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CMB: properties and features

I CMB is a well studied object in cosmology

I It has been generated at the decoupling time, during the matter
dominated era

I It perfectly behaves as a black body, with a temperature T0 = 2.7 K

I It has a high degree of homogeneity and isotropy

I Nevertheless, deviations from homogeneity and isotropy are present, due
to local perturbations of the gravitational potential and due to scattering
of baryons within the horizon



CMB temperature’s fluctuations (1)

5 10 50 100 500 1000

0

1000

2000

3000

4000

5000

6000

ℓ

ℓ(
ℓ+
1)
C

ℓ/(
2π

)
[μ
K
2
]



CMB temperature’s fluctuations (2)

I Effects mentioned above induce the so called primary anisotropies

I Studying them allows us to gain a lot of informations about cosmological
parameters

I However, these are not the only sources of anisotropies. Indeed, once a
photon is emitted by the last scattering surface, it encounters
inhomogeneities along its travel toward us. This generates the so called
late time anisotropies

I The one we are going to talk about is weak lensing



From lensed to unlensed correlation’s function (1)

I A generic scalar field transforms from lensed to unlensed coordinates as

M̃(x̃a) =M(xa + δθa)

I At first order, this equation can be linearized as

M̃(x̃a) 'M(xa) + θ(1)b∇bM(xa)

I In order to get corrections for C`, let’s go from real space to Fourier’s
space at a given redshift zs , i.e.

M̃(zs , `) ' A(0)(`) +A(1)(`)



From lensed to unlensed correlation’s function (2)

I At this point, we can evaluate the two points correlation’s function by
defining

δ(`− `′)C̃` = 〈M̃(`) ¯̃M(`′)〉

δ(`− `′)C̃ (ij...,i′j′...)
` = 〈A(ij...)(`)Ā(i′j′...)(`′)〉+ perm(ij ..., i ′j ′...)

I In this way, lensed correlation’s function is given by

C̃` = C` + C
(0,11)
` + C

(1,1)
`



From lensed to unlensed correlation’s function (3)

C` Counterpart

C
(0,11)
` 〈θ(1)aθ(1)b〉〈M∇a∇bM̄〉

C
(1,1)
` 〈θ(1)aθ(1)b〉〈∇aM∇bM̄〉

I First order corrections to lensing are due to the two points correlation’s
function of θ(1)a

I Thanks to Wick’s theorem, the n points correlation’s function of θ(1)a is
null, if n is odd, and is given by the two points one, for even n’s



Lensing leading order corrections

I To our aim, we just need the leading part of first order deflection angles,
which is

θ(1)a = −2

∫ rs

0

dr ′
rs − r ′

rs r ′
∇aΦW (r ′)

where ΦW is the Weyl potential.

I Thanks to this, first order corrections are

C
(0,11)
` = −C`(zs)

∫
d2`1

(2π)2
(`1 · `)2 Cψ`1

(zs , zs)

C
(1,1)
` =

∫
d2`1

(2π)2
[(` − `1) · `1]2 Cψ|`−`1|(zs , zs)C`1 (zs)

where Cψ` is the power spectrum of the lensing potential ψ and zs is the
redshift of the CMB



Full corrections from first order deflection angles (1)

I However, we go beyond the leading order for the first deflection angles. If
we look at the correlation function, we have

ξ̃(r) = 〈M̃(x)M̃(x + r)〉 = 〈M(x + δθ)M(x + r + δθ′)〉

=

∫
d2`

(2π)2
C` e

i`·r〈e i`·(δθ−δθ
′)〉 =

∫
d2`

(2π)2
C` e

i`·re−〈[`·(δθ−δθ
′)]2〉/2

I From here, we get that

C̃
(1)
` =

∫
dr rJ0 (`r)

∫
d2`′

(2π)2 C
M
`′ e

−i`′·r

× exp

[
− `
′2

2
(A0 (0)− A0 (r) + A2 (r) cos (2φ))

]
I This property holds because θ(1)a is a gaussian stochastic field. This

allows us to take into account the entire lensing correction from first
order deflection angles up to all orders in perturbations theory.



Full corrections from first order deflection angles (2)

C
(0,11)
` + C

(1,1)
` Exponential
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Summary

I Lensing corrections due to θ(1)a smooth the peak of the ∆T/T spectrum

I Because of the gaussianity of θ(1)a, these corrections can be re-summed in
order to give the full change due to first order defelction’s angles

I This modifies the spectrum of ∼ 10% for ` ≤ 2500

I Exponentiation reduces the amount of the correction about 20% so, it’s
crucial to take into account this effect for CMB precision cosmology

I Nevertheless, we can infer that the order of magnitude of the correction is
properly taken into account even if we don’t consider the exponentiation



Non-linear effects

At the next-to-leading order, several effects have to be taken into account

I Relaxing the Born Approximation

I Higher order terms for the gravitational potential

I Tensorial nature of light polarization



Beyond the Born approximation: next-to leading order
corrections (1)

I So far, we have evaluate the lensing leading corrections to C`’s due to
first order deflection’s angles

I Because we have been interested in θ(1)a, which are already first order, we
have evaluated them along the unperturbed photons’ geodesics: this is
the so called Born approximation

I Going beyond this approximation is fundamental as long as we want to
evaluate higher orders deflection’s angles



Beyond the Born approximation: next-to leading order
corrections (2)

I More specifically, C
(0,11)
` and C

(1,1)
` are of order ψ2 whereas θ(1)a ∼ ψ

I At the next to leading order, corrections to spectrum will be ∼ ψ4 and
θ(n)a ∼ ψn

I From here, it follows that we need to evaluate deflection’s angles up to
third order

I θ(4)a does not contribute because its stochastic average is null. The same
happens for θ(2)a at the linear order



Beyond the Born approximation: next-to leading order
corrections (3)

I Computation of higher order corrections can be done via deflection angles
θ(n)a or amplification matrix

(Ψa
b)(n) = −∂θ

(n)a

∂θbo
, for n ≥ 1

I These approaches are equivalent for the lensing leading terms1. Indeed,
lensing leading terms for the amplification matrix are consistent with the
iterative solution of the so called lens equation

Ψa
b =

2

ηo − ηs

∫ ηo

ηs

dη′
η′ − ηs
ηo − η′

γ̂ac
0 ∂c∂dψ(η′, ηo − η′, θa)

[
δdb −Ψd

b

]

1F, Gasperini, Marozzi, Veneziano, JCAP 1508 (2015) no.08, 020



Amplification matrix and deflection’s angles

I A direct evaluation of these angles via the GLC gauge gives

θ
(2)a =−2

∫ rs

0
dr′

rs − r′

rs r′
∇b∇

aΦW (r′)θ(1)b(r′)

θ
(3)a =−2

∫ rs

0
dr′

rs − r′

rs r′

[
∇b∇

aΦW (r′)θ(2)b(r′)+
1

2
∇b∇c∇aΦW (r′)θ(1)b(r′)θ(1)c (r′)

]

I These expressions are perfectly consistent with the iterative solutions of
the lens equation, beyond the Born approximation2

(Ψa
b)(2) = 2

∫ rs

0
dr′

rs − r′

rs r′
γ
ac
[
∂c∂b∂dψ(r′)θ(1)d − ∂c∂dψ(r′)Ψ

d(1)
b

]
,

(Ψa
b)(3) = 2

∫ rs

0
dr′

rs − r′

rs r′
γ
ac
[
∂c∂b∂dψ(r′)θ(2)d +

1

2
∂c∂b∂d∂eψ(r′)θ(1)d

θ
(1)e

−∂c∂d∂eψ(r′)θ(1)eΨ
d(1)
b
− ∂c∂dψ(r′)Ψ

d(2)
b

]

2differently from Hagstotz, Schafer, Merkel, Mon.Not.Roy.Astron.Soc. 454
(2015) no.1, 831-838



Next to leading order corrections to ∆T/T (1)

I Just as already done for the leading order, our anisotropies’ temperature
field will be corrected by higher order deflection’s angles as

M̃(xa) =M
(
xa + δθ

a) 'M(xa) +
4∑

i=1

θ
(i)b∇bM(xa) +

1

2

∑
i+j≤4

θ
(i)b
θ

(j)c∇b∇cM(xa)

+
1

6

∑
i+j+k≤4

θ
(i)b
θ

(j)c
θ

(k)d∇b∇c∇dM(xa) +
1

24
θ

(1)b
θ

(1)c
θ

(1)d
θ

(1)e∇b∇c∇d∇eM(xa)

I Equivalently, in Fourier space

M̃(xa) ' A(0)(xa)+
4∑

i=1

A(i)(xa)+
∑

i+j≤4, 1≤i≤j

A(ij)(xa)+
∑

i+j+k≤4, 1≤i≤j≤k

A(ijk)(xa)+A(1111)(xa)



Next to leading order corrections to ∆T/T (2)

I Following the same formalism as before, now we have that

C̃` = C`

+ C
(0,11)
` + C

(1,1)
`

+ C
(0,1111)
` + C

(1,111)
` + C

(11,11)
`

+ C
(0,22)
` + C

(0,13)
`

+ C
(1,3)
` + C

(2,2)
`

+ C
(1,12)
` + C

(2,11)
`

I First line is the already evaluated linear order and refers to terms
〈θ(1)aθ(1)b〉〈M∇a∇bM̄〉 and 〈θ(1)aθ(1)b〉〈∇aM∇bM̄〉



Next to leading order from θ(1)a - First group

C` Counterpart

C
(0,1111)
` 〈θ(1)aθ(1)bθ(1)cθ(1)d〉〈M∇a∇b∇c∇dM̄〉

C
(1,111)
` 〈θ(1)aθ(1)bθ(1)cθ(1)d〉〈∇aM∇b∇c∇dM̄〉

C
(11,11)
` 〈θ(1)aθ(1)bθ(1)cθ(1)d〉〈∇a∇bM∇c∇dM̄〉

These terms take into account all the next to leading order corrections due to
θ(1)a. Their effect is consistently included in the exponentiation, previously
shown



Limber approximation and null terms

C` Counterpart

C
(0,13)
` 〈θ(1)aθ(3)b〉〈M∇a∇bM̄〉

C
(0,22)
` 〈θ(2)aθ(2)b〉〈M∇a∇bM̄〉

I Limber approximation applies when the argument of integration in
k-space does not oscillate too much and rapidly decreases for k →∞

I This regime is valid for our terms

I By applying them, we get that C
(0,13)
` = −C (0,22)

`



Next to leading order gaussian terms - Second group

C` Counterpart

C
(1,3)
` 〈θ(1)aθ(3)b〉〈∇aM∇bM̄〉

C
(2,2)
` 〈θ(2)aθ(2)b〉〈∇aM∇bM̄〉

I These terms come from the two points correlation function of deflection’s
angles up to third order

I Following the exponentiation for θ(2)a and θ(3)a would take into account
also these terms, just as done for the leading order



Next to leading order non gaussian terms - Third group

C` Counterpart

C
(1,12)
` 〈θ(1)aθ(1)bθ(2)c〉〈∇aM∇b∇cM̄〉

C
(2,11)
` 〈θ(2)aθ(1)bθ(1)c〉〈∇aM∇b∇cM̄〉

I These terms come from the three points correlation function of
deflection’s angles up to third order

I Because of that, they cannot be taken into account by the exponentiation
method3

3This method has been used in Pratten, Lewis, JCAP 1608 (2016) no.08,
047



Second group - Numerical results (1)

C
(1,3)
` C

(2,2)
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`

0 500 1000 1500 2000 2500

10-10

10- 8

10- 6

10- 4

0.01

{

D
C

{�C
�

{M
H1L



Second group - Numerical results (2)

I Each term of second group gives a huge modification for the spectrum
(∼ 1%)

I However, the total contribution shows a significant cancellation between
these terms (3 orders of magnitude)

I This cancellation can be understood by looking at the analytical
expressions of these terms

C
(1,3)
`

=−
∫

d2`1

(2π)2

∫
d2`2

(2π)2
[(` − `1) · `1]2 [(` − `1) · `2]2 C`1

(zs )

×
∫ rs

0
dr′
(
rs − r′

)2

r2
s r′4

C
ψ
`2

(z′, z′)PR

( |` − `1| + 1/2

r′

)[
TΨ+Φ

( |` − `1| + 1/2

r′
, z′
)]2

C
(2,2)
`

=

∫
d2`1

(2π)2

∫
d2`2

(2π)2
[(` − `1 + `2) · `1]2 [(` − `1 + `2) · `2]2 C`1

(zs )

×
∫ rS

0
dr′
(
rs − r′

)2

r2
s r′4

C
ψ
`2

(z′, z′)PR

( |` − `1 + `2| + 1/2

r′

)[
TΨ+Φ

( |` − `1 + `2| + 1/2

r′
, z′
)]2

I Moreover, it’s consistent with literature4

4Pratten, Lewis, JCAP 1608 (2016) no.08, 047
Krause, Hirata, Astron.Astrophys. 523 (2010) A28



Third group - Numerical results (1)
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Third group - Numerical results (2)

I Even these terms would give a huge contributions separately (∼ 1%)

I Third group shows a cancellation too. However, this turns out to be
smaller than what happens for the second group (2 orders of magnitude)

I Once again, this cancellation can be understood by looking at the
analytical expressions

C
(1,12)
`

=− 2

∫
d2`1

(2π)2

∫
d2`2

(2π)2
(`1 · `2) [(` − `1) · `2] [(` − `1) · `1]2 C`1

(zs )C
ψ
`2

(
zs , z
′
)

×
∫ rs

0
dr′
(
rs − r′

)2

r2
s r′4

PR

( |` − `1| + 1/2

r′

)[
TΨ+Φ

( |` − `1| + 1/2

r′
, z′
)]2

C
(2,11)
`

= 2

∫
d2`1

(2π)2

∫
d2`2

(2π)2
(`1 · `2) [(` − `1 + `2) · `2] [(` − `1 + `2) · `1]2 C`1

(zs )C
ψ
`2

(
zs , z
′
)

×
∫ rs

0
dr′
(
rs − r′

)2

r2
s r′4

PR

( |` − `1 + `2| + 1/2

r′

)[
TΨ+Φ

( |` − `1 + `2| + 1/2

r′
, z′
)]2

I These contributions are not considered in literature5 and turns out to be
the dominant ones

5Pratten, Lewis, JCAP 1608 (2016) no.08, 047



Linear power spectrum vs HaloFit

Exponentiation Second group Third group
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Other next-to-leading order corrections - LSS (1)

I Post-Born corrections are not the only ones which appear at
next-to-leading order

I First of all, we need to consider terms from higher order Weyl potential:
in particular ΦW ≈ Φ

(1)
W + Φ

(2)
W + Φ

(3)
W

I These corrections can be classified as well as we did for the post-Born
ones, involving

〈Φ(2)
W (z , `)Φ̄

(2)
W (z ′, `′)〉 and 〈Φ(1)

W (z1, `1)Φ̄
(3)
W (z2, `2)〉

〈Φ(1)
W (z1, `1)Φ

(1)
W (z2, `2)Φ

(2)
W (z3, `3)〉 ∼ bΦΦΦ(2)

`1`2`3
(z1, z2, z3)

where bΦΦΦ(2)

`1`2`3
(z1, z2, z3)6 is the reduced bispectrum

6Di Dio, Durrer, Marozzi, Montanari, JCAP 1601 (2016) 016,
arXiv:1510.04202



Other next-to-leading order corrections - LSS (2)

I Terms generated by this expansion can be classified as we did for pure
post-Born corrections, by taking into account the proper correction to θ(2)

and θ(3) due to Φ
(2)
W and Φ

(3)
W

I However, using HaloFit model implies that corrections from two-points
correlation functions of Bardeen potential are already included in previous
results

I What is missing are terms due to three-points correlation function,

involving bΦΦΦ(2)

I Even if these corrections appear for both Second and Third group, it
turns out that they are non null only in the last case, within the Limber
approximation



From Temperature to Polarization’s spectra (1)

I So far, we are considered just a scalar field, i.e. ∆T/T

I Now, we want to find the same corrections even for other CMB spectra,
in particular the polarizations’ ones

I It means that we have to deal with a tensorial object Pab instead of
∆T/T

I More precisely, we consider the component of Pab, E and B once
projected on a flat 2-dimensional subspace, via a basis saA which is parallel
transported along the photon path



From Temperature to Polarization’s spectra (2)

I Having this in mind, we get that, for the polarization’ spectra, previous
formula can be easily generalized by the substitution

CM` → ĈX
`

where

X =M ⇒ ĈX
` = CM`

X = E ⇒ ĈX
` = CE` cos2 2ϕ` + CB` sin2 2ϕ`

X = B ⇒ ĈX
` = CE` sin2 2ϕ` + CB` cos2 2ϕ`

X = EM ⇒ ĈX
` = CEM` cos 2ϕ`



Other next-to-leading order corrections - Rotation (1)

I Moreover, polarization tensor involves also more corrections, due to the
rotation of the photon’s polarization from the last scattering surface to
the observer

P̃ = e−2iβP

I This rotation comes from the fact that the polarization tensor is projected
on the Sachs basis and this one is parallely transported along the
photon’s geodetic

I An exact expression for the Sachs basis has been provided in the so-called
GLC gauge7 via the conditions

γabs
a
As

b
B = δAB , ∇τ saA = 0

7F, Marozzi, Gasperini, Veneziano, JCAP 1311 (2013) 019
F, Nugier, JCAP 1502 (2015) no.02, 002



Other next-to-leading order corrections - Rotation (2)

I In a perturbed Universe, it can be proved that this Sachs basis can be
solved as

saA = χab s̄
b
B RB

A

where

χab = χ
(0)
ab + χ

(1)
ab + χ

(2)
ab + ... is a symmetric tensor

RB
A = cosβ δBA + sinβ εBA is a 2-D rotation matrix

β = β(0) + β(1) + β(2) + ... is the rotation angle

s̄bB = (ar)−2 diag
(

1, sin−1 θ
)

is a particular background solution

I In this way, the Sachs basis can be found up to each desired order in
perturbation theory



Other next-to-leading order corrections - Rotation (3)

I This rotation angle β is related to the vorticity ω in the Amplification
matrix

AAB =

(
1− κ+ γ1 γ2 + ω
γ2 − ω 1− κ− γ1

)
More strictly, it can be shown that ω = β up to second order

I Because of this, the first non-null corrections from this angle is just β(2).
This is why these corrections don’t affect first order spectra

I Moreover, this implies that the unique corrections from rotation angle to
polarization’s spectra are related to the two-points correlation function
〈β(2)β(2)〉



Other next-to-leading order corrections - Rotation (4)

Term Counterpart TT TE EE BB

C
β(2,2)
` 〈β(2)(x)β(2)(y)〉〈X (x)Y (y)〉 NO NO YES YES

C
β(22,0)
` 〈β(2)(x)β(2)(x)〉〈X (x)Y (y)〉 NO YES YES NO

I Even if those terms both converge, their behaviors are different. In
particular, (22,0) strongly depends on smallest scale of power spectrum

I However, their contribution to the shift of cosmological parameters is not
statistically relevant. So we don’t take care anymore about these terms
and just consider (2, 2) contributions



Other next-to-leading order corrections - Numerical results
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8Not taken into account in
Lewis, Pratten, JCAP 1612 (2016) no.12, 003, arXiv:1608.01263



Consequences on physical observables
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I Lensing-induced B-modes turn out to be of the same order as a
primordial tensor-to-scalar ratio r = 10−3

I These corrections can shift cosmological parameters evaluation of almost
2σ



Comparing analytical and numerical results

I Our results are in very good agreement with recent numerical ones9 on
small scales

9Plots are courtesy of Giulio Fabbian
Fabbian, Calabrese, Carbone, arXiv:1702.03317



Summary

I Lensing corrections due to θ(1)a can be taken into account non
pertubatively because of its statistical properties

I At the next to leading order, also corrections due to θ(2)a and θ(3)a must
to be considered

I Three points correlations function for these angles are no longer null.
This means that method based on exponentiation breaks down at the
second order

I Moreover, these terms not only are non zero but are the dominant ones

I Nevertheless, they are not the only ones involved. Also LSS corrections
appear with same order of magnitude, but with opposite phase. This
leads to a partial cancellation

I For polarization’s spectra, also the rotation of the polarization’s axis
contributes. This leads to a new effects, not considered before



Conclusions

I The whole correction of these effect must be taken into account in order
to interpret correctly the future measurement about primordial
gravitational waves

I Moreover, these corrections can lead also to a significant shift in the
estimation of cosmological parameters. A reason why, case by case, their
role have to be considered in the measurement’s process

I The very good (perhaps impressive!!!) agreement between our analytical
method and other results obtained via N-Body simulation techniques is a
strong support to these conclusions


