Spectral dimension and other ways to recover geometric information from spectral triples

Plan for this talk:

- Spectral triples
- Fuzzy spaces
- Spectral observables
- Visualizing Truncated triples

Lisa Glaser 9th September 2020

Quantum Gravity on the computer

Computer simulations can:

 Calculate the mass of the Proton (lattice QCD)

Quantum Gravity on the computer

Computer simulations can:

- Calculate the mass of the Proton (lattice QCD)
- Predict gravitational wave signatures of colliding neutron stars and black holes (numerical relativity)

Quantum Gravity on the computer

Computer simulations can:

- Calculate the mass of the Proton (lattice QCD)
- Predict gravitational wave signatures of colliding neutron stars and black holes (numerical relativity)
- Maybe they can also help us understand Quantum Gravity?

The path integral of Quantum Gravity

$$\langle f \rangle = rac{\int f(g) \; e^{i \mathcal{S}(g)} \; \mathcal{D}[g]}{\int e^{i \mathcal{S}(g)} \; \mathcal{D}[g]}$$

Ingredients:

- Geometry g and measure $\mathcal{D}[g]$
- Functions of geometry f
- $\blacktriangleright \text{ Action } \mathcal{S}$

The path integral of Quantum Gravity

$$\langle f \rangle = rac{\int f(g) \; e^{i \mathcal{S}(g)} \; \mathcal{D}[g]}{\int e^{i \mathcal{S}(g)} \; \mathcal{D}[g]}$$

Ingredients:

- Geometry g and measure D[g]
 Use spectral triples to define g and D[g]
- Functions of geometry f
- $\blacktriangleright \text{ Action } \mathcal{S}$

The plan

- Spectral triples
- Fuzzy spaces
- Spectral observables
- Visualizing Truncated triples

Motivation: Can we hear the shape of a drum?

Eigenvalue problem:

For a membrane Ω held fixed along bdry Γ the eigenvalue problem can be stated as:

$$\frac{1}{2}\nabla^2\psi_n(x) + \lambda_n\psi_n(x) = 0$$

$$\psi_n(x) = 0 \text{ on } \Gamma$$

If two membranes Ω_1, Ω_2 (boundaries Γ_1, Γ_2) lead to the same spectrum λ_n , are they the same (up to symmetry transformations)?

Geometry as a spectral triple

- an Algebra \mathcal{A} with action on \mathcal{H}
- \blacktriangleright a Hilbert space \mathcal{H}
- a Dirac operator D acting on \mathcal{H}

The 'sound' is not enough

 $(\mathcal{A}, \mathcal{H}, D)$

{λ_n} = spec(D) is not enough, we need to know A, algebra of functions on the space (drum)

 For manifolds A is commutative, can generalize to non-commutative

(A. Connes, Int.J.Geom.Meth.Mod.Phys. 5, 1215-1242 (2008)) (more detail e.g. A. Connes, Commun.Math.Phys. 182, 155-176 (1996))

Geometry as a spectral triple

- an Algebra \mathcal{A} with action on \mathcal{H}
- \blacktriangleright a Hilbert space \mathcal{H}
- a Dirac operator D acting on \mathcal{H}

Axioms of non-commutative geometry ^a

▶ \exists a faithfull action \mathcal{A} in \mathcal{H}

 $(\mathcal{A}, \mathcal{H}, D)$

- *H* is a bimodule over *A* (there is a left and a right action of *A* in *H*)
- First order condition $[[D, a \triangleright], \triangleleft b] = 0$ for $a, b \in A$

^aAbridged version

(A. Connes, Int.J.Geom.Meth.Mod.Phys. 5, 1215-1242 (2008))

(more detail e.g. A. Connes, Commun.Math.Phys. 182, 155-176 (1996))

A simple geometry as a spectral triple

The circle as an algebra with a unitary operator U acting on $\mathcal{H} = L^2(\mathbb{S}^1)$

$$UU^* = 1$$
 $D = D^*$

$$U^*[D, U] = 1 \qquad \leftrightarrow \qquad U^*DU = D + 1$$

$$De_n = \lambda_n e_n \qquad \leftrightarrow \qquad DUe_n = (\lambda_n + 1)Ue_n$$

U generates the algebra

$$a = \sum_{\mathbb{Z}} a_n U^n$$

 $a_n \in \mathbb{C}$

Spectral triple
$$({\mathcal C}^\infty({\mathbb S}^1), L^2({\mathbb S}^1), -i\partial_\phi)$$

for any algebra element a

A simple geometry as a spectral triple

For a commutative torus take two S^1 generators U, V

 $U^*U = V^*V = 1$

We can make the torus non-commutative by introducing

$$UV = \vartheta VU \qquad \qquad \vartheta = e^{2\pi i \theta}$$

U, V generate the algebra

$$a = \sum_{\mathbb{Z}^2} a_{n,m} U^n V^m$$

for any algebra element a

Spectral triple

$$(C^{\infty}(\mathbb{T}^2), L^2(\mathbb{T}^2), -i\sigma^j\partial_j)$$

with σ_j the two off diagonal pauli matrices

How about using spectral triples as quantum geometry?

I prefer my space-time discrete/ finite, so there are two options:

Fuzzy spaces:

- Works best for very symmetric spaces
- Uses finite A
- finds D to respect first order condition

Truncations of spectral triples:

- Any spectral triple (they are mostly still very symmetric)
- $\blacktriangleright \text{ truncates } \mathcal{A} \text{ and } \mathcal{H}$
- break first order condition

Fuzzy space (p,q)

 $(s, \mathcal{H}, \mathcal{A}, \Gamma, J, \mathcal{D})$

- ► The algebra are matrices:
 A is a *- algebra M(n, C)

Extra ingredients to make it a real spectral triple

- ► KO-dimension; s = (q - p) mod 8
- Chirality; $\Gamma(v \otimes m) = \gamma v \otimes m$ with γ the chirality operator on V
- ► Real structure; J(v ⊗ m) = Cv ⊗ m* where C is charge conjugation on V J : H → H with ⟨Ju, Jv⟩ = ⟨u, v⟩

Fuzzy sphere

The continuum sphere

$$\left(\mathcal{A}=\mathcal{SU}(2),\mathcal{H}=\mathcal{L}^2(\mathcal{S}^2,\mathcal{S}),\mathcal{D}=\sigma^\mu(\partial_\mu+\omega_\mu)
ight)$$

with σ^{μ} the Pauli matrices and ω_{μ} a spin connection.

The fuzzy sphere is a finite spectral triple that approximates this.

- ► $\mathcal{A} = M(n, \mathbb{C})$ with the irred. reps. of SU(2) up to spin *j*, with $j = \frac{1}{2}(n-1)$ a natural basis,
- $\mathcal{H} = \mathbb{C}^4 \otimes M(n, \mathbb{C})$ $\mathcal{D} = 1 + \sum_{i < k}^3 \sigma^j \sigma^k \otimes [L_{jk}, \cdot]$

with L_{jk} the lie algebra generators of so(3) and σ^{j} the Pauli matrices.

Dirac operator : Form

Conditions on \mathcal{D} for a real spetral triple

Can be translated for a fuzzy space to:

(J.W. Barrett, J.Math.Phys. 56, 082301 (2015).)

Explore path integral over fuzzy spaces

$$\langle f \rangle = \frac{\int f(D) e^{-\mathcal{S}(D)} \mathrm{d}D}{\int e^{-\mathcal{S}(D)} \mathrm{d}D}$$

Explore path integral over fuzzy spaces

$$\langle f \rangle = \frac{\int f(D) e^{-\mathcal{S}(D)} dD}{\int e^{-\mathcal{S}(D)} dD} = \frac{\int f(D(K_i)) e^{-\mathcal{S}(D(K_i))} \prod_i dK_i}{\int e^{-\mathcal{S}(D(K_i))} \prod_i dK_i}$$

The simplest action

$$\mathcal{S} = g_2 \operatorname{Tr} \left(\mathcal{D}^2 \right) + \operatorname{Tr} \left(\mathcal{D}^4 \right)$$

(J.W. Barrett, LG J.Phys. A49, 245001 (2016))

What do we want from an action?

- physical motivation
 - \Rightarrow lowest order when expanding a heat kernel
- bounded from below
 - \Rightarrow for some g_2
- rises fast to infinity
 - \Rightarrow to make simulations possible

The simplest action

$$\mathcal{S} = g_2 \operatorname{Tr} \left(\mathcal{D}^2 \right) + \operatorname{Tr} \left(\mathcal{D}^4 \right)$$

(J.W. Barrett, LG J.Phys. A49, 245001 (2016))

What do we want from an action?

- physical motivation
 - \Rightarrow lowest order when expanding a heat kernel
- bounded from below
 - \Rightarrow for some g_2
- rises fast to infinity
 - \Rightarrow to make simulations possible

 \Rightarrow Matrix model in K_i

Look for phase transitions

Phase transition

- qualitative change in behavior
- Phase transition marked by peak in Variance

$$Var(\mathcal{S}) = \langle \mathcal{S}^2 - \langle \mathcal{S} \rangle^2
angle$$

- Gets sharper in larger systems
- Higher order phase transitions show signs of correlation

Look for phase transitions

A (biased) overview:

The plan

- Spectral triples
- Fuzzy spaces
- Spectral observables
- Visualizing Truncated triples

Spectral dimension

Return probability of random walk/ diffusion process aka. heat kernel

$$egin{aligned} \mathcal{K}(t) &= \sum_i e^{-t\lambda_i^{(\Delta)}}\lambda_i^{(\Delta)} \in Ev(\Delta) \ &\sim t^{-d/2}(a_0+a_2t+a_4t^2+\ldots) \end{aligned}$$

Can determine dimension from the small *t* behaviour of *K*

$$D_{s}(t) = \frac{\partial \log K(t)}{\partial \log(t)}$$
$$= t \frac{\sum_{\lambda^{(\Delta)}} \lambda^{(\Delta)} e^{-t\lambda^{(\Delta)}}}{\sum_{\lambda^{(\Delta)}} e^{-t\lambda^{(\Delta)}}}$$

Spectral dimension

Return probability of random walk/ diffusion process aka. heat kernel

$$egin{aligned} \mathcal{K}(t) &= \sum_i e^{-t\lambda_i^{(\Delta)}}\lambda_i^{(\Delta)} \in Ev(\Delta) \ &\sim t^{-d/2}ig(a_0+a_2t+a_4t^2+\ldotsig) \end{aligned}$$

Can determine dimension from the small *t* behaviour of *K*

$$D_{s}(t) = \frac{\partial \log K(t)}{\partial \log(t)}$$
$$= t \frac{\sum_{\lambda(\Delta)} \lambda^{(\Delta)} e^{-t\lambda^{(\Delta)}}}{\sum_{\lambda(\Delta)} e^{-t\lambda^{(\Delta)}}}$$

We have \mathcal{D} not Δ !

The spectral variance

Use \mathcal{D}^2 to get a Δ -type operator

$$D_{s}(t) = 2t \frac{\sum_{\lambda} \lambda^{2} e^{-t\lambda^{2}}}{\sum_{\lambda} e^{-t\lambda^{2}}}$$
$$\sim t\lambda_{0}^{2} \quad \text{for large } t$$
$$\lambda \in Ev(\mathcal{D})$$

 $\lambda_0^{\Delta} = 0 \Rightarrow \text{no problem } \lambda_0 \neq 0 \Rightarrow \text{linear mode}$

(J.W. Barrett, P.J. Druce, LG, J.Phys.A:Math.Theor.(2019))

fuzzy with N = 10

The spectral variance

Use \mathcal{D}^2 to get a Δ -type operator

$$D_{s}(t) = 2t \frac{\sum_{\lambda} \lambda^{2} e^{-t\lambda^{2}}}{\sum_{\lambda} e^{-t\lambda^{2}}}$$

~ $t\lambda_{0}^{2}$ for large t
 $\lambda \in Ev(\mathcal{D})$
 $V_{s}(t) = D_{s}(t) - t \frac{\partial D_{s}(t)}{\partial t}$

(J.W. Barrett, P.J. Druce, LG, J.Phys.A:Math.Theor.(2019))

fuzzy with N = 10

Spectral variance on random fuzzy spaces

 $V_s(t)$ (1,1)

Maximum of the spectral variance

Type (1, 1) N = 10

Intersect at g_c !

Type (1,3) N = 10

For two geometries X_1, X_2

$$d_{CK}(X_1, X_2) = \sup_{\gamma < s < \gamma + 1} \left| \log \left| \frac{\zeta^{X_1}(s)}{\zeta^{X_2}(s)} \right| \right|$$

▶ $\gamma > d/2$ for X_1, X_2 in continuum, otherwise free

(Cornelissen, G. & Kontogeorgis, A. Lett Math Phys (2017) 107: 129)

Testing the distance measure

Fuzzy S² to exact S²

(J.W. Barrett, P.J. Druce, LG arXiv:1902.03590 accepted at J.Phys.A)

Testing the distance measure

Type (2,0) N = 10 distance between g_2 (J.W. Barrett, P.J. Druce, LG arXiv:1902.03590 accepted at J.Phys.A)

Testing the distance measure

Type (2,0) N = 10 distance between g_2 (J.W. Barrett, P.J. Druce, LG arXiv:1902.03590 accepted at J.Phys.A)

Distance from the fuzzy sphere

Type (2,0)

Distance from the fuzzy sphere

What is the difference?

Volume differences are also measured, we want 'shape'-differences.

- ► $\lambda_{max} = 1$ → equal Planck lengths
- ▶ $R = 1 \rightarrow$ equal volumes

R is hard to define, so we check the other option.

Distance from the fuzzy sphere

Type (2,0)

The plan

- Spectral triples
- Fuzzy spaces
- Spectral observables
- Visualizing Truncated triples

Truncating a spectral triple

Truncate D

Replace the infinite *D* by a $n \times n$ matrix

 $D \rightarrow P_n D P_n$

with P_n a projector on the *n* smallest eigenvalues.

- Mathematically a truncation of a spectral triple leads to an operator system, which has recently gathered much interest. (A. Connes, W.D. van Suijlekom, Commun.Math.Phys.(2020), W.D. van Suijlekom, arXiv:2005.08544)
- explored one ensemble of truncations of spectral triples

```
(LG, A. Stern, J.Math.Phys. 61, 033507 (2020))
```

Today: How can we recover distances from a truncated spectral triple and visualize it.

(LG, A. Stern arXiv:1912.09227 (accepted by J.Geo.Phys.))

Distance measure in non-commutative geometry

(A. Connes, Noncommutative Geometry. (Academic Press, 1994))

$$d(\omega_1, \omega_2) = \sup_{\boldsymbol{a} \in \mathcal{A}} \{ |\omega_1(\boldsymbol{a}) - \omega_2(\boldsymbol{a})| : ||[\boldsymbol{D}, \boldsymbol{a}]|| \le 1 \}$$

Example:

Calculate distance between points x, y from function f

figure from (W.D. van Suijlekom "Noncommutative Geometry and Particle Physics" Springer (2015))

Distance measure in non-commutative geometry

(A. Connes, Noncommutative Geometry. (Academic Press, 1994))

$$d(\omega_1, \omega_2) = \sup_{\boldsymbol{a} \in \mathcal{A}} \{ |\omega_1(\boldsymbol{a}) - \omega_2(\boldsymbol{a})| : ||[\boldsymbol{D}, \boldsymbol{a}]|| \le 1 \}$$

Idea:

If we can calculate this numerically we can plot our geometry! Maybe we can see a difference between the two Dirac operators?

Distance measure in non-commutative geometry

(A. Connes, Noncommutative Geometry. (Academic Press, 1994))

$$d(\omega_1, \omega_2) = \sup_{\boldsymbol{a} \in \mathcal{A}} \{ |\omega_1(\boldsymbol{a}) - \omega_2(\boldsymbol{a})| : ||[\boldsymbol{D}, \boldsymbol{a}]|| \le 1 \}$$

Questions:

What are algebra elements a? Dirac we find has same eigenstates as sphere, can use truncated spherical harmonics as basis for P_nC[∞](S²)P_n

• Which states
$$\omega$$
?

Use localized states, inspired by

(L. Schneiderbauer, H. Steinacker 2016, J.Phys. A49 285301)

Distance measure in non-commutative geometry

(A. Connes, Noncommutative Geometry. (Academic Press, 1994))

$$d(\omega_1, \omega_2) = \sup_{\boldsymbol{a} \in \mathcal{A}} \{ |\omega_1(\boldsymbol{a}) - \omega_2(\boldsymbol{a})| : ||[\boldsymbol{D}, \boldsymbol{a}]|| \le 1 \}$$

Questions:

What are algebra elements a? Dirac we find has same eigenstates as sphere, can use truncated spherical harmonics as basis for P_nC[∞](S²)P_n

• Which states ω ?

Use localized states, inspired by

(L. Schneiderbauer, H. Steinacker 2016, J.Phys. A49 285301)

Aim:

Use the Kantorovich-Rubinstein distance between states of small dispersion to build a picture of M.

How do we define states?

Localized states

We use the dispersion and the embedding maps Y_i from the Heisenberg relations

$$\delta(\omega_k) = \sum_i \langle \omega | Y_i^2 | \omega
angle - \langle \omega | Y_i | \omega
angle^2 + \sum_{j < k} rac{c}{\delta(\omega_j, \omega_k)}$$

Now find a set of coherent states ω that minimizes this and plug them into distance equation. The repulsive potential is to ensure even distribution of points.

How do we define states?

Localized states

We use the dispersion and the embedding maps Y_i from the Heisenberg relations

$$\delta(\omega_k) = \sum_i \langle \omega | Y_i^2 | \omega
angle - \langle \omega | Y_i | \omega
angle^2 + \sum_{j < k} rac{c}{\delta(\omega_j, \omega_k)}$$

Now find a set of coherent states ω that minimizes this and plug them into distance equation. The repulsive potential is to ensure even distribution of points.

Limitations:

We are using the Y_i to define the states and calculate a distance approximation δ . This is a good choice for geometries close to the sphere but can be abritrarily bad otherwise.

How do we define states?

Localized states

We use the dispersion and the embedding maps Y_i from the Heisenberg relations

$$\delta(\omega_k) = \sum_i \langle \omega | Y_i^2 | \omega
angle - \langle \omega | Y_i | \omega
angle^2 + \sum_{j < k} rac{c}{\delta(\omega_j, \omega_k)}$$

Now find a set of coherent states ω that minimizes this and plug them into distance equation. The repulsive potential is to ensure even distribution of points.

Advantage:

We can use it to plot the states and the generated geometry using the Y_i as embedding coordinates, for illustration purposes.

How does the state size change with the cutoff?

What effect does the repulsive potential have c = 0 c = 0.001

The algorithm for state generation

- 1: Find a vector v_0 (globally) minimizing δ . Set $V = \{v_0\}$.
- 2: while $\sqrt{\delta(v)} + \sqrt{\delta(w)} \le \alpha d(v, w)$ for $v \ne w \in V$, do
- 3: Find a vector w (locally) minimizing e(w; V).
- 4: Append w to V.
- 5: for $v \in V$, do

6: Set
$$d(v, w) = \min\{|\langle v, av \rangle - \langle w, aw \rangle| : |[D, a]| \le 1\}.$$

- 7: end for
- 8: end while

A picture of geometry

The truncated sphere at size 60

The analytic solution at size 60

- generate states for a $n \times n$ matrix & calculate pairwise distances
- use graph embedding algorithm to find a locally isometric embedding
- wonder why the analytic solution is smaller

Summary

Todays story:

- Exploring NCG using computer simulations
- simulations in fuzzy spaces
- truncated NCGs as basis for simulations
- first numerical tests of one sided Heisenberg relation and Connes distance function

Immediate follow up:

- What is the difference between the two geometries?
- More simulations:
 - two-sided Heisenberg equation
 - path integral using Heisenberg equation as constraint
- More efficient imaging
 - \Rightarrow Use imaging on more states

Thanks for inviting me to talk, and I hope I can visit Helsinki some time in the future!

> <u>Contact:</u> Email: lisa.glaser@univie.ac.at Twitter: @GravityWithHat

Full axioms of non-commutative geometry

A finite real spectral triple consists of

- 1. The *n*-th characteristic value of the resolvent of *D* is $O(n^{-\frac{1}{p}})$.
- 2. $[[D, a], b] = 0 \forall a, b \in A$
- 3. For any $a \in A$ both a and [D, a] belong to the domain of δ^m , for any integer m where δ is the derivation: $\delta(T) = [|D|, T]$.
- There exists a Hochschild cycle c ∈ Z_p(A, A) such that π_D(c) = 1 for p odd, while for p even, π_D(c) = γ is a Z/2 grading.
- 5. Viewed as an A-module the space $\mathcal{H}_{\infty} = \bigcap DomD^m$ is finite and projective. Moreover the following equality defines a hermitian structure (|) on this module:

$$\langle \xi, a\eta
angle = \int a(\xi|\eta) |D|^{-p}, orall a \in \mathcal{A}, orall \xi, \eta \in \mathcal{H}_{\infty}$$

(as summarized in A. Connes, Commun.Math.Phys. 182, 155-176 (1996))

States are points

Aim:

Use the Kantorovich-Rubinstein distance between states of small dispersion to build a picture of M.

Let $(C^{\infty}(M), H, D)$ be a commutative spectral triple equipped with a (not necessarily Riemannian) embedding $\iota : M \to \mathbb{R}^N$ (whose components are viewed as a set Y_i of generators of $C^{\infty}(M)$), and define the dispersion δ of a state ω to equal $\sum_i \omega(Y_i^2) - \omega(Y_i)^2$.

Lemma

There exists a map $b : S(A) \rightarrow M$ such that

$$|d(\omega_1,\omega_2) - d(b(x_1),b(x_2))| = O(\sqrt{\delta(\omega_1)} + \sqrt{\delta(\omega_2)}),$$

as $\delta(\omega_i) \rightarrow 0$, uniformly in ω_i .

Points are states

► Is there a picture of *M* inside $P_{\Lambda}H$, if Λ is large enough? 'Localization' map $\phi_{\Lambda} : M \to S(B(H))$ that factors through $P_{\Lambda}H$ and maps points $x \in M$ to corresponding vector states $\phi_{\Lambda}(x)$, such that $\phi_{\Lambda}(x)$ has asymptotically vanishing dispersion and $d(\phi_{\Lambda}(x), \phi_{\Lambda}(y))$ eventually equals d(x, y).

Lemma

There exists a map ϕ : $M \times \mathbb{R}_+ \to S(B(H))$, $(x, \Lambda) \mapsto \phi_{\Lambda}(x)$, such that

- For all Λ , ϕ_{Λ} factors through a map $L_{\Lambda} : M \to P_{\Lambda}H$.
- The dispersion $\sum_i \phi_{\Lambda}(x)(Y_i^2) \phi_{\Lambda}(x)(Y_i)^2$ is $O(\Lambda^{-2} \log \Lambda)$ as $\Lambda \to \infty$.
- For all $x, y \in M$, $|d(\phi_{\Lambda}(x), \phi_{\Lambda}(y)) d(x, y)| = O(\Lambda^{-1}(\log \Lambda)^{\frac{1}{2}})$.

Larger cutoff \Rightarrow more points

We could alternatively have phrased the third point in the lemma as follows: the maps ϕ_{Λ} and *b* (from 1) are asymptotically inverse to each other in the sense that $d(x, (b \circ \phi_{\Lambda})(x)) = O(\Lambda^{-1})$ and $d((\phi_{\Lambda} \circ b)(\omega), \omega) \leq \sqrt{\delta(\omega)} + O(\Lambda^{-2})$.

In particular the previous lemma tells us how to scale the number of generated states with Λ :

Corollary

A sequence of equidistributed subsets $\{V_n\}_n$ of M, in the sense that $\min d|_{V_n \times V_n \setminus \Delta} = \Theta(|V_n|^{-1/n})$, will satisfy

$$\sup_{(x,y)\in V_n}\frac{|d(x,y)-d(\phi_{\Lambda_n}(x),\phi_{\Lambda_n}(y))|}{d(x,y)}=O(1)$$

as $\Lambda \to \infty$, whenever $|V_n| = \Theta(\operatorname{rank} P_{\Lambda_n})$.