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Quantum Gravity on the computer

Computer simulations can:

» Calculate the mass of the Proton
(lattice QCD)
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Quantum Gravity on the computer

Computer simulations can:

» Calculate the mass of the Proton
(lattice QCD)

» Predict gravitational wave signatures of
colliding neutron stars and black holes
(numerical relativity)

» Maybe they can also help us
understand Quantum Gravity?
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The path integral of Quantum Gravity

_ Jf(g) €59 Dig]
" [ eS@Dig

Ingredients:

» Geometry g and measure D[g]

(f)

» Functions of geometry f
» Action §
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The path integral of Quantum Gravity

_ [ f(g) €59 Dlg]
- [eF9Dlg]

Ingredients:

» Geometry g and measure D|g]
Use spectral triples to define g and D[g]

» Functions of geometry f
» Action §

(f)
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The plan

Spectral triples

@ Fuzzy spaces

@ Spectral observables

@ Visualizing Truncated triples
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Motivation: Can we hear the shape of a drum?

Eigenvalue problem:
For a membrane Q held fixed along bdry I
the eigenvalue problem can be stated as:

%vzwn(x) + Anton(x) =0
Yn(x)=0o0nT

If two membranes 4, Qo (boundaries I'1,I2)
lead to the same spectrum A, are they the h Ly
same (up to symmetry transformations)?

< &

)
\..a

(M. KaC? American Mathematical Monthly 73 '1-23 (1966)) 4/ 31




Geometry as a spectral triple

» an Algebra A with action on H
(A, 7, D) » a Hilbert space H
» a Dirac operator D acting on ‘H

The ’sound’ is not enough
» {\n} = spec(D) is not enough, we need to know A, algebra of
functions on the space (drum)

» For manifolds A is commutative, can generalize to
non-commutative

(A. Connes, Int.J.Geom.Meth.Mod.Phys. 5, 1215-1242 (2008))
(more detail e.g. A. Connes, Commun.Math.Phys. 182, 155-176 (1996))
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Geometry as a spectral triple

» an Algebra A with action on H
(A, 7, D) » a Hilbert space H
» a Dirac operator D acting on ‘H

Axioms of non-commutative geometry °

» 3 a faithfull action A in H

> 7 is a bimodule over A (there is a left and a right action of A in
H)

» First order condition [[D, a>],<b] = 0 for a,b € A

aAbridged version
(A. Connes, Int.J.Geom.Meth.Mod.Phys. 5, 1215-1242 (2008))

(more detail e.g. A. Connes, Commun.Math.Phys. 182, 155-176 (1996))
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A simple geometry as a spectral triple

The circle as an algebra with a unitary operator U acting on # = L2(S")

uur =1 D=D"
U*[D, U] = 1 o U*DU = D + 1
Den == )\nen 4 DUen == ()\n + 1)Uen

U generates the algebra :
Spectral triple
a=)y_apU"
Z

ancC

(C(S"), L2(S"), —idy)

for any algebra element a
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A simple geometry as a spectral triple

For a commutative torus take two S' generators U, V
uu=Vvyv=1
We can make the torus non-commutative by introducing

uv =9vU 9 = et

U, V generate the algebra ,
Spectral triple

a=>» apmuU'vrm
Z i oo (m2Y [2(T2Y _ i jA.
72 (C%°(T2), L2(T=), —id’0))

for any algebra element a with o; the two off diagonal pauli
matrices
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Spectral triples as quantum geometry?

How about using spectral triples as quantum geometry?

| prefer my space-time discrete/ finite, so there are two options:

Fuzzy spaces: Truncations of spectral triples:

» Any spectral triple (they are
mostly still very symmetric)

» truncates A and H
» break first order condition

> Works best for very
symmetric spaces

» Uses finite A

» finds D to respect first order
condition
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Fuzzy space (p,Qq)

» The algebra are matrices:
Ais a =— algebra M(n, C)
(s,H,A,T,J,D) > Acting on a Hilbert space:
H=V&®M(n,C)
where V is a (p, q)-Clifford module

Extra ingredients to make it a real spectral triple

» KO-dimension;
s=(q—p)mod38
» Chirality;
(v ® m) =~yv ® mwith ~ the chirality operator on V
» Real structure;
J(v® m) = Cv® m* where C is charge conjugation on V
J:H — H with (Ju, Jv) = (u, V)

(as stated in J.W. Barrett J.Math.Phys. 56, 082301 (2015)) 8/ 31



Fuzzy sphere

The continuum sphere

(A = SU(2),H = L3(S2,S), D = (9, + wu))
with o the Pauli matrices and w,, a spin connection.

The fuzzy sphere is a finite spectral triple that approximates this.

» A= M(n,C)
with the irred. reps. of SU(2) up to spin j, with j = %(n -1)a
natural basis,

> H=C*® M(n,C)

>» D=1+ Z?<k0'j0'k & [ij, ]
with Lj the lie algebra generators of so(3) and ol the Pauli
matrices.
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Dirac operator : Form

Conditions on D for a real spetral triple

D =D DI = +I'D
DJ = +JD [[D, p(a)s], <p(b)] = 0

Can be translated for a fuzzy space to:

Ieft action right action

D(v & m) Zwv@ Km 4 MK )

(J.W. Barrett, J.Math.Phys. 56, 082301 (2015).)
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Explore path integral over fuzzy spaces

‘ [ f(D)e=s(P)dD
0= resoap
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Explore path integral over fuzzy spaces

[ f(D) e—S(D)dD
Je®

_JfD —S<D'<f I1,dK;
fe o DI dK;

(f) =
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The simplest action

S = goTr (D?) + Tr (DY)

(J.W. Barrett, LG J.Phys. A49, 245001 (2016))

What do we want from an action?

» physical motivation
= lowest order when expanding a heat kernel

» bounded from below
= for some go

> rises fast to infinity
= to make simulations possible
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The simplest action

S = goTr (D?) + Tr (DY)

(J.W. Barrett, LG J.Phys. A49, 245001 (2016))

What do we want from an action?

» physical motivation
= lowest order when expanding a heat kernel

» bounded from below
= for some go

> rises fast to infinity
= to make simulations possible

= Matrix model in K

12/ 31



Look for phase transitions

Phase transition

> qualitative change in behavior
» Phase transition marked by peak in Variance

Var(S) = (5%~ (5)?)

» Gets sharper in larger systems
» Higher order phase transitions show signs of correlation
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Look for phase transitions

700
—— N=5
600 -6
500 — N=7
T 400 -9
= N=10
§:mo
200 ,

100 :::::::::::iﬁ;ﬁio/

0
—-36 —34 =32 =30 -28
92

g% = 2781 +0.289

(LG J.Phys.A50, 275201 (2017))
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A (biased) overview:

» First tests of model
(J.W. Barrett, LG, J.Phys. A49, 245001 (2016))

» Scaling behavior of model
(LG, J.Phys.A50, 275201 (2017))

» Spectral dimension (next section!)
(J.W. Barrett, P.J. Druce, LG, J.Phys. A52 275203 (2019))

Work pending:

» Larger matrix sizes
( w.i.p. M. D’Arcangelo, J.W. Barrett)

» Recognize geometry
» What is matter / include matter
> Analytic results

14/°31



The plan

Spectral triples

@ Fuzzy spaces

Spectral observables

@ Visualizing Truncated triples
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Spectral dimension

Return probability of random walk/
diffusion process aka. heat kernel

Ze NUAB € Ev(a)
~ t_d/z(ao + aot + a4t2 + .. )

Can determine dimension from the small
t behaviour of K

Ds(t) = dlog K(1) o
s\ 0 log(t) D(t) >
t 3@ AB) gt o

= Z)\(A) e—t)\(A) 2.25

50 100 150 200 250 300 350 400
t

Ds(t) in CDT
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Spectral dimension

Return probability of random walk/
diffusion process aka. heat kernel

Ze NUAB € Ev(a)
~ t_d/z(ao + aot + a4t2 + .. )

Can determine dimension from the small
t behaviour of K

_ Olog K(t) 30
Ds(1) = 0 log(t) Dy(t)
Z,\ AB)g—tA® o

Z)\(A e_t)‘( 2.25

50 100 150 200 250 300 350 400
t

We have D not Al Ds(t) in CDT
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The spectral variance

Use D? to get a A-type operator

4.0

Vi(t), Dy(t)

20— tA2
_prahe T
>t
~ )5 forlarge t
A€ Ev(D)

Ds(t)

A& = 0 = no problem )\ # 10
0 = linear mode

Vi(t), Dy(t)

1.0 |
0.5 |

(J.W. Barrett, P.J. Druce, LG, 00
J.Phys.A:Math.Theor. (2019)) 0.0

fuzzy with N =10
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The spectral variance

Use D? to get a A-type operator

20— tA2
_ppate T
>one
~ t\3 forlarge t
A € Ev(D)

Ds(1)

9Ds(1)
ot

Vs(t) = Ds(t) — t

(J.W. Barrett, P.J. Druce, LG,
J.Phys.A:Math.Theor. (2019))

Vi(t), Dy(t)

Vi(t), Dy(t)

4.0

fuzzy with N =10
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Spectral variance on random fuzzy spaces

10 20 30 40 50 60 0 10 20 30 40 50
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Maximum of the spectral variance

3.5
N=5
N=6
3.0 N=7
N=8
== N=9
<25 N=10
e
= 20

.0
—3.6 -3.4 -3.2-3.0 -2.8 —2.6 —2.4 —2.2 2.0 —1.8
92

Type (1,1) N=10 Type (2,0) N=10
gZ.()

Intersect at g !

.0
—4.0 =39 =38 —-3.7 —=3.6 -3.5 —3.4 —3.3 —-3.2
92

Type (1,3) N=10
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Distance between geometries

For two geometries Xj, Xo

¢*i(s)

dok (X1, X2) = sup % (s)

y<8<y+1

log

(Cornelissen, G. & Kontogeorgis, A. Lett Math Phys (2017) 107: 129)

> ~ > d/2 for Xy, Xz in continuum, otherwise free
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Testing the distance measure

0.07
0.06
%, 0.05
= 0.04
% 0.03
< 0.02
0.01

00
10 20 30 40 50 60 70 80 90 100
N

Fuzzy S? to exact S?

(J.W. Barrett, P.J. Druce, LG arXiv:1902.03590 accepted at J.Phys.A)
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Testing the distance measure

il

9&6 —-3.4 —-3.2 -3.0 —2.8 —2.6 —2.4 —2.2
92
Type (2,0) N = 10 distance between g»

(J.W. Barrett, P.J. Druce, LG arXiv:1902.03590 accepted at J.Phys.A)
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Testing the distance measure

—+ =1
== a=5
40 y=10
35
30
ot
25 1 XY
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15 00
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(J.W. Barrett, P.J. Druce, LG arXiv:1902.03590 accepted at J.Phys.A)
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Distance from the fuzzy sphere

25

=20
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Type (2,0)
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Distance from the fuzzy sphere

What is the difference?

Volume differences are also measured, we want 'shape’-differences.
> \max =1 = equal Planck lengths

» R=1 - equal volumes

R is hard to define, so we check the other option.
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Distance from the fuzzy sphere

10
—+ =05
—+ 7=10
y=15
8 7=20
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The plan

Spectral triples

@ Fuzzy spaces

@ Spectral observables

@ Visualizing Truncated triples
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Truncating a spectral triple

Replace the infinite D by a n x n matrix
D — P,DP,

with P, a projector on the n smallest eigenvalues.

» Mathematically a truncation of a spectral triple leads

to an operator system, which has recently gathered much interest.
(A. Connes, W.D. van Suijlekom, Commun.Math.Phys.(2020), W.D. van Suijlekom,

arXiv:2005.08544)
» explored one ensemble of truncations of spectral triples
(LG, A. Stern, J.Math.Phys. 61, 033507 (2020))
» Today: How can we recover distances from a truncated specitral

triple and visualize it.
(LG, A. Stern arXiv:1912.09227 (accepted by J.Geo.Phys.))
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Non-commutative distance

Distance measure in non-commutative geometry

(A. Connes, Noncommutative Geometry. (Academic Press, 1994))

d(wr,wz) = sup {|wi(a) —wa(a)l : IID. alll < 1}

Example:

Calculate distance between points x, y from function f

C R tm mm o — -

figure from
(W.D. van Suijlekom "Noncommutative Geometry and Particle Physics" Springer
(2015))
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Non-commutative distance

Distance measure in non-commutative geometry

(A. Connes, Noncommutative Geometry. (Academic Press, 1994))

d(wr,wz) = sup {|wi(a) —wa(a)l : IID. alll < 1}

If we can calculate this numerically we can plot our geometry!
Maybe we can see a difference between the two Dirac operators?
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Non-commutative distance

Distance measure in non-commutative geometry

(A. Connes, Noncommutative Geometry. (Academic Press, 1994))

d(wr,wz) = sup {|wi(a) —wa(a)l : IID. alll < 1}

Questions:

» What are algebra elements a?
Dirac we find has same eigenstates as sphere, can use
truncated spherical harmonics as basis for P,C>(S?)P,,

» Which states w?
Use localized states, inspired by
(L. Schneiderbauer, H. Steinacker 2016, J.Phys. A49 285301)
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Non-commutative distance

Distance measure in non-commutative geometry

(A. Connes, Noncommutative Geometry. (Academic Press, 1994))

d(wr,wz) = sup {|wi(a) —wa(a)l : IID. alll < 1}

Questions:

» What are algebra elements a?
Dirac we find has same eigenstates as sphere, can use
truncated spherical harmonics as basis for P,C>(S?)P,,
» Which states w?
Use localized states, inspired by
(L. Schneiderbauer, H. Steinacker 2016, J.Phys. A49 285301)

Aim:
Use the Kantorovich-Rubinstein distance between states of small
dispersion to build a picture of M.
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How do we define states?

Localized states

We use the dispersion and the embedding maps Y; from the
Heisenberg relations

) = Sl VPl wl¥i® + 32 5 oy

i

Now find a set of coherent states w that minimizes this and plug them
into distance equation. The repulsive potential is to ensure even
distribution of points.
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How do we define states?

Localized states

We use the dispersion and the embedding maps Y; from the
Heisenberg relations

8(wi) = D _(wl YP|w) — (| Yilw)? + > =

i j<k

5 wjawk)

Now find a set of coherent states w that minimizes this and plug them
into distance equation. The repulsive potential is to ensure even
distribution of points.

Limitations
We are using the Y; to define the states and calculate a distance

approximation ¢. This is a good choice for geometries close to the
sphere but can be abritrarily bad otherwise.
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How do we define states?

Localized states

We use the dispersion and the embedding maps Y; from the
Heisenberg relations

Sn) = S AVPI) = VI + 3 5y o0

Now find a set of coherent states w that minimizes this and plug them
into distance equation. The repulsive potential is to ensure even
distribution of points.

Advantage:

We can use it to plot the states and the generated geometry using
the Y; as embedding coordinates, for illustration purposes.
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How does the state size change with the cutoff?

State for A = 4 State for A = 10

State for A = 16
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What effect does the repulsive potential have

c=0 c = 0.001

—100 0 100

—100 0 100

100

—100

100

—100

—100 0 100

¢ = 1000

—100 0 100
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The algorithm for state generation

1: Find a vector vy (globally) minimizing 6. Set V = {v}.

2: while /6(v)+ /é(w) < ad(v,w)forv#we V,do

3 Find a vector w (locally) minimizing e(w; V).

4 Append w to V.

5: forve V,do

6 Set d(v, w) = min{|[(v, av) — (w,aw)|: |[D, a]| < 1}.
7 end for

8: end while
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A picture of geometry

The truncated sphere at size 60 The analytic solution at size 60

Embedded distance graph with B

Embedded distance graph

> generate states for a n x n matrix & calculate pairwise distances

» use graph embedding algorithm to find a locally isometric
embedding

» wonder why the analytic solution is smaller
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Summary

Todays story:

» Exploring NCG using computer simulations
» simulations in fuzzy spaces
» truncated NCGs as basis for simulations

» first numerical tests of one sided Heisenberg relation
and Connes distance function

Immediate follow up:

» What is the difference between the two geometries?
» More simulations:
two-sided Heisenberg equation
path integral using Heisenberg equation as constraint
» More efficient imaging
= Use imaging on more states
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Thanks for inviting me to talk,
and I hope I can visit Helsinki some time in the

future!

Contact:
Email: lisa.glaser@univie.ac.at
Twitter: @GravityWithHat

31/ 31



Full axioms of non-commutative geometry

A finite real spectral triple consists of

1. The n-th characteristic value of the resolvent of D is O(n_%).

2. [[D,a],b] =0vVa,be A

3. Forany a € A both aand [D, g] belong to the domain of 6 , for
any integer m where ¢ is the derivation: 6(T) = [|D|, T].

4. There exists a Hochschild cycle ¢ € Z,(.A, A) such that
mp(c) = 1 for p odd, while for p even, mp(c) =~visa7z/2
grading.

5. Viewed as an .A-module the space H., = () DomD"™ is finite and

projective. Moreover the following equality defines a hermitian
structure (|) on this module:

(& an) = fa(én)|D|P,va € A, V¢, € Hoo

(as summarized in A. Connes, Commun.Math.Phys. 182, 155-176 (1996))
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States are points

Aim:
Use the Kantorovich-Rubinstein distance between states of small
dispersion to build a picture of M.

Let (C>~(M), H, D) be a commutative spectral triple equipped with a
(not necessarily Riemannian) embedding . : M — RN (whose
components are viewed as a set Y; of generators of COO(M)) and
define the dispersion § of a state w to equal >_; w(Y?) — w(Yi)?.

Lemma

There exists amap b : S(A) — M such that

|d(w1,w2)— ( (X1) bX2 \/(5 w1 +\/5 w2

as 6(wj) — 0, uniformly in w;.
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Points are states

» Is there a picture of M inside PpH, if A is large enough?

‘Localization’ map ¢a : M — S(B(H)) that factors through PAH and
maps points x € M to corresponding vector states ¢(x), such that
oa(x) has asymptotically vanishing dispersion and d(oa(x), &a(¥))
eventually equals d(x, y).

Lemma

There exists amap ¢ : M x Ry — S(B(H)), (x,\) — ¢a(x), such that

» For all \, ¢, factors through a map Ly : M — P\H.

> The dispersion 3" ; pa(x)(Y?) — éa(X)(Yi)? is O(A~2log ) as
N — oo.

> Forall x,y € M, |d(¢n(x). éa(y)) — d(x,y)| = O(A~"(log A)2).
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Larger cutoff = more points

We could alternatively have phrased the third point in the lemma as
follows: the maps ¢ and b (from 1) are asymptotically inverse to
each other in the sense that d(x (b o ¢p)(x)) = O(A~") and

d((¢a o b)( < Vo(w) + O(A
In partlcular the prewous Iemma teIIs us how to scale the number of
generated states with A:

Corollary

A sequence of equidistributed subsets {V,}, of M, in the sense that
min d|y,xvna = ©(| Va|~"/"), will satisfy

0%, ) — d(6ns(0). o)
e d(x.y) =e()

as \ — oo, whenever | V| = ©(rank Py,,).
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