

SYNERGISTIC COSMOLOGY ACROSS THE SPECTRUM

Atefano Camera

Dipartimento di Fisica, Università degli Studi di Torino, Italy

FUNDAMENTAL COSMOLOGY

Lion

Panther

Stefano Camera

Synergistic cosmology across the spectrum

FUNDAMENTAL COSMOLOGY

Dark matter

Dark energy

Inflation

Stefano Camera

Synergistic cosmology across the spectrum

Definition of synergy in English:

synergy

Pronunciation: /ˈsɪnədʒi/ ⑦ 📣

NOUN

[MASS NOUN]

The interaction or cooperation of two or more organizations, substances, or other agents to produce a combined effect greater than the sum of their separate effects:

Stefano Camera

Synergistic cosmology across the spectrum

Synergies

Stefano Camera

Synergistic cosmology across the spectrum

Synergistic cosmology across the spectrum

 $f(t, \mathbf{x})$

- Cosmological perturbation
 [temperature anisotropies, density fluctuations...]
 - Correlation function $\xi^{f}(t, |\mathbf{x} \mathbf{y}|) = \langle f(t, \mathbf{x}) f(t, \mathbf{y}) \rangle$ Power spectrum $\langle \hat{f}_{k}(t) \hat{f}_{k'}^{\star}(t) \rangle = \delta_{D}(\mathbf{k} - \mathbf{k'}) P^{f}(k, t)$

Synergistic cosmology across the spectrum

 $f(t, \mathbf{x})$

- Cosmological perturbation
 [temperature anisotropies, density fluctuations...]
- Correlation function $\xi^f(t, |\mathbf{x} \mathbf{y}|) = \langle f(t, \mathbf{x}) f(t, \mathbf{y}) \rangle$
- Power spectrum $\langle \hat{f}_k(t)\hat{f}_{k'}^{\star}(t)\rangle = \delta_D(\mathbf{k}-\mathbf{k}')P^f(k,t)$
- Example #1: Cosmic microwave background temperature anisotropies

$$f(t, \mathbf{x}) \rightarrow \frac{\delta T(t_{\rm rec}, \vec{\theta})}{T_{\rm CMB}}$$

Stefano Camera

Synergistic cosmology across the spectrum

24 · V · 2017

 $f(t, \mathbf{x})$

- Cosmological perturbation
 [temperature anisotropies, density fluctuations...]
- Correlation function $\xi^f(t, |\mathbf{x} \mathbf{y}|) = \langle f(t, \mathbf{x}) f(t, \mathbf{y}) \rangle$
- Power spectrum $\langle \hat{f}_k(t)\hat{f}_{k'}^{\star}(t)\rangle = \delta_D(\mathbf{k}-\mathbf{k}')P^f(k,t)$
- Example #1: Cosmic microwave background temperature anisotropies

$$\hat{f}_k(t) \to a_{\ell m}$$

Stefano Camera

Synergistic cosmology across the spectrum

24 · V · 2017

 $f(t, \mathbf{x})$

- Cosmological perturbation
 [temperature anisotropies, density fluctuations...]
- Correlation function $\xi^f(t, |\mathbf{x} \mathbf{y}|) = \langle f(t, \mathbf{x}) f(t, \mathbf{y}) \rangle$
- Power spectrum $\langle \hat{f}_k(t)\hat{f}_{k'}^{\star}(t)\rangle = \delta_D(\mathbf{k}-\mathbf{k}')P^f(k,t)$
- Example #1: Cosmic microwave background temperature anisotropies

$$\langle a_{\ell m} a_{\ell' m'}^{\star} \rangle = \delta_K^{\ell \ell', m m'} C_\ell^T$$

Stefano Camera

Synergistic cosmology across the spectrum

Stefano Camera

Synergistic cosmology across the spectrum

 $f(t, \mathbf{x})$

- Cosmological perturbation
 [temperature anisotropies, density fluctuations...]
- Correlation function $\xi^f(t, |\mathbf{x} \mathbf{y}|) = \langle f(t, \mathbf{x}) f(t, \mathbf{y}) \rangle$
- Power spectrum $\langle \hat{f}_k(t)\hat{f}_{k'}^{\star}(t)\rangle = \delta_D(\mathbf{k}-\mathbf{k}')P^f(k,t)$
- Example #2: Matter power spectrum

$$f(t, \mathbf{x}) \to \delta_g(t, \mathbf{x}) = b_g(t)\delta(t, \mathbf{x})$$

Stefano Camera

Synergistic cosmology across the spectrum

[SDSS-III BOSS Collaboration, 2012]

UNIVERSITÀ DEGLI STUDI DI TORINO ALMA UNIVERSITAS TAURINENSIS

Stefano Camera

Synergistic cosmology across the spectrum

[Klypin et al., 2016]

Stefano Camera

Synergistic cosmology across the spectrum

CROSS-CORRELATIONS

Cosmological perturbation

$$f(t,\mathbf{x})$$

- Correlation function
- Power spectrum

 $\xi^{fg}(t, |\mathbf{x} - \mathbf{y}|) = \langle f(t, \mathbf{x})g(t, \mathbf{y}) \rangle$ $\langle \hat{f}_k(t)\hat{g}_{k'}^{\star}(t) \rangle = \delta_D(\mathbf{k} - \mathbf{k}')P^{fg}(k, t)$

Stefano Camera

Synergistic cosmology across the spectrum

24 · V · 2017

CROSS-CORRELATIONS

Cosmological perturbation

 $f(t, \mathbf{x})$

- Correlation function
- Power spectrum

 $\xi^{fg}(t, |\mathbf{x} - \mathbf{y}|) = \langle f(t, \mathbf{x})g(t, \mathbf{y}) \rangle$ $\langle \hat{f}_k(t)\hat{g}_{k'}^{\star}(t) \rangle = \delta_D(\mathbf{k} - \mathbf{k}')P^{fg}(k, t)$ WHY!?

Synergistic cosmology across the spectrum

CROSS-CORRELATIONS

Cosmological perturbation

 $f(t, \mathbf{x})$

- Correlation function
- Power spectrum

$$\xi^{fg}(t, |\mathbf{x} - \mathbf{y}|) = \langle f(t, \mathbf{x})g(t, \mathbf{y}) \rangle$$
$$\langle \hat{f}_k(t)\hat{g}_{k'}^{\star}(t) \rangle = \delta_D(\mathbf{k} - \mathbf{k}')P^{fg}(k, t)$$

- Measurement
 - [noise, systematic effects, cosmic variance...]

$$\Delta C_{\ell}^{f,\text{obs}} = \sqrt{\frac{2}{(2\ell+1)f_{\text{sky}}}} \left(C_{\ell}^{f} + C_{\ell}^{f,\text{sys}} + \mathcal{N}_{\ell}^{f} \right)$$

Stefano Camera

Synergistic cosmology across the spectrum

24 · V · 2017

- Synergies: Why and how?
- Synergies vs Noise: Indirect search of particle dark matter signatures
- Synergies vs Cosmic Variance: Multi-tracing galaxy number counts

Stefano Camera

Synergistic cosmology across the spectrum

DM-Sourced Gamma Rays

NASA's Fermi telescope reveals best-ever view of the gamma-ray sky

Credit: NASA/DOE/Fermi LAT Collaboration

Stefano Camera

Synergistic cosmology across the spectrum

DM-Sourced Gamma Rays

• Hunting down signals of annihilations/decays of dark matter particles

Stefano Camera

Synergistic cosmology across the spectrum

 $2\overline{4} \cdot V \cdot 20\overline{17}$

DM-Sourced Gamma Rays

- Hunting down signals of annihilations/decays of dark matter particles
 - Gamma-ray anisotropies angular spectrum

Stefano Camera

Synergistic cosmology across the spectrum

DIRECT GRAVITATIONAL PROBES

[Lukic et al.; Image: Casey Stark]

Potential wells of the cosmic large-scale structure

Gamma rays from astrophysical sources hosted within the dark matter halo

Gamma rays from annihilations/decays of dark matter particles forming the halo

Stefano Camera

Synergistic cosmology across the spectrum

DIRECT GRAVITATIONAL PROBES

- Find an optimal tracer of the cosmic dark matter distribution on large scale to filter out astrophysical non-thermal emission from the dark matter gamma-ray signal
- Main tracers of the cosmic large-scale structure:
 - Weak gravitational lensing (cosmic shear, CMB lensing...)

[SC, Fornasa, Fornengo & Regis, Ap]L 2013; Fornengo, Perrotto, Regis & SC, Ap]L 2015; Shirasaki et al. 2013; 2015]

• Clustering of structures (galaxies, galaxy clusters...)

[Fornengo & Regis, 2014; Ando et al., 2014; Xia et al., ApJS 2015; Regis et al., PRL 2015; Shirasaki et al., 2015, Branchini, SC et al., ApJS 2017]

Stefano Camera

Synergistic cosmology across the spectrum

GAMMA RAYS & WEAK LENSING

[SC, Fornasa, Fornengo & Regis, Ap]L 2013]

Stefano Camera

Synergistic cosmology across the spectrum

24 · V · 2017

GAMMA RAYS & WEAK LENSING

[SC, Fornasa, Fornengo & Regis, 2015]

Stefano Camera

Synergistic cosmology across the spectrum

GAMMA RAYS & WEAK LENSING

[Tröster, SC et al., 2017]

Stefano Camera

Synergistic cosmology across the spectrum

 $24 \cdot v \cdot 2017$

GAMMA RAYS & CLUSTERS

[Branchini, SC et al., 2017]

Stefano Camera

Synergistic cosmology across the spectrum

- Synergies: Why and how?
- Synergies vs Noise: Indirect search of particle dark matter signatures
- Synergies vs Cosmic Variance: Multi-tracing galaxy number counts

Stefano Camera

Synergistic cosmology across the spectrum

GALAXY NUMBER COUNTS

• Proxy of the matter power spectrum

$$f(t, \mathbf{x}) \to \delta_g(t, \mathbf{x}) = b_g(t)\delta(t, \mathbf{x})$$

- Primordial non-Gaussianity
 - One of inflation's 4 'smoking guns'
 - Tightest available constraints from CMB: $|f_{\rm NL}| < \sim 10$

 $f_{\rm NL} > 0$

Stefano Camera

Synergistic cosmology across the spectrum

 $24\cdot V\cdot 2017$

(k, z)

 $P^{\delta}(k,z)$

GALAXY NUMBER COUNTS

• Proxy of the matter power spectrum

$$f(t, \mathbf{x}) \to \delta_g(t, \mathbf{x}) = b_g(t)\delta(t, \mathbf{x})$$

- Primordial non-Gaussianity
 - One of inflation's 4 'smoking guns'

 $f_{\rm NL} >$

• Tightest available constraints from CMB: $|f_{\rm NL}| < \sim 10$

Synergistic cosmology across the spectrum

(k, z)

 $P^{\delta}(k,z)$

GALAXY NUMBER COUNTS

• Proxy of the matter power spectrum

$$f(t, \mathbf{x}) \to \delta_g(t, \mathbf{x}) = b_g(t)\delta(t, \mathbf{x})$$

- Primordial non-Gaussianity
 - One of inflation's 4 'smoking guns'

 $f_{\rm NL} > 0$

• Tightest available constraints from CMB: $|f_{\rm NL}| < \sim 10$

Stefano Camera

Synergistic cosmology across the spectrum

 $24 \cdot V \cdot 2017$

(k, z)

 $P^{\delta}(k,z)$

MANCHESTER 1824

GALAXY NUMBER COUNTS

• Proxy of the matter power spectrum

$$f(t, \mathbf{x}) \to \delta_g(z, \hat{\mathbf{n}}) = \frac{N_g(z, \hat{\mathbf{n}}) - \bar{N}_g(z)}{\bar{N}_g(z)}$$

Stefano Camera

Synergistic cosmology across the spectrum

24 · V · 2017

MANCHESTER 1824

GALAXY NUMBER COUNTS

Proxy of the matter power spectrum

$$\frac{N_g(z,\hat{\mathbf{n}}) - \bar{N}_g(z)}{\bar{N}_g(z)} \propto \frac{\delta\rho(z,\hat{\mathbf{n}})}{\bar{\rho}(\bar{z})} - \frac{\mathrm{d}\bar{\rho}}{\mathrm{d}\bar{z}}\frac{\delta z(z,\hat{\mathbf{n}})}{\bar{\rho}(\bar{z})} + \frac{\delta V(z,\hat{\mathbf{n}})}{V(z)}$$

[Yoo, 2010; Bonvin & Durrer, 2011; Challinor & Lewis, 2011; Bertacca et al., 2012]

Stefano Camera

Synergistic cosmology across the spectrum

MANCHESTER 1824

GALAXY NUMBER COUNTS

Proxy of the matter power spectrum

$$\frac{N_g(z,\hat{\mathbf{n}}) - \bar{N}_g(z)}{\bar{N}_g(z)} \propto \frac{\delta\rho(z,\hat{\mathbf{n}})}{\bar{\rho}(\bar{z})} - \frac{\mathrm{d}\bar{\rho}}{\mathrm{d}\bar{z}}\frac{\delta z(z,\hat{\mathbf{n}})}{\bar{\rho}(\bar{z})} + \frac{\delta V(z,\hat{\mathbf{n}})}{V(z)}$$

[Yoo, 2010; Bonvin & Durrer, 2011; Challinor & Lewis, 2011; Bertacca et al., 2012]

- Newtonian density fluctuations
- Redshift-space distortions
- Lensing
- Gravitational redshift, time delay, Sachs-Wolfe and integrated Sachs-Wolfe

Stefano Camera

Synergistic cosmology across the spectrum

Probe huge volumes

[high sensitivity at high-z over large sky areas]

Beat cosmic variance
 [we have only one Universe to observe!]

Stefano Camera

Synergistic cosmology across the spectrum

MULTI-TRACER TECHNIQUE

• Comparing the relative clustering of different populations of tracers

[Seljak, 2009; Seljak & McDonald, 2009]

Stefano Camera

Synergistic cosmology across the spectrum

MULTI-TRACER TECHNIQUE

Comparing the relative clustering of different populations of tracers

[Seljak, 2009; Seljak & McDonald, 2009]

[Fonseca, SC, Santos & Maartens, Ap] Lett. 2015]

Stefano Camera

Synergistic cosmology across the spectrum

SUMMARY

- Great time for synergies among cosmological surveys at various wavelengths
- Cross-correlations valuable for:
 - Cross-checking validity of cosmological results
 - Accessing signal buried in noise or cosmic variance
 [e.g. particle dark matter signatures, multi-tracing for non-Gaussianity]
 - Removing/alleviating contamination from systematic effects [e.g. radio-optical cosmic shear]

Stefano Camera

Synergistic cosmology across the spectrum