Testing dark energy models with atom interferometry

Clare Burrage
University of Nottingham

Outline:
Dark energy and screened fifth forces
How to search for screening
Atom interferometry constraints
A Very Old Idea

Do large objects and small objects fall at the same rate?

Old idea

Galileo

Dark Energy?

Image credit: Theresa Knott
Equation of state:

\[w = w_0 + (1 - a) w_\alpha \]
The Cosmological Constant Problem

Vacuum fluctuations of standard model fields generate a large cosmological constant-like term

Expected:

\[\rho_{\text{vac}} \sim M^4 \]

Observed:

\[\rho_\Lambda \sim (10^{-3} \text{ eV})^4 \]

Phase transitions in the early universe also induce large changes in the vacuum energy

Such a large hierarchy is not protected in a quantum theory
Solutions to the Cosmological Constant Problem

\[R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \]

There are new types of matter in the universe

- Quintessence directly introduces new fields
- New, light (fundamental or emergent) scalars

The theory of gravity is wrong

- General Relativity is the unique interacting theory of a Lorentz invariant, massless, helicity-2 particle

- New physics in the gravitational sector will introduce new degrees of freedom, typically Lorentz scalars
Simple Scalar Tensor Theories

Jordan and Einstein frame for a Brans-Dicke theory

\[S = \int d^4 x \sqrt{-\tilde{g}} \phi \tilde{R} + S_m[\tilde{g}_{\mu\nu}, \psi_m] \]

\[= \int d^4 x \sqrt{-g} \left[R + \frac{3\Box \phi}{\phi} - \frac{9}{2} (\nabla \ln \phi)^2 \right] + S_m[\phi^{-1}g_{\mu\nu}, \psi_m] \]

More general coupling

\[S = \int d^4 x \sqrt{-g} F(\phi) R = \int d^4 x \sqrt{-\tilde{g}} \tilde{R} \]

\[\tilde{g}_{\mu\nu} = F(\phi) g_{\mu\nu} \]

Jordan vs Einstein Frame

Jordan Frame
- Scalar field coupled directly to gravity
- No direct coupling to matter
- Matter fields move on geodesics of a metric which depends on spin 0 and spin 2 fields

Einstein Frame
- Scalar field coupled directly to matter
- No non-minimal couplings to gravity
- Matter fields don’t move on geodesics of the metric, as they also experience a fifth force
New Fields and New Forces

If the new physics is linear, a fifth force is excluded to a high degree of precision in the solar system.
Is the New Physics Linear?

General relativity is a non-linear theory

Higgs scalar has a non-linear potential

[I will return to the question of whether you can forbid a coupling to matter at the end of this talk]

Image credits: NASA, John Ellis (1312.5672)
New Physics is Non-linear: Screening Mechanisms

• **Locally weak coupling**
 Symmetron and varying dilaton models

• **Locally large mass**
 Chameleon models
 Khoury, Weltman (2004).

• **Locally large kinetic coefficient**
 Vainshtein mechanism, Galileon and k-mouflage models
 Babichev, Deffayet, Ziour (2009).
Screening Phenomenology

Compare to Yukawa fifth force

\[V(r) = -\frac{G\alpha m_1 m_2}{r} e^{-m_\phi r} \]

Change the way in which matter sources the scalar field
- thin-shell effect

Change the dependence on distance
- Vainshtein screening
The Chameleon

A scalar field with canonical kinetic terms, non-linear potential, and direct coupling to matter

\[
S_\phi = \int d^4x \sqrt{-g} \left(-\frac{1}{2}(\partial \phi)^2 - V(\phi) - A(\phi)\rho_m \right)
\]

\[
V(\phi) = \frac{\Lambda^5}{\phi}, \quad A(\phi) = \frac{\phi}{M},
\]

Khoury, Weltman. (2004). Image credit: Nanosanchez
Equivalent description as Higgs portal model:
CB, Copeland, Millington, Spannowsky. (2018)
Varying Mass

Dynamics governed by an effective potential

\[V_{\text{eff}} = \frac{\Lambda^5}{\phi} + \frac{\phi}{M \rho} \]

Non-linearities in the potential mean that the mass of the field depends on the local energy density

Low density

High density

Equivalent description as Higgs portal model:
CB, Copeland, Millington, Spannowsky. (2018)
Chameleon Screening

The increased mass makes it hard for the chameleon field to adjust its value

The chameleon potential well around ‘large’ objects is shallower than for canonical light scalar fields

CB, Copeland, Stevenson. (2015)
The Scalar Potential

Around a static, spherically symmetric source of constant density

\[\phi = \phi_{bg} - \lambda_A \frac{1}{4\pi R_A} \frac{M_A}{M} \frac{R_A}{r} e^{-m_{bg}r} \]

\[\lambda_A = \begin{cases} 1, & \rho_A R_A^2 < 3M \phi_{bg} \\ 1 - \frac{S^3}{R_A^3} \approx 4\pi R_A M_A \phi_{bg}, & \rho_A R_A^2 > 3M \phi_{bg} \end{cases} \]

This determines how ‘screened’ an object is from the chameleon field

Ideal experiments use unscreened test masses e.g. atomic nuclei, neutrons, microspheres
A Very Old Idea

Do large objects and small objects fall at the same rate?

Old idea Galileo Dark Energy?

Image credit: Theresa Knott
Astrophysical Hints

Different components of a dwarf galaxy may fall in a gravitational field at different rates
- Stars are screened, gas and dark matter are not
- Look for gas-star offsets & warping of galactic discs

Astrophysical Hints

Correlated with expected direction of 5th force:

Evidence for offsets using \(~10,000\) HI detections from the ALFALFA survey
Evidence for galaxy warps using \(~4,000\) images from the Nasa Sloan Atlas

Both consistent with screened force, \(M \sim 10 \, M_{\text{Pl}}\), and background Compton wavelength \(\sim 1.8 \, \text{Mpc}\)

\(~7\sigma\) significance, but potentially challenging systematics

Why Atom Interferometry?

In a spherical vacuum chamber, radius 10 cm, pressure 10^{-10} Torr

Atoms are unscreened above black lines
(dashed = caesium, dotted = lithium)

CB, Copeland, Hinds. (2015)
Atom Interferometry

An interferometer where the wave is made of atoms

Atoms can be moved around by absorption of laser photons

Photon Momentum = k
Atom in ground state

Atom in excited state with velocity = \(V \)
Atom Interferometry

Probability measured in excited state at output

\[P = \cos^2 \left(\frac{kaT^2}{2} \right) \]
The Atomic Wavefunction

The probability of measuring atoms in the unexcited state at the output of the interferometer is a function of the wave function phase difference along the two paths

\[P \propto \cos^2 \left(\frac{\phi_1 - \phi_2}{2} \right) \]

For freely falling atoms the contribution of each path has a phase proportional to the classical action

\[\theta[x(t)] = Ce^{(i/\hbar)S[x(t)]} \]

Additional contributions from interactions with photons, proportional to

\[(i/\hbar)(\omega t - \vec{k} \cdot \vec{x}) \]
Atom Interferometry for Chameleons

The walls of the vacuum chamber screen out any external chameleon forces

Macroscopic spherical mass, produces chameleon potential felt by cloud of atoms

Berkley Experiment

Using an existing set up with an optical cavity, looking for a signal on top of the Earth’s magnetic field

Anomalous acceleration $= 11 \pm 24 \text{ nm s}^{-2}$

Jaffe, Haslinger, Xu, Hamilton, Upadhye, Elder, Khoury, Müller. (2017)
Elder, Khoury, Haslinger, Jaffe, Müller, Hamilton. (2016)
Imperial Experiment

Image credit: E. Hinds
Imperial Experiment

Dedicated chameleon experiment, insensitive to the Earth’s gravitational field

Anomalous acceleration = \(-77 \pm 201\) nm s\(^{-2}\)

See also: Jaffe et al. (2017)
Imperial Experiment

(a) Chameleon

Astrophysics

Galactic signal

Torsion balance

This work

$\Lambda = \Lambda_{DE}$

$\log \frac{M}{M_{Pl}}$

$\Lambda \text{ meV}$
Combined Constraints

CB, Sakstein. (2017). With thanks to Ben Elder
Combined Chameleon Constraints

\[V(\phi) = \frac{\Lambda^{n+4}}{\phi^n} \]

\[\Lambda = \Lambda_{DE} = 2.4 \text{ meV} \]

CB, Sakstein. (2017). With thanks to Ben Elder
Summary

Explanations for dark energy typically introduce new scalar fields but the corresponding long range forces are not seen.

Screening mechanisms (non-linearities) hide these forces from fifth force searches.

• Can still be detected in suitably designed experiments
• Atom interferometry a particularly powerful technique

Complementary to large scale cosmological surveys e.g. Euclid, LSST