we have already learnt a lot and got a 
physically motivated future target 
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• An alternative model to single-field inflation for the origin of structures.  The 
inflaton drives inflation while the curvaton generates curvature perturbations 
(hence the name)

• The curvaton is a light field which

1. has a subdominant energy density during inflation

2. Is long lived (compared to the inflaton)

3. (Potentially) generates the primordial curvature perturbation

Enqvist and Sloth, Lyth and Wands, Moroi and Takahashi ’01 + many later works with a 
strong Finnish contingent

A worked model comparison: 
The curvaton scenario
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Curvaton model I

Dimopoulos (2010)

R. Hardwick (University of Sussex) Curvaton Inflation MSc Project, 2014 6 / 16

Curvaton (σ) background evolution:
Log of scale factor versus log of energy density

The longer the curvaton lives, the larger its relative energy density becomes

The curvaton may decay before or after it becomes dominant

oscillating curvaton, m>H

frozen curvaton, m<<H

curvaton decays into radiation

⌦� = 1               is an attractor if the 
curvaton decays late enough
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What non-Gaussianity does the (quadratic) curvaton predict?

• The curvature perturbation is approximately 

• Local non-Gaussianity is generated:   fNL~1/Ωσ

• The Planck constraint fNL<10, tells us Ωσ>0.1. A priori, Ωσ~10-5 (and 
fNL~105) was possible. 

• If the curvaton dominates before decay, Ωσ=1 and fNL=-5/4

• In terms of a linear scale on -5/4<fNL<105 - 99.99% has already been 
ruled out 

• In terms of a linear scale on 10-5<Ωσ<1 - 10% has been ruled out

• A highly subdominant curvaton is totally ruled out, so the dominant 
curvaton case becomes our “prediction”. Detecting fNL=3 or 7 seems 
unlikely, although it is compatible with the model
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The simplest curvaton scenario

• Parameter constraints were originally made by Bartolo and Liddle 
(2002), the data allowed so much freedom they restricted the 
model to i) the Gaussian case ii) negligible inflaton perturbations 

• CB, Cortês and Liddle (2014) revisited the model. Observations 
now constrain all realisations of the model.

• Rob Hardwick & CB (2015) performed the first Bayesian analysis of 
the curvaton scenario, a model comparison technique which 
penalises unwanted free parameters (Occam’s razor)

• The additional three curvaton parameters are its mass m, its field 
value at horizon crossing sigma* and its decay rate Gamma
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The models
• Baseline LCDM model

• Quadratic single-field inflation (1 free parameter)

• 3 variations on the curvaton scenario (all with 4 free parameters)

1. Mixed inflaton-curvaton scenario (most general case)

2. Pure curvaton scenario (negligible inflaton perturbations)

3. Dominant curvaton scenario (negligible inflaton perturbations and 
the curvaton dominates the background density before it decays)

Each scenario is a subset of the one above

Cases 2 and 3 predict negligible tensor perturbations. Case 3 also 
fNL=-5/4
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The priors - these need to be specified
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A log prior is standard for parameters where the order of magnitude is unknown 
The curvaton vev has to be small in order for the curvaton perturbations to dominate 
but we put this in by hand and use a linear prior (more later)
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Curvaton constraints

Red lines have  
Blue lines have  
Green lines are the inflating curvaton regime, where it drives a second 
period of inflation.

    curvaton dominates

    inflaton dominates
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Planck/Bicep/Keck 2015 Results
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The effective chi squared values give the best fit (smaller is better) 
The right hand column gives the Bayesian evidence ratios. 
The curvaton is not disfavoured, despite having 3 extra parameters 
The curvaton is weakly/moderately favoured over quadratic inflation  

Hardwick & CB 2015

The Jeffrey’s scale
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Why does the curvaton do well?

• The quadratic single-field model is not a good fit

• The vast majority of the parameter space matches the dominant pure curvaton scenario - 
fNL=-5/4

• Therefore the evidence ratios are similar for all three curvaton cases

• The “tight” fNL constraint does not change our results much, it needs to decrease by an 
order of magnitude (unless fNL is detected)

• Our results are not very sensitive to the choice of most priors

• However, we do force the curvaton VEV to be very small compared to the inflatons, we 
were not testing whether the curvaton scenario is likely

• See Encyclopedia curvatonis by Vennin et al for in depth results and different prior choices. 
They find that the evidence for Starobinsky inflation is robust to the addition of a second 
field, and that quartic inflation with a curvaton is competitive using a log prior on sigma*



Constructing a prior for the field value

• We use the Langevin equation 

• This described the “drift” of the spectator field sigma, in units of efolding time 
N 

• The slow-roll approximation is appropriate whenever the stochastic noise 
term xi is not negligible. It is Gaussian with unit variance. 

• Related to the Fokker-Planck equation for a probability distribution P
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Stationary solution

• In general, no analytic solution exists, however there is a well known 
stationary solution valid in de-Sitter space (early works by Starobinsky) 

• Found by rewriting the Fokker-Planck equation in terms of a probability 
current 

• For a quadratic test field, this gives a Gaussian distribution satisfying
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Is the stationary solution enough?

• Most papers use this result, it is 1) easy and 2) slow-roll inflation is close to 
de-Sitter space 

• The stationary solution is an attractor, but even in exact de-Sitter space the 
relaxation time to reach the attractor is 

• This is typically well over 100 efoldings, potentially much more  

• The Hubble parameter changes on a time scale
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The stationary solution
• Is valid provided that:  

1. Inflation has lasted long enough 
2. Inflation is of the plateau of hilltop variety, with H varying very slowly 

• Even with the currently preferred models such as Starobinsky inflation, one needs to 
extrapolate the model well past 60 efoldings in order to use the stationary solution 

• In models where the spectator field generates the perturbations, the spectral index 
requires a large epsilon (large-field inflation) and the stationary solution is never 
valid
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Going beyond the stationary solution

• For a massless field in de-Sitter, the variance of 
sigma grows like N 

• In realistic models, H decreases so the de-Sitter 
limit is a lower bound on the variance 

• In quartic inflation, the Hubble rate grows ~ N and 
the variance of sigma grows much faster, as N3
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Power law inflation

• Inflation driven by potential         with a quadratic spectator field 

• High up the potential, there is eternal inflation and H~constant 
in that regime. Assuming our Hubble patch came out of eternal 
inflation 

• The first term will typically dominate if the equilibrium 
distribution was reached during eternal inflation 

• Even if the first term is zero, the typical field value is around the 
Planck scale

�p
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Spectator field driven inflation

• Even if the perturbations of the second field are 
negligible, it can change the predictions of single-
field inflation 

• Because the “pivot point” at which observable 
scales exit the horizon during inflation depend on 
the expansion history of the Universe after the first 
phase of inflation ends 

• If there are N2 efolds of spectator-field inflation, then 
the will be N2 efolds less inflation by the first field
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Probability of secondary inflation Expected efolds of secondary inflation



Quartic spectator field

• Will the large spectator field values be reduced by including a self-
coupling, which makes the effective mass larger with larger field 
values? 

• The relaxation time becomes independent of H 

• This means at sufficiently high H, there will always be a time when 
the attractor can be reached (but maybe into eternal inflation)  

• The Higgs is an interesting candidate field, our results may have 
implications for the stability of the Universe during inflation
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For large enough lambda, such that the field is initially in the stationary solution
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Axionic spectator

• A periodic potential provides a guaranteed way to keep the field 
displacement small 

• When the field is effectively massless, a uniform distribution will be reached 

• When the effective mass becomes large, the field should be driven to a 
minimum where it’s potential is effectively quadratic
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Axionic spectator results

For quartic inflation (p=4) the distribution always remains flat provided that 
the spectator field remains light, independently of the model parameters

Uniform distribution
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Playing with the potential

• Full analytic results for the curvaton scenario only exist if it has a quadratic 
potential 

• In that case the field value is typically (super) Planckian and the curvaton 
perturbations are suppressed. However if the spectator field later inflates, the 
predictions of inflation still change because we are observing a different period 
of inflation 

• The typical spectator field value can be suppressed by: 
1. Having at most ~1000 efolds of inflation and the field starting at zero 
2. Adding self-interactions or creating a periodic potential 

• In the latter case, the field will typically not be near the quadratic minimum of 
the potential at the end of inflation - no analytic results exist 

• The spectral index is still driven by epsilon and fNL~1, so qualitative behaviour 
can be guessed

31



Isocurvature perturbations

• Adiabatic perturbations mean that locally all parts of the universe look 
the same, so e.g. the ratio of photons to baryons to CDM is the same 
everywhere

• Only multi-field inflationary models can generate (large scale) 
isocurvature perturbations

• Since isocurvature perturbations decay on small scales, we are close 
to the ultimate limits, which are at the percent level

• Are these tight constraints? Should we expect them to decay during 
reheating/thermalisation?

• Reheating and isocurvature perturbation survival deserves more 
attention
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Many theories lack observables

• Bayesian reasoning provides a framework to compare 
models 

• Results will depend on your priors, especially when the 
data allows a lot of freedom 

• It is worth asking what we learn from “non detections”, 
e.g. can we disfavour complex models? 

• E.g. for dark energy/modified gravity: Is there any 
achievable error bar which would convince “everyone” 
that Lambda is correct?
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Conclusions
• Purely based on a detection of the spectral index and non-observation of 

tensor perturbations we find two “preferred” classes of inflationary models 
1. Single-field plateau inflation 
2. Spectator field generated perturbations embedded in quartic inflation 
3. Any others?  

• A theoretical understanding of the priors is crucial to making a Bayesian model 
comparison 

• The spectator field value probability distribution is especially important 

• Discriminating between fNL~1 and fNL=0 may observationally discriminate 
between these two cases 

• Progress on understanding the early universe remains possible after Planck. 
The two scenarios are extremely different at early times. Progress on reheating 
and isocurvature perturbation evolution/decay would help.
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Setting the spectator field to be zero at the end of eternal inflation gives a 
“lower bound”

Light grey area excluded because the field is not light 
Dark grey area means the field’s energy density dominates (not a spectator field) 
For “large” self couplings the variance can become very small, but this can also 

make the field heavy (with a red spectral index)
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How non-Gaussianity could favour the curvaton

• If non-Gaussianity was detected in the future, how quickly could we 
favour the curvaton over the base LCDM scenario?

• We assume all cosmological data remains the same except fNL

• If fNL=-5/4: the curvaton “attractor” value we need an error bar of 0.4. 
This would correspond to a 3-sigma detection

• If fNL=10.8, the current 2-sigma upper bound from Planck then we need 
an error bar of about 2.6 (and the dominant curvaton scenario is ruled 
out). This would correspond to a 4-sigma detection

• The latter case should be “easily” achieved with Euclid, the former case 
maybe achievable in ~ 2 decades with Euclid, DESI, SKA… 


