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1. Motivation
Current measurements of the masses of the Higgs and the top quark, place our universe in a

metastable region of the Higgs field potential

[Degrassi et al., 2012]

[Buttazzo et al., 2013]

The metastability region is characterized by more than one local minimum allowing for

tunneling phenomena associated with regions of different phases.

[Coleman, 1977]

[Callan and Coleman, 1977]
Tachyonic regions and gradient effects are not well described by a

Coleman-Weinberg potential and a new method must be sought.
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2.1. Background
Tunneling Phenomena

• Energetically forbidden regions are
accessed in QM through tunneling.

• Probabilities of excitation are exponentially
suppressed.

Vacuum state decay

• The expectation value of a field at tree-level
corresponds to a local minimum.

• A theory with more than one local minimum
presents different vacuum sectors.

• They can be connected by specific
Euclidean solutions of the classical e.o.m..
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2.2. Background
How to produce true vacuum?

A non-homogeneous background called the bounce, denoted by ϕb(r), is used subject to a

scalar potential able to nucleate bubbles.

Found in “How To: Absurd Scientific Advice for Common Real-World Problems”

by Randall Munroe author of XKCD.com Comics

False 

Vacuum 

True 

Vacuum

Gradients play a role in tunneling situations, which most treatments do not account for.

Different cases such as other geometries, EW phase transition and scale invariant potentials,

etc. have been treated

[Lee and Weinberg, 1986]

[Andreassen et al., 2017]

[Baacke, 1990], [Baacke and Junker, 1994],

[Sürig, 1998], [Garbrecht and Millington, 2015],

[Garbrecht and Millington, 2017], [Ai et al., 2018].
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3. Previous Studies
Semi-classical field theory
Approximate the euclidean vacuum to vacuum
transition amplitude for a theory,

Z [0] = 〈ϕ+|e−HT/}|ϕ+〉= N
∫

Dφe−SE [φ ],

using the extremal point of the action, which
satisfies the boundary conditions at hand.

Effective action in the standard model
Some have investigated conditions for vacuum
stability.
Others assume a metastable situation and
compute the decay rates to use as bounds

There is a relation between the decay rate, Γ ,
and the effective action, Γ(n), given by

Γ /V = 2 |Im e−Γ(n)[ϕ(n)]/h̄|/VT

In our study

Γ(1)[ϕ(1)] = B +}B(1) +}2B(2)

[Hung, 1979], [Cabibbo et al., 1979]

[Isidori et al., 2001].

[Garbrecht and Millington, 2015]
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4. The Questions
Are quantities computed using effective potentials gauge independent?

[Jackiw, 1974]

[Andreassen et al., 2014]

The effective potential is generally not gauge-independent, unless the

quantities rely solely on extremal points.
(see [Nielsen, 1975, Aitchison and Fraser, 1984],

[Metaxas and Weinberg, 1996, Lalak et al., 2016],

[Endo et al., 2017, Plascencia and Tamarit, 2016].)

• How to deal with gauge fields using these methods?

• How big are the contributions to the rate coming from

radiative corrections and gradient effects?

• Are higher loop corrections to decay rates over

inhomogeneous backgrounds gauge dependent?
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5. Our toy model for a U(1)

Consider the following Lagrangian in Euclidean space-time

LE =
1
4

FµνFµν + (Dµφ )∗(Dµφ ) + U(φ ∗φ ) +LG.F. +Lghost,

where

U(φ ∗φ ) = α(φ ∗φ ) + λ (φ ∗φ )2 + λ6(φ ∗φ )3,

LG.F. =
1

2ξ
(∂µ Aµ−ζ g φ G)2,

and leads to the partition function

Z [J,Kµ , ψ̄,ψ ] =
∫

D [φ ,Aµ ,η , η̄ ] exp

(
− 1

h̄

∫
d4x

[
LE−J(x)φ (x)

−Kµ(x)Aµ(x)− ψ̄(x)η(x)− η̄(x)ψ(x)
])

.
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6. Wait, what is bouncing here?

The field configuration ϕb(r) is obtained from the
classical e.o.m. by looking at O(4) invariant solu-
tions connecting the minima.

In a thin wall approximation the dissipative term is
ignored, with r2 = x2 + x2

4 one has:

−d2ϕ

dr2 −
3
r

dϕ

dr
+ U ′(ϕ) = 0,

alternatively in Hyper-spherical harmonics’ terms
we keep the lower angular momentum harmonics.

We perform a semi-classical expansion for the theory by expanding around ϕb, e.g. making the
substitution:

φ =
1√
2

(ϕb + Φ̂ + iG).
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7. 1-PI Effective action
The computation of the 1-PI effective action formally gives the expression,

Γ(1)[ϕ(1)] = S[ϕ(1)] +
h̄
2

log
detM−1

Φ̂
(ϕ(1))

detM−1
Φ̂

(0)
+

h̄
2

log
detM−1

(Aµ ,G)(ϕ(1))

detM−1
(Aµ ,G)(0)

− h̄ log
detM−1

(η̄ ,η)(ϕ(1))

detM−1
(η̄ ,η)(0)

,

where the operators are:

M−1
Φ̂

(ϕ
(1)) =−∆ + α + 3λ (ϕ

(1))2 +
15λ6

4
(ϕ

(1))4 ,

M−1
(Aµ ,G)(ϕ

(1)) =

(−∆ + g2 (ϕ(1))2)δµν + ξ−1
ξ

∂µ∂ν

(
ζ +ξ

ξ

)
g (∂µϕ(1)) +

(
ζ−ξ

ξ

)
g ϕ(1) ∂µ

2g (∂νϕ(1)) +
(

ξ−ζ

ξ

)
g ϕ(1) ∂ν −∆ + α + λ (ϕ(1))2 + 3λ6

4 (ϕ(1))4 + ζ 2

ξ
g2 (ϕ(1))2

 ,

M−1
(η̄ ,η)(ϕ

(1)) =−∆ + ζ g2 (ϕ
(1))2.

and ϕ(1) contains the quantum fluctuations.

Obs: When evaluated at constant field values, it reduces to the Coleman-Weinberg potential (CW)
times a volume factor.
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8. Self-consistent Green’s function method
aka the IDEAL Plan

1. Obtain ϕb the bounce as described previously.

2. Solve for the tree-level Green’s functions in position space

δ 2S
δ Φ(x)δ Φ(z)

∣∣∣∣
φ=ϕb

G(ϕb;z,y) = δ
(4)(x−y).

3. Compute the “log det” terms from the 1-PI effective action Γ(1)[ϕb].

4. The tadpole function for a field φ on the background ϕb,

Π(ϕb;x)ϕb(x) =
δ

δϕ(x)
log

detM−1
ϕb

[ϕ(x)]

detM−1
ϕb [0]

gives the corrections to the bounce, δϕ , according to

−∂
2
z δϕ(x) + U ′(ϕb(x) + δϕ(x)) +}Π(ϕb;x)ϕb(x) = 0

5. Substituting δϕ back into the action yields quadratic corrections to the decay rate.
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9. The slide for Feynman fans

(a) First type of contributions from

Φ̂.

(b) Second tadpole type

contribution from Φ̂
(c) Tadpole contribution coming

from the ghost fields η̄, η.

(d) Tadpole contributions from the gauge field
components A1, A2, A3 parallel to the bubble

wall.

(e) Tadpole contribution coming from the coupled
sector of A4, G.

(f) Dumbbell (Bongo) diagram corresponding to the B(2) corrections
coming from the improvements to the initial bounce.

× represents background insertions

represents fluctuations around ϕb
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10. Simplifications and Assumptions

R

z⊥zk
Planar Wall (3 + 1 Decomposition)

Fourier transform the tangential directions to

the bubble wall. This allows us to express

Green’s functions as sums over 3-momentum.

Handle the easy Gauge first

ξ = ζ = 1 decouples most of the components

of Aµ so only A4 and the Goldstone boson G

are coupled.
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11.1. Quest for a solution I: The easy components

Compactified radial coordinate z ∈ (−∞,∞) to u ∈ [−1,1] and scan over u′, to obtain the

2-point Green’s function.

For every u′ a splitting into an increasing and decreasing function is made:

G(u,u′) = Θ(u−u′)GR(u) + Θ(u′−u)GL(u)

and properly accounting for the gluing conditions, the system is solved numerically.

For the coupled block (A4,G)

We have an extra parameter, k, for |k|. 2g∂ϕ the gradients dominate the fluctuation operator

and the system must be solved numerically using a matrix version of the splitting above. Now

8 functions to be found.
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11.2. Quest for a solution II: larger |k|

Iterative treatment to obtain the Green’s functions
Split the operator into a diagonal and off-diagonal part,

M−1
(A4,G);k(ϕb;z) = M−1

0 (z) + δM−1(z) =

(
M−1

k (ϕb(z)) 0
0 N−1

k (ϕb(z))

)
+

(
0 2g(∂zϕb)

2g(∂zϕb) 0

)
,

iterate over the solution to the diagonal part to include gradient corrections to all orders.

M (n+1)(z,z ′) =−
∫

dzM0(z)δM−1(z)M (n)(z,z ′)

This simultaneously expands on the coupling g and the gradients of the background .
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11.3. Quest for a solution III: larger k values

Numerical perturbative solution

For a value of |k|, solve diagonals
numerically for G(0)(u,u′) (orange
dashed) and iterate for corrections
(solid blue).

Compute quantities of interest such
as determinants and tadpole
contributions by reconstructing
functions for a range of |k|.
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12. Renormalization
Counter terms for the theory are found through homogeneous terms coming from CW analogue
computations

Lct[ϕ] =
1
2

δZ (∂ϕ)2 +
δα

2
ϕ

2 +
δλ

4
ϕ

4 +
δλ6

8
ϕ

6 +
δλ8

16
ϕ

8.

the homogeneous term for the scalar field for example, looks like:

I1 ≡
h̄
2

∫
BΛ

d3k
(2π)3

∫
∞

−∞

dk4

2π
log

k2
4 + k2 + U ′′(φ)

k2
4 + k2 + U ′′(φfv)

,

which together with similar terms for the other fields are enough to determine the coupling
counter-terms.

To remove the remaining divergences one needs another method to determine the wave-function
renormalization δZ . (You are encouraged to ask about the details)
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13. Problems

• Tuning the potential One must ensure the validity of the thin wall approximation by picking
potentials that present degenerate vacua.

• Tuning the potential To obtain finite functional determinants one requires degeneracy at the
CW-level.

• Renormalizing The model is not renormalizable without introducing higher-dimensional operators.

• Renormalizing The CW-potential allows to extract coupling counterterms, the wavefunction one
is obtained through a mixed representation gradient expansion technique (See
[Chan, 1985, Cheyette, 1985, Gaillard, 1986] and [Henning et al., 2016]).

• Numerical obstacles: Corrections need sampling in two dimensions for numerical integrals with
interpolation steps in between (one iteration needs around 15k sec with 6 cores., it takes long)

• Numerical obstacles: A large region in |k| must be scanned.
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14.1. Results
Gradient effects on the total tadpole functions are shown, intermittent curves represent the old result
ignoring gradients, while the solid line includes the corrections. The bottom row displays the results
after renormalizing and including the tree-level contributions respectively.

◆◆◆◆
◆
◆
◆
◆
◆
◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

◆◆◆
◆◆
◆◆
◆◆
◆
◆
◆
◆

-1.0 -0.5 0.0 0.5 1.0

-50

0

50

100

150

-1.0 -0.5 0.0 0.5 1.0
0.998

0.999

1.000

1.001

1.002

1.003

1.004

-1.0 -0.5 0.0 0.5 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-1.0 -0.5 0.0 0.5 1.0

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Juan S. Cruz | University of Helsinki | Cosmology Seminar | arxiv[hep-th]:2006.04886 18

T70 Group - Theoretical Physics of the Early Universe

Physics Department

Technische Universität München



14.2. Results
Gradient effects on the tadpole functions are shown per field, the dashed line is the CW-result while
the solid line includes gradient corrections:
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The scalar field suffers the largest corrections due to the background, followed by the A4−G sector.
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14.3. Results
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Gradient effects of the different fields to the
effective action:

Value [α−3/2]

(B(0) +B(1)ren)/V 0.473

B(2)ren/V −0.000345

(B(0) +B(1)ren +B(2)ren)/V 0.474

The plots above show the bounce (dashed) and its corrections (solid) as well as the relative variation in
the bottom plot.
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15. Conclusions and Outlook

• The decay rate for this model is computed together with corrections coming from

gradients of the background using a self-consistent prescription, indicating

contributions from gradients comparable to 1-loop.

• A numerical treatment has been developed to compute the quantities involved

which can be applied to other cases.

• We renormalize the theory to 1-loop through the use of the CW potential and a

gradient expansion.

What’s next...
• Consider different gauge-parameters and a bigger parameter space.

• Study cases abandoning the planar and/or thin wall approximations.

• Consider more realistic models, where metastable vacua appear through radiative

corrections.
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Thank you for your attention!



A.1. Details for the computation of the bounce
Boundary conditions for the bounce

t =±∞,φ(t ,x) = φfv and |x| → ∞,φ → φfv

Find a bounce solution for tuned CW-potential, center the wall and extend values to infinity.
Conclusions from the previous studies:

• Scalar loops increase B and cause faster decay.

• Fermion loops decrease B and prolong the decay.

Parameters used for the current study:

α = 2 λ =−2.02546 β =
1
2

g =
1
2
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A.2. Extracting the zero modes

The fluctuation operator usually contains 0 modes corresponding to certain symmetries of the bounce
solution as for example the location of the wall and translations.

h̄B(1)

Φ̂;dis
=

iπ h̄
2
− h̄

2
log

(
(VT )2α5

4|λ0|

(
B

2π h̄

)4
)

In order to compute the functional integrals, one extracts such 0 modes, meaning that the
determinants that appear in the presentation do not actually contain zero-modes but the instead are
included as pre-factors coming out of the integration in the associated collective coordinate.
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A.3. Implementation II: Functional determinants

The s-parameter

We deform the operator through an auxiliary parameter s, as done by [Baacke and Junker, 1994].

Given a differential operator M−1 then its deformation is M−1
s = M−1 + s.

If G is a Green’s function for M−1 with spectral decomposition ∑n
fn(x)f ∗n (y)

λn
then the spectral

decomposition for the deformed operator is ∑n
f ∗n (y)fn(x)

λn+s and one can write

log
detM−1(ϕ)

detM−1(χ)
=−

∫
∞

0
ds
∫

d4x Gs(ϕ ;x ,x)−Gs(χ ;x ,x)

We take the 3+1 decomposition and numerically integrate up to some cutoff in tangential momentum
and the s-parameter in our case:

log
detM−1(ϕb)

detM−1(0)
=−

∫
∞

0
ds
∫

∞

−∞

dz
∫

d3x
∫ Λk

0
dk

k2

2π2 tr(Gs,k(ϕb;z,z)−Gs;k(0;z,z))

Juan S. Cruz | University of Helsinki | Cosmology Seminar | arxiv[hep-th]:2006.04886 25

T70 Group - Theoretical Physics of the Early Universe

Physics Department

Technische Universität München



A.4. Wavefunction renormalization

One adds and subtracts a kernel obtained from a covariant gradient expansion to the effective action,
as well as a counter term for just the divergences:

Γ|ren ⊃
1
2

tr
∫ Λ2

s

0
ds
∫

d4x (Mϕb,s(x ,x)−M hom
ϕb,s (x ,x) + Ks(x)(∂ϕb)2)

−
∫

d4x (V ren
CW(ϕb)−V ren

CW(v))− 1
2

∫
d4x(∂ϕb)2

− 1
2

∫
d4x (K (x) + δZ )(∂ϕb)2.

This technique ensures that the integrand in the first line only has terms that are finite when to cutoff is
taken to infinity. K is then obtained from an expansion of the form:

Γ⊃−1
4

∫
d4x

d4p
(2π)4

(
∂ 2∆A,µµ

∂pρ∂pσ

∂ρ∂σm2
A +

∂ 2∆G

∂pρ∂pσ

∂ρ∂σm2
G

)
where an expansion like the one below was used

tr logM̃−1
(Aµ ,G,p)(x) = tr logM̃−1

0(Aµ ,G,p)− tr
∞

∑
m=1

(−1)m

m

(
M̃0(Aµ ,G,p)(M̃

−1
1(Aµ ,G,p) +M̃−1

2(Aµ ,G,p))
)m
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A.5. Contact with Phenomenology
Our theory although picks specific higher dimensional operators, it is consistent and can be thought of
as an effective field theory coming from a UV-theory having heavy Dirac fermions Ψ,χ , in which Ψ is a
gauge singlet and χ has charge -1,:

Lheavy =−yψ̄Φχ + h.c.

One-loop diagrams have interactions λ2m|Φ|2m with

λ2m ∼
y2m

16π2M2(m−2)

At the benchmark point, this means each higher order interaction after 6 will be suppressed by a factor
of 1/10 for a coupling y within the perturbative regime.

λn|Φ|2m

λ6|Φ|6

∣∣∣∣
|Φ|2=α=2

=

(
4π

y2

)2(m−3)

.
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