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Basics of Primordial Black Holes
(PBHs)
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Primordial Black Holes – Why are they interesting?

Especially the LIGO observation of O(10)M� BH mergers and
seeds for supermassive BHs are interesting for PBHs

Can they constitute all DM?
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PBHs – How do they form?

PBHs can easily form in the early Universe from sufficiently large
density perturbations – already within GR

In a radiation-dominated Universe, they can form when large
enough perturbations (δ ≡ δρ/ρ & 0.5) enter the horizon and
collapse

In a matter-dominated Universe, perturbations grow as δ ∝ a
⇒ if there was enough time, even small perturbations can grow
large, δ ∼ 1. Most importantly, in MD the Jeans pressure does not
prevent PBHs from forming
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PBHs – How many of them there are?

10-5 10-4 0.001 0.010 0.100 1
σ
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Primordial Black Holes – FAQ

Q: Why do not all regions with large δ collapse?
A: Initial asphericities and rotation will be amplified and this
prevents PBH formation.

Q: Why do not PBHs form in today’s Universe?
A: They could, but their fraction would be negligible.

Q: What is the origin of these perturbations?
A: That is THE question!
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Examples of the origin of perturbations

Inflaton(s) (typically requires features in the inflaton potential)

Spectator field(s)

Cosmological phase transitions

5MPMP
χ

U(χ)

Rightmost image credit: David Weir / 1504.03291
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PBHs as Dark Matter
(1705.05567)
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PBH mass function

If the PBHs span an extended range of masses, it is convenient to
introduce a mass function

ψ(M) ∝ M
dn
dM

normalised so that the fraction of the DM in PBHs is

fPBH ≡
ΩPBH

ΩDM
=

∫
dM ψ(M)
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Different mass functions

A mass function can be monochromatic or extended

Monochromatic mass function: ψmon(M) = fPBH(Mc)δ(M −Mc)

All mass functions that are not monochromatic are extended mass
functions

In most scenarios, one can expect the mass function to be
extended rather than a monochromatic one
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Examples of extended mass functions I

A power-law mass function

ψ(M) ∝ Mγ−1 (Mmin < M < Mmax)

Mψ(M) with γ = −1 Mψ(M) with γ = 1
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Examples of extended mass functions II

A lognormal mass function

ψ(M) =
fPBH√
2πσM

exp

(
− log2(M/Mc)

2σ2

)

Mc is the mass at which the function Mψ(M) peaks and σ is the
width of the spectrum

Left: ψ(M) with Mc = 1, σ = 1 (blue) and σ = 1.4 (orange)
Right: Mψ(M) with the same parameters as above
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Constraints on PBHs
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Constraints: evaporations; femtolensing of gamma-ray bursts (FL); neutron star
capture (NS); white dwarf explosions (WD); the microlensing results from Subaru
(HSC), Kepler (K), EROS and MACHO (M); Planck; survival of stars in Segue I (Seg I)
and Eridanus II (Eri II); distribution of wide binaries (WB).
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Important: These constraints are for monochromatic mass
functions only! ⇒ They have to be adopted for extended mass
functions

⇒ see 1705.05567
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Constraints on PBHs with an extended mass function
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PBHs as Dark Matter
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How to detect PBHs?

Detection by gravitational lensing

Detection of BH mergers with masses below the Chandrasekhar
limit, M < 1.4M�
⇒ Too faint to be detected by aLIGO–Virgo?
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Can we learn something from the
constraints on PBHs?

(1706.03746)
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Constraining Primordial Power Spectrum

PBHs provide for an effective way to constrain curvature
perturbations at small scales

Let us assume that the are two components that contribute to the
curvature power spectrum: the inflaton ϕ and a spectator field s

PR(k) = PR,ϕ(k) + PR,s(k)
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Primordial Power Spectrum with two components

The inflaton perturbations produce a nearly flat spectrum at small
k ,

PR,ϕ(k) = A
(

k
k∗

)n−1+ 1
2 dn/dlnk ln

(
k

k∗

)
,

where k∗ is a pivot scale, A ' 10−9, and n ' 0.968.

Perturbations in the s field dominate at large k

PR,s(k) = As

(
k
k∗

)ns−1+ 1
2 dns/dlnk ln

(
k

k∗

)

unless the running of the inflaton field’s spectral index is
considerable.
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The total power spectrum
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The total curvature power spectrum (black solid lines).

Black dashed line: inflaton. Grey dashed lines: spectator field for different choices of parameters.
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Primordial Black Hole formation: theory

Assume there was an early matter-dominated phase (MD) at
T > TBBN ' O(1) MeV.

Possible cause: reheating, massive metastable particles...

PBH formation starts when δ grows large enough (δ ∼ 1) and
ends when the MD ends
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Constraints on running of the spectral tilt

We derive new constraints on the running of the inflaton field’s spectral
tilt. Red lines: Planck results.
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For constraints on spectral features of the spectator field and PBH DM,
see 1706.03746.
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Matter or radiation-domination?

When does the transition occur?

What is the effect of a subdominant radiation bath?
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Matter or radiation domination?

When does the transition occur?

What is the effect of a subdominant radiation bath?
⇒ 1804.08639
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Cut-off in mass spectrum
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Conclusions
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Conclusions

Primordial black holes are a compelling alternative to particle DM
and may constitute all DM

Constraints on monochromatic PBH mass functions have to be
carefully adopted for extended mass functions

PBHs provide for an effective way to constrain curvature
perturbations at small scales

Subdominant radiation bath can have a larger effect on PBH
formation than previously thought
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