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Quantum Gravity on the computer

Computer simulations can:

I Calculate the mass of the Proton
(lattice QCD)

I Predict gravitational wave signatures of
colliding neutron stars and black holes
(numerical relativity)

I Maybe they can also help us
understand Quantum Gravity?
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The path integral of Quantum Gravity

〈f 〉 =

∫
f (g) eiS(g) D[g]∫

eiS(g) D[g]

Ingredients:

I Geometry g and measure D[g]

I Use spectral triples to define g and D[g]

I Functions of geometry f
I Action S
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Motivation: Can we hear the shape of a drum?
Eigenvalue problem:
For a membrane Ω held fixed along bdry Γ
the eigenvalue problem can be stated as:

1
2∇

2ψn(x) + λnψn(x) = 0

ψn(x) = 0 on Γ

If two membranes Ω1,Ω2 (boundaries Γ1, Γ2)
lead to the same spectrum λn, are they the
same (up to symmetry transformations)?

(M. Kac, The American Mathematical Monthly 73, 1–23 (1966)) 4/ 31



Geometry as a spectral triple

(A,H,D)

I an Algebra A with action on H
I a Hilbert space H
I a Dirac operator D acting on H

The ’sound’ is not enough

I {λn} = spec(D) is not enough, we need to know A, algebra of
functions on the space (drum)

I For manifolds A is commutative, can generalize to
non-commutative

(A. Connes, Int.J.Geom.Meth.Mod.Phys. 5, 1215-1242 (2008))

(more detail e.g. A. Connes, Commun.Math.Phys. 182, 155-176 (1996))

5/ 31



Geometry as a spectral triple

(A,H,D)

I an Algebra A with action on H
I a Hilbert space H
I a Dirac operator D acting on H

Axioms of non-commutative geometry a

I ∃ a faithfull action A in H
I H is a bimodule over A (there is a left and a right action of A in
H)

I First order condition [[D,a.], /b] = 0 for a,b ∈ A

aAbridged version
(A. Connes, Int.J.Geom.Meth.Mod.Phys. 5, 1215-1242 (2008))

(more detail e.g. A. Connes, Commun.Math.Phys. 182, 155-176 (1996))
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A simple geometry as a spectral triple

The circle as an algebra with a unitary operator U acting onH = L2(S1)

UU∗ = 1 D = D∗

U∗[D,U] = 1 ↔ U∗DU = D + 1
Den = λnen ↔ DUen = (λn + 1)Uen

U generates the algebra

a =
∑
Z

anUn

an ∈ C

for any algebra element a

Spectral triple

(C∞(S1),L2(S1),−i∂φ)
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A simple geometry as a spectral triple

For a commutative torus take two S1 generators U,V

U∗U = V ∗V = 1

We can make the torus non-commutative by introducing

UV = ϑVU ϑ = e2πiθ

U,V generate the algebra

a =
∑
Z2

an,mUnV m

for any algebra element a

Spectral triple

(C∞(T2),L2(T2),−iσj∂j)

with σj the two off diagonal pauli
matrices
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Spectral triples as quantum geometry?

How about using spectral triples as quantum geometry?

I prefer my space-time discrete/ finite, so there are two options:

Fuzzy spaces:
I Works best for very

symmetric spaces
I Uses finite A
I finds D to respect first order

condition

Truncations of spectral triples:
I Any spectral triple (they are

mostly still very symmetric)
I truncates A and H
I break first order condition
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Fuzzy space (p,q)

(s,H,A, Γ, J,D)

I The algebra are matrices:
A is a ∗− algebra M(n,C)

I Acting on a Hilbert space:
H = V ⊗M(n,C)
where V is a (p,q)-Clifford module

Extra ingredients to make it a real spectral triple

I KO-dimension;
s = (q − p) mod 8

I Chirality;
Γ(v ⊗m) = γv ⊗m with γ the chirality operator on V

I Real structure;
J(v ⊗m) = Cv ⊗m∗ where C is charge conjugation on V
J : H → H with 〈Ju, Jv〉 = 〈u, v〉

(as stated in J.W. Barrett J.Math.Phys. 56, 082301 (2015))
8/ 31



Fuzzy sphere

The continuum sphere

(
A = SU(2),H = L2(S2,S),D = σµ(∂µ + ωµ)

)
with σµ the Pauli matrices and ωµ a spin connection.

The fuzzy sphere is a finite spectral triple that approximates this.
I A = M(n,C)

with the irred. reps. of SU(2) up to spin j , with j = 1
2(n − 1) a

natural basis,
I H = C4 ⊗M(n,C)

I D = 1 +
∑3

j<k σ
jσk ⊗

[
Ljk , ·

]
with Ljk the lie algebra generators of so(3) and σj the Pauli
matrices.
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Dirac operator : Form

Conditions on D for a real spetral triple

D = D† DΓ = ±ΓD
DJ = ±JD [[D, ρ(a).], /ρ(b)] = 0

Can be translated for a fuzzy space to:

D(v ⊗m) =
∑

i
ωiv ⊗

( left action︷︸︸︷
Kim +ε′

right action︷ ︸︸ ︷
mK ∗i

)
(J.W. Barrett, J.Math.Phys. 56, 082301 (2015).)
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Explore path integral over fuzzy spaces

〈f 〉 =

∫
f (D)e−S(D)dD∫

e−S(D)dD

=

∫
f (D(Ki))e−S(D(Ki ))

∏
i dKi∫

e−S(D(Ki ))
∏

i dKi
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The simplest action

S = g2Tr
(
D2)+ Tr

(
D4)

(J.W. Barrett, LG J.Phys. A49, 245001 (2016))

What do we want from an action?

I physical motivation
⇒ lowest order when expanding a heat kernel

I bounded from below
⇒ for some g2

I rises fast to infinity
⇒ to make simulations possible

⇒ Matrix model in Ki
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Look for phase transitions

Phase transition
I qualitative change in behavior
I Phase transition marked by peak in Variance

Var(S) = 〈S2 − 〈S〉2〉

I Gets sharper in larger systems
I Higher order phase transitions show signs of correlation
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Look for phase transitions
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(LG J.Phys.A50, 275201 (2017))
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A (biased) overview:

Done:

I First tests of model
(J.W. Barrett, LG, J.Phys. A49, 245001 (2016))

I Scaling behavior of model
(LG, J.Phys.A50, 275201 (2017))

I Spectral dimension (next section!)
(J.W. Barrett, P.J. Druce, LG, J.Phys. A52 275203 (2019))

Work pending:

I Larger matrix sizes
( w.i.p. M. D’Arcangelo, J.W. Barrett)

I Recognize geometry
I What is matter / include matter
I Analytic results
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The plan

Spectral triples

Fuzzy spaces

Spectral observables

Visualizing Truncated triples
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Spectral dimension

Return probability of random walk/
diffusion process aka. heat kernel

K (t) =
∑

i
e−tλ(∆)

i λ
(∆)
i ∈ Ev(∆)

∼ t−d/2(a0 + a2t + a4t2 + . . .
)

Can determine dimension from the small
t behaviour of K

Ds(t) =
∂ log K (t)
∂ log(t)

= t
∑

λ(∆) λ(∆)e−tλ(∆)∑
λ(∆) e−tλ(∆)
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We have D not ∆!
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The spectral variance

Use D2 to get a ∆-type operator

Ds(t) = 2t
∑

λ λ
2e−tλ2∑

λ e−tλ2

∼ tλ2
0 for large t

λ ∈ Ev(D)

λ∆
0 = 0⇒ no problem λ0 6=

0⇒ linear mode

(J.W. Barrett, P.J. Druce, LG,
J.Phys.A:Math.Theor.(2019))
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The spectral variance

Use D2 to get a ∆-type operator

Ds(t) = 2t
∑

λ λ
2e−tλ2∑

λ e−tλ2

∼ tλ2
0 for large t

λ ∈ Ev(D)

Vs(t) = Ds(t)− t ∂Ds(t)
∂t

(J.W. Barrett, P.J. Druce, LG,
J.Phys.A:Math.Theor.(2019))
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Spectral variance on random fuzzy spaces
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Maximum of the spectral variance
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Distance between geometries

For two geometries X1,X2

dCK (X1,X2) = sup
γ<s<γ+1

∣∣∣∣ log

∣∣∣∣ζX1(s)

ζX2(s)

∣∣∣∣∣∣∣∣
I γ > d/2 for X1,X2 in continuum, otherwise free

(Cornelissen, G. & Kontogeorgis, A. Lett Math Phys (2017) 107: 129)
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Testing the distance measure
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(J.W. Barrett, P.J. Druce, LG arXiv:1902.03590 accepted at J.Phys.A)
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Testing the distance measure
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Testing the distance measure
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Distance from the fuzzy sphere
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Distance from the fuzzy sphere

What is the difference?
Volume differences are also measured, we want ’shape’-differences.
I λmax = 1 Ô equal Planck lengths
I R = 1 Ô equal volumes

R is hard to define, so we check the other option.
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Distance from the fuzzy sphere
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Truncating a spectral triple

Truncate D
Replace the infinite D by a n × n matrix

D → PnDPn

with Pn a projector on the n smallest eigenvalues.

I Mathematically a truncation of a spectral triple leads
to an operator system, which has recently gathered much interest.
(A. Connes, W.D. van Suijlekom, Commun.Math.Phys.(2020), W.D. van Suijlekom,
arXiv:2005.08544)

I explored one ensemble of truncations of spectral triples
(LG, A. Stern, J.Math.Phys. 61, 033507 (2020))

I Today: How can we recover distances from a truncated spectral
triple and visualize it.
(LG, A. Stern arXiv:1912.09227 (accepted by J.Geo.Phys.))
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Non-commutative distance

Distance measure in non-commutative geometry
(A. Connes, Noncommutative Geometry. (Academic Press, 1994))

d(ω1, ω2) = sup
a∈A
{|ω1(a)− ω2(a)| : ||[D,a]|| ≤ 1}

Example:

Calculate distance between points x, y from function f

figure from
(W.D. van Suijlekom "Noncommutative Geometry and Particle Physics" Springer

(2015))
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Non-commutative distance

Distance measure in non-commutative geometry
(A. Connes, Noncommutative Geometry. (Academic Press, 1994))

d(ω1, ω2) = sup
a∈A
{|ω1(a)− ω2(a)| : ||[D,a]|| ≤ 1}

Idea:
If we can calculate this numerically we can plot our geometry!
Maybe we can see a difference between the two Dirac operators?
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Non-commutative distance

Distance measure in non-commutative geometry
(A. Connes, Noncommutative Geometry. (Academic Press, 1994))

d(ω1, ω2) = sup
a∈A
{|ω1(a)− ω2(a)| : ||[D,a]|| ≤ 1}

Questions:
I What are algebra elements a?

Dirac we find has same eigenstates as sphere, can use
truncated spherical harmonics as basis for PnC∞(S2)Pn

I Which states ω?
Use localized states, inspired by
(L. Schneiderbauer, H. Steinacker 2016, J.Phys. A49 285301)
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Non-commutative distance

Distance measure in non-commutative geometry
(A. Connes, Noncommutative Geometry. (Academic Press, 1994))

d(ω1, ω2) = sup
a∈A
{|ω1(a)− ω2(a)| : ||[D,a]|| ≤ 1}

Questions:
I What are algebra elements a?

Dirac we find has same eigenstates as sphere, can use
truncated spherical harmonics as basis for PnC∞(S2)Pn

I Which states ω?
Use localized states, inspired by
(L. Schneiderbauer, H. Steinacker 2016, J.Phys. A49 285301)

Aim:
Use the Kantorovich-Rubinstein distance between states of small
dispersion to build a picture of M.
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How do we define states?

Localized states
We use the dispersion and the embedding maps Yi from the
Heisenberg relations

δ(ωk) =
∑

i
〈ω|Y 2

i |ω〉 − 〈ω|Yi |ω〉2 +
∑
j<k

c
δ(ωj , ωk)

Now find a set of coherent states ω that minimizes this and plug them
into distance equation. The repulsive potential is to ensure even
distribution of points.
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i |ω〉 − 〈ω|Yi |ω〉2 +
∑
j<k

c
δ(ωj , ωk)

Now find a set of coherent states ω that minimizes this and plug them
into distance equation. The repulsive potential is to ensure even
distribution of points.

Limitations:
We are using the Yi to define the states and calculate a distance
approximation δ. This is a good choice for geometries close to the
sphere but can be abritrarily bad otherwise.
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How do we define states?

Localized states
We use the dispersion and the embedding maps Yi from the
Heisenberg relations

δ(ωk) =
∑

i
〈ω|Y 2

i |ω〉 − 〈ω|Yi |ω〉2 +
∑
j<k

c
δ(ωj , ωk)

Now find a set of coherent states ω that minimizes this and plug them
into distance equation. The repulsive potential is to ensure even
distribution of points.

Advantage:

We can use it to plot the states and the generated geometry using
the Yi as embedding coordinates, for illustration purposes.
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How does the state size change with the cutoff?

State for Λ = 4
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What effect does the repulsive potential have
c = 0
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The algorithm for state generation

1: Find a vector v0 (globally) minimizing δ. Set V = {v0}.
2: while

√
δ(v) +

√
δ(w) ≤ αd(v ,w) for v 6= w ∈ V , do

3: Find a vector w (locally) minimizing e(w ; V ).
4: Append w to V .
5: for v ∈ V , do
6: Set d(v ,w) = min{|〈v ,av〉 − 〈w ,aw〉| : |[D,a]| ≤ 1}.
7: end for
8: end while
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A picture of geometry

The truncated sphere at size 60 The analytic solution at size 60

I generate states for a n × n matrix & calculate pairwise distances
I use graph embedding algorithm to find a locally isometric

embedding
I wonder why the analytic solution is smaller
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Summary

Todays story:

I Exploring NCG using computer simulations
I simulations in fuzzy spaces
I truncated NCGs as basis for simulations
I first numerical tests of one sided Heisenberg relation

and Connes distance function

Immediate follow up:

I What is the difference between the two geometries?
I More simulations:

I two-sided Heisenberg equation
I path integral using Heisenberg equation as constraint

I More efficient imaging
⇒ Use imaging on more states
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Thanks for inviting me to talk,
and I hope I can visit Helsinki some time in the

future!

Contact:
Email: lisa.glaser@univie.ac.at
Twitter: @GravityWithHat
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Full axioms of non-commutative geometry

A finite real spectral triple consists of

1. The n-th characteristic value of the resolvent of D is O(n−
1
p ).

2. [[D,a],b] = 0∀a,b ∈ A
3. For any a ∈ A both a and [D,a] belong to the domain of δm , for

any integer m where δ is the derivation: δ(T ) = [|D|,T ].
4. There exists a Hochschild cycle c ∈ Zp(A,A) such that

πD(c) = 1 for p odd, while for p even, πD(c) = γ is a Z/2
grading.

5. Viewed as an A-module the space H∞ =
⋂

DomDm is finite and
projective. Moreover the following equality defines a hermitian
structure (|) on this module:
〈ξ,aη〉 =

∫
−a(ξ|η)|D|−p, ∀a ∈ A,∀ξ, η ∈ H∞

(as summarized in A. Connes, Commun.Math.Phys. 182, 155-176 (1996))
Back to the abridged version.
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States are points

Aim:
Use the Kantorovich-Rubinstein distance between states of small
dispersion to build a picture of M.

Let (C∞(M),H,D) be a commutative spectral triple equipped with a
(not necessarily Riemannian) embedding ι : M → RN (whose
components are viewed as a set Yi of generators of C∞(M)), and
define the dispersion δ of a state ω to equal

∑
i ω(Y 2

i )− ω(Yi)
2.

Lemma
There exists a map b : S(A)→ M such that

|d(ω1, ω2)− d(b(x1),b(x2))| = O(
√
δ(ω1) +

√
δ(ω2)),

as δ(ωi)→ 0, uniformly in ωi .
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Points are states

I Is there a picture of M inside PΛH, if Λ is large enough?
‘Localization’ map φΛ : M → S(B(H)) that factors through PΛH and
maps points x ∈ M to corresponding vector states φΛ(x), such that
φΛ(x) has asymptotically vanishing dispersion and d(φΛ(x), φΛ(y))
eventually equals d(x, y).

Lemma
There exists a map φ : M ×R+ → S(B(H)), (x,Λ) 7→ φΛ(x), such that

I For all Λ, φΛ factors through a map LΛ : M → PΛH.
I The dispersion

∑
i φΛ(x)(Y 2

i )− φΛ(x)(Yi)
2 is O(Λ−2 log Λ) as

Λ→∞.
I For all x, y ∈ M, |d(φΛ(x), φΛ(y))− d(x, y)| = O(Λ−1(log Λ)

1
2 ).
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Larger cutoff ⇒ more points

We could alternatively have phrased the third point in the lemma as
follows: the maps φΛ and b (from 1) are asymptotically inverse to
each other in the sense that d(x, (b ◦ φΛ)(x)) = O(Λ−1) and
d((φΛ ◦ b)(ω), ω) ≤

√
δ(ω) + O(Λ−2).

In particular the previous lemma tells us how to scale the number of
generated states with Λ:

Corollary

A sequence of equidistributed subsets {Vn}n of M, in the sense that
min d |Vn×Vn\∆ = Θ(|Vn|−1/n), will satisfy

sup
x,y∈Vn

|d(x, y)− d(φΛn (x), φΛn (y))|
d(x, y)

= O(1)

as Λ→∞, whenever |Vn| = Θ(rank PΛn ).
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