Recalculating Freeze-In

Dimitrios Karamitros

National Centre for Nuclear Research (NCBJ), Warsaw.

February 12 2020 Helsinki U.

Outline

Dark Matter Why Particle Dark Matter The Dark Matter Particle 2 Freeze-in The Freeze-in mechanism The Boltzmann equation Standard Freeze-in Standard Freeze-in: Pair annihilation
 IR and UV Freeze-in Quantum statistics and Freeze-in The Boltzmann equation for pair annihilations Impact on the pair annihilation production A model Majoron production Example: relativistic effects on fusion Forbidden Freeze-in Production via Forbidden Freeze-in Impact of quantum statistics Standard vs Forbidden Freeze-in 5 Non-standard cosmological history Boltzmann equations The radiation-fluid system The freeze-in The DM momentum

Dark Matter

Dark Matter Why Particle Dark Matter The Dark Matter Particle The Freeze-in mechanism The Boltzmann equation Standard Freeze-in • Standard Freeze-in: Pair annihilation IR and UV Freeze-in The Boltzmann equation for pair annihilations Impact on the pair annihilation production A model Majoron production Example: relativistic effects on fusion Production via Forbidden Freeze-in Impact of quantum statistics Standard vs Forbidden Freeze-in Boltzmann equations The radiation-fluid system The freeze-in The DM momentum

Why Particle Dark Matter

E. Corbelli and P. Salucci, Mon. Not. Roy. Astron. Soc. 311 441

(2000), arXiv:astro-ph/9909252.

M. Markevitch, ESA Spec. Publ. 604 (2006) 723,

astro-ph/0511345.Clowe, Bradac, et. al. Astrophys. J. 648, L109

(2006), astro-ph/0608407

N. Aghanim et al. [Planck Collaboration], arXiv:1807.06209 [astro-ph.CO].

"Έν οἶδα, ὅτι οὐδὲν οἶδα." "I know one thing, that I know nothing."

-Socrates

- Gravitational interactions.
- Mostly electrically neutral.
- Stable or very slow decay rate.
- Non-Baryonic.
- Cold/Warm and non-relativistic today.

Freeze-in

Dark Matter production via Freeze-in: 1

1

- L. Covi, H. B. Kim, J. E. Kim and L. Roszkowski, JHEP 0105, 033 (2001), hep-ph/0101009
- J. McDonald, Phys. Rev. Lett. 88, 091304 (2002) , hep-ph/0106249
- L. J. Hall, K. Jedamzik, J. March-Russell and S. M. West, JHEP 1003, 080 (2010), arXiv:0911.1120 [hep-ph]

J. R. Ellis, J. E. Kim and D. V. Nanopoulos, Phys. Lett. 145B, 181 (1984).

Dark Matter production via Freeze-in: ¹

• Dark Matter particle absent and out of thermal equilibrium.

1

- L. Covi, H. B. Kim, J. E. Kim and L. Roszkowski, JHEP 0105, 033 (2001), hep-ph/0101009
- J. McDonald, Phys. Rev. Lett. 88, 091304 (2002) , hep-ph/0106249
- L. J. Hall, K. Jedamzik, J. March-Russell and S. M. West, JHEP 1003, 080 (2010), arXiv:0911.1120 [hep-ph]

J. R. Ellis, J. E. Kim and D. V. Nanopoulos, Phys. Lett. 145B, 181 (1984).

Dark Matter production via Freeze-in: ¹

- Dark Matter particle absent and out of thermal equilibrium.
- Dark Matter particle produced from decays or annihilations of plasma particles.

- L. Covi, H. B. Kim, J. E. Kim and L. Roszkowski, JHEP 0105, 033 (2001), hep-ph/0101009
- J. McDonald, Phys. Rev. Lett. 88, 091304 (2002) , hep-ph/0106249
- L. J. Hall, K. Jedamzik, J. March-Russell and S. M. West, JHEP 1003, 080 (2010), arXiv:0911.1120 [hep-ph]

¹

J. R. Ellis, J. E. Kim and D. V. Nanopoulos, Phys. Lett. 145B, 181 (1984).

Usually we are dealing with Bath Bath \rightarrow DM DM and Bath \rightarrow DM DM processes. Since the DM number density **never** reaches the level of the plasma ones, $f_{DM} \ll f_{\zeta}(p)$. So,

$$\frac{dn_{\rm DM}}{dt} - 3Hn_{\rm DM} = \int \left(\prod_{i=1}^{2} \frac{1}{(2\pi)^3} \frac{d^3 p_i}{2E_i} f_{\zeta_i}(p_i)\right) (2E_1 \, 2E_2 \, \sigma v_{\rm rel}) + + 2 \, m \, \Gamma^{\rm (CM)} \int \frac{1}{(2\pi)^3} \frac{d^3 p}{2E} f_{\zeta}(p) \,,$$

where $f_{\zeta}(p) = \frac{1}{e^{E/T} - \zeta}$ with $\zeta = -1 (+1)$ for fermions (bosons), and E the energy of plasma particles in the rest frame of the cosmic fluid.

Standard Freeze-in

To solve the Boltzmann, we usually make several assumptions and simplifications:

- Ignore quantum statistics, $f_{\zeta}(p) \approx f_0(p) = e^{-E/T}$.
- Radiation dominated expansion, $H = \sqrt{\frac{4\pi^3}{45}g_{\text{eff}}\frac{T^2}{M_n}}$.
- Entropy conservation, $\dot{s} + 3Hs = 0$.

The Boltzmann equation becomes ($Y_{
m DM} = n_{
m DM}/s$)

$$\begin{aligned} \frac{dY_{\rm DM}}{dT} &= -\frac{\delta_h}{HsT} \Bigg[\frac{m^2 T}{2\pi^2} \ \Gamma^{\rm (CM)} K_1(m/T) + \\ & \frac{T}{2(2\pi)^4} \ \int_{4m_{\rm DM}^2}^{\infty} d\hat{s} \ \hat{s} \ \sqrt{\hat{s} - 4m_{\rm DM}^2} \ \sigma v_{\rm rel} \ K_1(\sqrt{\hat{s}}/T) \Bigg] \,, \end{aligned}$$

with $\delta_h = 1 + 1/3 \frac{T}{h_{\rm eff}} \frac{dh_{\rm eff}}{dT}$. Ignoring thermal masses for the moment (another usual simplification), the decay is already parametrized in a model independent fashion. What about pair annihilation?

Standard Freeze-in: Pair annihilation

For a model-independent parametrization of the $2 \rightarrow 2$ process we may assume $|\mathcal{M}|^2 = \gamma^2 \left(\frac{\hat{s}}{\Lambda^2}\right)^{d-4}$, which holds at high energy (*i.e.* ignoring all masses). The Boltzmann equation becomes

$$\frac{dY_{\rm DM}}{dT} = -\frac{45 \ 4^d \gamma^2}{(4\pi)^7} \sqrt{\frac{45}{4\pi^3}} \left(\frac{\delta_h}{\sqrt{g_{\rm eff}} h_{\rm eff}}\right) \left(\frac{M_p T^{2(d-5)}}{\Lambda^{2(d-4)}}\right) I_{00} \ .$$

where $I_{00} = 2 \int_0^\infty dt \, t^{2(d-4)+2} \int_1^\infty dx \, \sqrt{x^2 - 1} \, e^{-2tx}$. Integrating from $T_{\rm RH}$ to the temperature where production stops (model

Integrating from $T_{\rm RH}$ to the temperature where production stops (model dependent), we get the yield today

$$Y_{\rm DM,0} = \frac{45 \ 4^d \gamma^2}{(4\pi)^7} \sqrt{\frac{45}{4\pi^3}} \left(\frac{\delta_h}{\sqrt{g_{\rm eff}} h_{\rm eff}}\right) \left(\frac{T_{\rm RH}^{2d-9} - T_0^{2d-9}}{(2d-9)\Lambda^{2d-9}}\right) \left(\frac{M_p}{\Lambda}\right) I_{00}.$$

Two freeze-in cases:

IR freeze-in (2d - 9 < 0), *i.e.* production dominated at low energy. UV freeze-in (2d - 9 > 0), *i.e.* production dominated at high energy.

IR and UV Freeze-in

Consider χ the Dark Matter particle, and S in equilibrium with the plasma.

$$\mathcal{L}_{\rm int} = -yS\bar{\chi}\chi$$

$$\mathcal{L}_{\mathrm{int}} = -rac{1}{\Lambda}SSar{\chi}\chi$$

Quantum statistics and Freeze-in

Why Particle Dark Matter The Dark Matter Particle The Freeze-in mechanism The Boltzmann equation Standard Freeze-in Standard Freeze-in: Pair annihilation IR and UV Freeze-in 3 Quantum statistics and Freeze-in The Boltzmann equation for pair annihilations Impact on the pair annihilation production A model Majoron production Example: relativistic effects on fusion Production via Forbidden Freeze-in Impact of quantum statistics Standard vs Forbidden Freeze-in Boltzmann equations The radiation-fluid system The freeze-in The DM momentum

Including the quantum statistical factors, the Boltzmann equation for $2\to 2$ production channel is 2

$$\frac{dY_{\rm DM}}{dT} = -\frac{\delta_h}{HsT} \int \frac{d^3p_1}{(2\pi)^3 2E_1} \frac{d^3p_2}{(2\pi)^3 2E_2} \frac{2E_1 \, 2E_2 \, \sigma \, v_{\rm rel}}{\left(e^{u \cdot p_1/T} - \zeta_1\right) \left(e^{u \cdot p_2/T} - \zeta_2\right)}$$

The $\zeta_{1,2} = 0$ is valid for non-relativistic particles (typically low temperatures), but freeze-in can happen when particles are relativistic (especially in the UV case).

² The importance of such factors for freeze-out was pointed out by G. Arcadi, O. Lebedev, S. Pokorski and T. Toma, JHEP 1908, 050 (2019) [arXiv:1906.07659], while for freeze-in by O. Lebedev and T. Toma, Phys Let. 7998, 134961 (2019) [arXiv:1908.05491]. Both papers introduce also a formalism that makes it relatively straightforward to apply in general. In principle microMEGAS + J (G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, Comput. Phys. Commun. 231 (2018) 173 [arXiv:1801.03509]) can calculate this without the inclusion of thermal masses for the moment.

Impact on the pair annihilation production

Assume a *d*-dimensional operator responsible for this process (since this is a high energy approximation, $m \approx \alpha T$). Then we get

$$Y_{\rm DM,0} = \frac{45 \ 4^d \gamma^2}{(4\pi)^7} \sqrt{\frac{45}{4\pi^3}} \left(\frac{\delta_h}{\sqrt{g_{\rm eff}} h_{\rm eff}}\right) \left(\frac{T_{\rm RH}^{2d-9} - T_0^{2d-9}}{(2d-9)\Lambda^{2d-9}}\right) \left(\frac{M_p}{\Lambda}\right) \ I_{\zeta_1 \zeta_2} \ ,$$

The only difference between this the $\zeta_{1,2} = 0$ approach comes from

$$I_{\zeta_1,\zeta_2} = \int_{\alpha}^{\infty} dt \, t^{2d-6} \int_{1}^{\infty} dx \frac{\log\left[\frac{\left[e^{k_+} - \zeta_1\right]\left[e^{k_-} - \zeta_2\right]}{\left[e^{k_-} - \zeta_1\right]\left[e^{k_-} - \zeta_2\right]}\right]}{(e^{2t\,x} - \zeta_1\zeta_2)} \; ,$$

with $k_{\pm} = t \, x \pm \sqrt{t^2 - \alpha^2} \, \sqrt{x^2 - 1}$.

Impact on the pair annihilation production

Production due to boson (fermion) annihilation *underestimates* (*overestimates*) the relic abundance of DM.

Consider the case of neutrino frozen-in DM with the neutrino masses being produced from the VEV of a Majoron-like particle, S. ³ Lightest sterile neutrino, ν , is a DM candidate with

$$-\Delta \mathcal{L} = \frac{\lambda}{2} s \, \nu \nu \; .$$

Focusing on the non-thermal S, with $S \to s + v_s$ (S is at zero temperature). That is, we assume absence of s in the early Universe, produced via:

- Pair annihilation $hh \rightarrow ss$ (always active).
- Fusion $hh \rightarrow s$ (active for $2m_h < m_s$).
- Decay $h \to ss$ (active for $m_h > 2m_s$).

³ V.De Romeri, DK, O. Lebedev, T. Toma [work on progress...].

Consider the case of neutrino frozen-in DM with the neutrino masses being produced from the VEV of a Majoron-like particle, S. ³ Lightest sterile neutrino, ν , is a DM candidate with

$$-\Delta \mathcal{L} = \frac{\lambda}{2} s \, \nu \nu \; .$$

Focusing on the non-thermal S, with $S \to s + v_s$ (S is at zero temperature). That is, we assume absence of s in the early Universe, produced via:

- Pair annihilation $hh \rightarrow ss$ (always active).
- Fusion $hh \rightarrow s$ (active for $2m_h < m_s$).
- Decay $h \to ss$ (active for $m_h > 2m_s$).

$$Y_{\rm DM} \approx 2BR_{s \to \nu\nu} Y_s$$
.

³ V.De Romeri, DK, O. Lebedev, T. Toma [work on progress...].

Majoron production

Production via $hh \rightarrow s$ can easily dominate the production!

Example: relativistic effects on fusion

For $m_s \ll 2m_{h,0},$ fusion happens at $T \approx T_C$ where the Higgs is almost massless.

Forbidden Freeze-in

Production via Forbidden Freeze-in

Forbidden freeze-in: Plasma particles produce Dark Matter via kinematically forbidden decays. ⁴

Assuming $\Gamma = \frac{\gamma^2}{8\pi} m \left(\frac{m}{\Lambda}\right)^{2(d-4)}$ and $m = \alpha T$, the yield of DM becomes

$$Y_{\rm DM,0} = \frac{45 \left(\gamma \alpha^{d-2}\right)^2}{\left(2\pi\right)^6} \sqrt{\frac{45}{4\pi}} \left(\frac{\delta_h}{\sqrt{g_{\rm eff}} h_{\rm eff}}\right) \left(\frac{T_{\rm RH}^{2d-9} - T_0^{2d-9}}{\Lambda^{2d-9} (2d-9)}\right) \left(\frac{M_p}{\Lambda}\right) I_{\zeta} ,$$

with $T_0 = \frac{2m_{\rm DM}}{\alpha}$, and $I_{\zeta} = \int_0^\infty dx \frac{(x^2 - 1)^{1/2}}{e^{\alpha x} - \zeta}$. Similar behavior as in the $2 \to 2$ case.

Behavior was noted in:

V. S. Rychkov and A. Strumia, Phys. Rev. D 75, 075011 (2007), hep-ph/0701104

A. Strumia, JHEP 1006, 036 (2010), arXiv:1003.5847 [hep-ph].

M. J. Baker, M. Breitbach, J. Kopp and L. Mittnacht, JHEP 1803, 114 (2018), arXiv:1712.03962 [hep-ph].

L. Bian and Y. L. Tang, JHEP 1812, 006 (2018), arXiv:1810.03172 [hep-ph].

Forbidden freeze-in general treatment: L. Darmé, A. Hryczuk, DK, L. Roszkowski, arXiv:1908.05685

14/21

Impact of quantum statistics

The situation is a bit better than the pair annihilation case. However, production due to boson (fermion) annihilation *underestimates* (*overestimates*) the relic abundance of DM.

Standard vs Forbidden Freeze-in

Non-standard cosmological history

Why Particle Dark Matter The Dark Matter Particle The Freeze-in mechanism The Boltzmann equation Standard Freeze-in • Standard Freeze-in: Pair annihilation IR and UV Freeze-in The Boltzmann equation for pair annihilations Impact on the pair annihilation production A model Majoron production Example: relativistic effects on fusion Production via Forbidden Freeze-in Impact of quantum statistics Standard vs Forbidden Freeze-in Non-standard cosmological history Boltzmann equations The radiation-fluid system The freeze-in The DM momentum

Boltzmann equations

Assume there a fluid (Φ) that at some point dominates the energy density of the Universe, and later decay to plasma. For simplicity, assume that a plasma particle (S) decays to DM (IR freeze-in fo the moment). The Boltzmann equations we have to solve are

$$\begin{aligned} \frac{d\rho_{\Phi}}{dt} &= -3(1+w)H\rho_{\Phi} - \Gamma\rho_{\Phi} \\ \frac{ds}{dt} &= -3Hs + \frac{\Gamma}{T}\rho_{\Phi} - \frac{\Gamma_{\chi}}{T}\rho_{S} \\ \frac{dn_{\rm DM}}{dt} &= -3Hn_{\rm DM} + m_{S}^{3} \frac{\Gamma_{\chi}}{2\pi^{2}} \int_{1}^{\infty} dt \frac{\left(t^{2}-1\right)^{1/2}}{e^{m_{S}/T}t \pm 1} \end{aligned}$$

To avoid BBN constrains the fluid must decay away at some $T_{\rm END} \gtrsim 1 {\rm MeV}$ (weich puts a bound on Γ). Since DM is not thermalized, $\Gamma_{\chi} \ll \Gamma, H$.

How DM freeze-in is affected? 5

⁵ There is an extensive discussion on freeze-in production of DM during such cases, such as . J. H. Chung, E. W. Kolb and A. Riotto, Phys. Rev. D **60** (1999) 063504[hep-ph/9809453], M. Drees and F. Hajkarim, JCAP **1802**, 057 (2018) [arXiv:1711.05007], F. D'Eramo, N. Fernandez and S. Profumo, JCAP **1802**, 046 (2018) [arXiv:1712.07453], N. Bernal, F. Elahi, C. Maldonado and J. Unwin, JarXiv:1909.07992], and many others. P. Arias, DK, L. Roszkowski [work in progress...].

The radiation-fluid system

Assuming 3(1+w)<4 (possible early radiation domination), we may solve just the radiation- $\Phi\text{-}\mathsf{DM}$ system. 6

⁶ To solve the system of BEs, we employ the ODE solver NaBBODES build by DK.

The freeze-in

The DM momentum

Summary

Summary

Why Particle Dark Matter The Dark Matter Particle The Freeze-in mechanism The Boltzmann equation Standard Freeze-in • Standard Freeze-in: Pair annihilation IR and UV Freeze-in The Boltzmann equation for pair annihilations Impact on the pair annihilation production A model Majoron production Example: relativistic effects on fusion Production via Forbidden Freeze-in Impact of quantum statistics Standard vs Forbidden Freeze-in Boltzmann equations The radiation-fluid system The freeze-in The DM momentum

* Quantum statistics

- Relativistic freeze-in can happen in (almost) any model.
- Standard approach typically underestimates (overestimates) the relic for production from bosons (fermions).

* Forbidden channels

- It should be studied, since plasma particles develop thermal masses.
- Opens-up distinct parameter space (typically larger couplings than the standard freeze-in).
- Re-examine models?
- * Non-standard expansion
 - Freeze-in happens typically at high temperatures (unknown physics may exist).
 - The result is a different scaling of DM production.
 - Possibility for larger couplings without over-closing the Universe.
 - What's up with the momentum?

Thank you!