Marco Drewes, Université catholique de Louvain

STERILE NEUTRINOS AS DARK MATTER CANDIDATES

21. 10. 2020

University of Helsinki & University of Jyväskylä

Finnland

mostly based on 1602.04816, 1807.07938

The Dark Matter Puzzle

The Standard Model of Particle Physics

The "periodic table" of elementary particles

$\begin{aligned} & \text{The Seesaw Mechanism (type I)} \\ & \mathcal{L}_{SM} \ + \ i \bar{\nu}_R \partial \!\!\!/ \nu_R - \bar{\ell_L} Y \nu_R \tilde{H} - \tilde{H}^{\dagger} \bar{\nu_R} Y^{\dagger} \ell_L \\ & - \frac{1}{2} \left(\bar{\nu_R^c} M_M \nu_R + \bar{\nu_R} M_M^{\dagger} \nu_R^c \right) \,. \end{aligned}$

three light neutrinos mostly "active" SU(2) doublet $\nu \simeq U_{\nu}(\nu_L + \theta \nu_R^c)$ with masses $m_{\nu} \simeq -\theta M_M \theta^T = -v^2 Y M_M^{-1} Y^T$

three heavy mostly singlet neutrinos $N \simeq \nu_R + \theta^T \nu_L^c$ Mink with masses $M_N \simeq M_M$ Yanag

Minkowski 79, Gell-Mann/Ramond/ Slansky 79, Mohapatra/Senjanovic 79, Yanagida 80, Schechter/Valle 80

Have we seen it?

Have we seen it?

Overview

- introduction
- model independent bounds

phase space density

indirect detection (x-ray)

nuclear β decay spectra

• model dependent bounds

minimal model (vMSM)

DM from scalar decay

Overview

- introduction
- model independent bounds

phase space density

indirect detection (x-ray)

nuclear β decay spectra

• model dependent bounds

minimal model (vMSM)

DM from scalar decay

Phase Space Bounds

Model independent bound:

Fermions must respect Pauli's principle and have velocities below the escape velocity

> $M \ge 0.18 \text{ keV} \text{ at } 68\% \text{ CL}$ $M \ge 0.13 \text{ keV} \text{ at } 95\% \text{ CL}$

Model dependent bound:

This must hold throughout the history of the universe

 $M \ge 2.80 \text{ keV} \text{ at } 68\% \text{ CL}$ $M \ge 1.74 \text{ keV} \text{ at } 95\% \text{ CL}$

Updated numbers from Alvey et al 2010.03572

How heavy do they have to be?

velocity distribution for DM particles:

$$F_X(\mathbf{v}) = \frac{1}{\left(\sqrt{2\pi} M_X \sigma_X\right)^3} \exp\left(-\frac{\mathbf{v}^2}{2\sigma_X^2}\right),\,$$

the maximum number density must be consistent with Pauli principle

$$f_X^{\max}(\mathbf{v}, \mathbf{x}) = \frac{\rho_X(\mathbf{x})}{M_X} F_X(0) \qquad \qquad f_F^{\operatorname{crit}} \equiv \frac{g_X}{(2\pi)^3},$$

$$\frac{(2\pi)^{3/8}}{g_X^{1/4}} \left(\frac{\rho_X}{\sigma_X^3}\right)^{1/4} \le M_X$$
for milky way:
$$M_X \gtrsim 25 \, \mathrm{eV}$$

DM Phase Space Density

Liouville's theorem: phase space volume constant

But coarse grained phase space density decreases in dense regions

$$\tilde{f}(\mathbf{k},\mathbf{x},t) \leq \max_k f_i(\mathbf{k})$$

Tremaine Gunn Bound

Astronomical data constraints the quantity

For spheroidal dwarf galaxies:

 $\langle {f v}_{\parallel}^2
angle = \langle {f v}^2
angle/3, \qquad
ho_0 = M_X \, n_X$

Combining the equations

$$Q = 3^{3/2} M_X^4 \frac{n}{\langle \mathbf{p}^2 \rangle^{3/2}} \simeq 3^{3/2} M_X^4 \tilde{f}(\mathbf{p}, \mathbf{X}, t_0)$$

using coarse grained **Tremaine** phase space **Gunn** $M_X \gtrsim \left(\frac{Q}{3^{3/2} \max \tilde{f}_i}\right)^{1/4}$ distribution

$$egin{aligned} Q &\equiv rac{
ho_0}{\langle \mathbf{v}_{\parallel}^2
angle^{3/2}} \ \langle \mathbf{p}^2
angle &= M_X^2 \langle \mathbf{v}^2
angle \end{aligned}$$

Sterile Neutrino Dark Matter

Boyarsky/MaD/Lasserre/Mertens/Ruchayskiy 18 M [keV]

Sterile Neutrino Dark Matter

Boyarsky/MaD/Lasserre/Mertens/Ruchayskiy 18 M [keV]

Overview

- introduction
- model independent bounds

phase space density

indirect detection (x-ray)

nuclear β decay spectra

• model dependent bounds

minimal model (vMSM)

DM from scalar decay

Dark Matter Decay

primary decay channel N
ightarrow 3
u

$$\Gamma_{N \to 3\nu} = \frac{G_F^2 M^5}{96\pi^3} \sum_{\alpha} |\theta_{\alpha}|^2 \approx \frac{1}{1.5 \times 10^{14} \sec} \left(\frac{M}{10 \,\mathrm{keV}}\right)^5 \sum_{\alpha} |\theta_{\alpha}|^2$$

lifetime must be longer than the age of the universe

$$\theta^2 < 3.3 \times 10^{-4} \left(\frac{10 \,\mathrm{keV}}{M}\right)^5$$

Indirect DM Searches

loop level decay into photons

$$\Gamma_{N \to \gamma \nu} = \frac{9 \,\alpha \, G_F^2}{256 \pi^4} \theta^2 M^5 = 5.5 \times 10^{-22} \theta^2 \left[\frac{M}{1 \,\text{keV}}\right]^5 \,\text{sec}^{-1}$$

One can search for an emission line!

Has the line been seen?

Boyarsky/Ruchayskiy/Iakubovskyi/Franse 2014 see also Bulbul/Markevitch/Foster/Smith/Loewenstein/Randall 2014

Situation unclear...

...need better spectral resolution (XRISM, ATHENA+ will help)

Sterile Neutrino Dark Matter

Boyarsky/MaD/Lasserre/Mertens/Ruchayskiy 18 M [keV]

The Seesaw Mechanism (type I)

$$\mathcal{L}_{SM} + i\bar{\nu}_R \partial \!\!\!\!/ \nu_R - \bar{\ell_L} Y \nu_R \tilde{H} - \tilde{H}^{\dagger} \bar{\nu_R} Y^{\dagger} \ell_L \\ - \frac{1}{2} \left(\bar{\nu_R^c} M_M \nu_R + \bar{\nu_R} M_M^{\dagger} \nu_R^c \right)$$

- A sterile neutrino that is DM makes no measurable contribution to the seesaw
- Simple check: $m_{\nu} \sim \theta^2 M < 10^{-7} \text{eV}$
- But with three RHN the two siblings can do the seesaw... and leptogenesis...

three light neutrinos mostly "active" SU(2) doublet $\nu \simeq U_{\nu}(\nu_L + \theta \nu_R^c)$ with masses $m_{\nu} \simeq -\theta M_M \theta^T = -v^2 Y M_M^{-1} Y^T$

three heavy mostly singlet neutrinos $N \simeq \nu_R + \theta^T \nu_L^c$ Minkes with masses $M_N \simeq M_M$ Yana

Minkowski 79, Gell-Mann/Ramond/ Slansky 79, Mohapatra/Senjanovic 79, Yanagida 80, Schechter/Valle 80

A Minimal Model: The vMSM

Pure Type I seesaw with RH Neutrinos below EW scale

Asaka/Shaposhnikov <u>0503065</u>, <u>0505013</u>

- two RH Neutrinos have degenerate
 ~GeV masses
 seesaw + leptogenesis
- one has a ~keV mass and feeble couplings
 Dark Matter candidate

Could in principle be complete EFT up to the Planck scale

Bezrukov et al <u>1205.2893</u>

Overview

- introduction
- model independent bounds

phase space density

indirect detection (x-ray)

nuclear β decay spectra

• model dependent bounds

minimal model (vMSM)

DM from scalar decay

KATRIN/TRISTAN & keV Sterile Neutrinos

Imprint of keV Neutrinos on Tritium β -spectrun

dΓ/dE (a.u.) $\cos^2\Theta d\Gamma/dE(m_{light})$ 25 $\sin^2\Theta d\Gamma/dE(m_1)$ with mixing 20 ····· no mixing 15 10 5 0 10 12 16 18 20 6 8 14 E (keV) **TRISTAN:** Technical Realization Signal rate is 10¹² x higher than in regular KATRIN ! KATRIN Need for a new detector system (in 2021, after KATRIN)

Statistical Sensitivity

Novel Silicon Detector System (R&D)

- Handling high rates (10⁹ cts/s)
 - >10 000 pixels
- 300 eV energy resolution & 1 keV threshold
 - Thin deadlayer (~10 nm)
- 1 mm pixels with <0.2 pF capacity
 - Multi-drift-ring design (SDD)
- Minimize systematics (ppm-level)
 - Low ADC non-linearity read-out, etc...

Detector is under way...

Search for sterile neutrinos with a Novel detector system for KATRIN

- 3500-pixel silicon drift detector (SDD) focal plane array
- Excellent performance (noise, resolution, linearity) of first prototypes demonstrated
- Production of first detector module completed
- Integration after KATRIN's nu-mass measurement

Slide by Susanne Mertens

Sterile Neutrino Dark Matter

Boyarsky/MaD/Lasserre/Mertens/Ruchayskiy 18 M [keV]

Overview

- introduction
- model independent bounds

phase space density

indirect detection (x-ray)

nuclear β decay spectra

• model dependent bounds

minimal model (vMSM)

DM from scalar decay

How to make Sterile Neutrino DM?

• Thermal production via their mixing θ

- happens unavoidably for $\theta \neq 0$ Barbieri/Dolgov 91, Dodelson/Widrow 94
- never reach equilibrium for realistic θ ("freeze in DM", "FIMP DM") ⇒ non-thermal spectrum!
- can be resonantly enhanced by MSW effect Shi/Fuller 99

Non-thermal production in the decay of heavy particles

- inflaton or other scalar Kusenko 06, Shaposhnikov/Tkachev 06, Bezrukov/Gorbunov 09, Kusenko/Petraki 07, ...
- can occur when scalar is in equilibrium or during scalar production ("freeze in") see e.g. Merle/Totzauer 15
- charged scalar Boyanovsky 08, Frigerio/Yaguna 14, leptophilic Higgs
 Adulpravitchai/Schmidt 15, fermion Abada 14 or vector particles Shuve/Yavin 14

Thermal production via (gauge) interactions at high energies very difficult to dilute Bezrukov/Hettmansperger/Lindner, ... [I won't talk about this]

Overview

- introduction
- model independent bounds

phase space density

indirect detection (x-ray)

nuclear β decay spectra

• model dependent bounds

minimal model (vMSM)

DM from scalar decay

Production through Mixing

Consider system with one active and one sterile neutrino

 $|\nu_a\rangle = \cos\theta |\nu_1\rangle + \sin\theta |\nu_2\rangle,$ $|\nu_s\rangle = -\sin\theta |\nu_1\rangle + \cos\theta |\nu_2\rangle.$

In the primordial plasma there is an effective mixing angle

$$|\nu_a\rangle = \cos \theta_m(t) |\nu_1(t)\rangle + \sin \theta_m(t) |\nu_2(t)\rangle, |\nu_s\rangle = -\sin \theta_m(t) |\nu_1(t)\rangle + \cos \theta_m(t) |\nu_2(t)\rangle$$

Thermal production rate $\pm \Gamma_N \sim G_F^2 T^5 \sin^2(2 heta_m)$.

$$\sin^2(2\theta_m) = \frac{\Delta^2(p)\sin^2(2\theta)}{\Delta^2(p)\sin^2(2\theta) + \left[\Delta(p)\cos(2\theta) - V_D - V_T\right]^2}$$

The active-sterile mass splitting enters via

 $\Delta(p) = \Delta m^2 / (2p)$

And the "matter potentials" are

$$V_T \simeq -\frac{8}{3}\sqrt{2}G_F \left[\frac{\rho_{\nu}}{m_Z^2} + \frac{\rho_{\ell}}{m_W^2}\right] E_{\nu'}$$
$$V_D \simeq 2\sqrt{2}G_F n_{\gamma} l_{\nu} = 2\sqrt{2}G_F \frac{2\zeta(3)}{\pi^2} T^3 l_{\nu},$$

$$\sin^2(2\theta_m) = \frac{\Delta^2(p)\sin^2(2\theta)}{\Delta^2(p)\sin^2(2\theta) + \left[\Delta(p)\cos(2\theta) - V_D - V_T\right]^2}.$$

The active-sterile mass splitting enters via

 $\Delta(p) = \Delta m^2 / (2p)$

 $V_D \simeq 0$

And the "matter potentials" are

$$V_T \simeq -G_{\text{eff}}^2 T^4 p \qquad G_{\text{eff}}^2 \sim 10^2 G_F^2$$

Thermal production rate peaks at T ~ 0.1 - 1 GeV : $\Gamma_N \sim G_F^2 T^5 \sin^2(2\theta_m)$

$$\sin^{2}(2\theta_{m}) = \frac{\Delta^{2}(p)\sin^{2}(2\theta)}{\Delta^{2}(p)\sin^{2}(2\theta) + [\Delta(p)\cos(2\theta) - V_{D} - V_{T}]^{2}}$$
The active-sterile mass splitting enters via
$$\Delta(p) = \Delta m^{2}/(2p) \quad \text{vacuum mixing angle smaller than 10-6}$$
And the "matter potentials" are
$$V_{T} \simeq -G_{\text{eff}}^{2}T^{4}p \quad G_{\text{eff}}^{2} \sim 10^{2}G_{F}^{2}$$

$$V_{D} \simeq 0 \quad \text{Thermal production rate peaks at T ~ 0.1 - 1 GeV}$$

$$\sin^{2}(2\theta_{m}) = \frac{\Delta^{2}(p)\sin^{2}(2\theta)}{\Delta^{2}(p)\sin^{2}(2\theta) + [\Delta(p)\cos(2\theta) - V_{D} - V_{T}]^{2}}.$$
The active-sterile mass splitting enters via
$$\Delta(p) = \Delta m^{2}/(2p) \quad \text{at high T the matter potential suppresses the effective mixing angle}}$$
And the "matter potentials" are
$$V_{T} \simeq -G_{\text{eff}}^{2}T^{4}p \quad G_{\text{eff}}^{2} \sim 10^{2}G_{F}^{2}$$

$$V_{D} \simeq 0 \quad \text{Thermal production rate peaks at T ~ 0.1 - 1 GeV}$$

$$= \Gamma_{N} \sim G_{F}^{2}T^{5}\sin^{2}(2\theta_{m}).$$

 $\boldsymbol{\nu}$

$$\sin^2(2\theta_m) = \frac{\Delta^2(p)\sin^2(2\theta)}{\Delta^2(p)\sin^2(2\theta) + \left[\Delta(p)\cos(2\theta) - V_D - V_T\right]^2}.$$

The active-sterile mass splitting enters via

 $\Delta(p) = \Delta m^2 / (2p)$ And the "matter potentials" are $V_T \simeq -G_{\text{eff}}^2 T^4 p \qquad G_{\text{eff}}^2 \sim 10^2 G_F^2$ $V_D \simeq 0$ Thermal production rate peaks at T ~ 0.1 - 1 GeV $\Gamma_N \sim G_F^2 T^5 \sin^2(2\theta_m)$

Resonant Production

$$\sin^2(2\theta_m) = \frac{\Delta^2(p)\sin^2(2\theta)}{\Delta^2(p)\sin^2(2\theta) + \left[\Delta(p)\cos(2\theta) - V_D - V_T\right]^2}.$$

The active-sterile mass splitting enters via

$$\Delta(p) = \Delta m^2 / (2p)$$

resonance condition

$$\Delta(p)\cos(2\theta) - V_D - V_T = 0$$

resonance condition strongly depends on lepton asymmetries $M^2 - 2 \frac{4\sqrt{2}\zeta(3)}{\pi^2} G_F l_{\nu} p T^3 + 2G_{\text{eff}}^2 p^2 T^4 = 0, \ l_{\nu} \equiv (n_{\nu} - n_{\bar{\nu}})/n_{\gamma}$

Resonance Condition

resonance for mode with $x \equiv p/T$ occurs at

$$x_{res} = \frac{G_F}{G_{\text{eff}}^2 T^2} \frac{4\zeta(3)}{\sqrt{2}\pi^2} l_{\nu} \left[1 \pm \sqrt{1 - \frac{1}{2} \frac{M^2}{T^2} \frac{G_{\text{eff}}^2}{G_F^2}} \frac{\pi^4}{8\zeta(3)^2} \frac{1}{l_{\nu}^2} \right]$$

resonance requires a lepton asymmetry

$$|l_{\nu}| > \frac{1}{2} \frac{M}{T} \frac{G_{\text{eff}}}{G_F} \frac{\pi^2}{2\zeta(3)},$$

this is several orders of magnitude larger than the baryon asymmetry! (but well below the observational bound)

DM Spectrum

DM momentum distribution has two components:

- A "warm" part from the non-resonant production
- A "cold" part from the resonant production

Updated spectra:

Structure Formation

DM free streaming length

$$\lambda_{\rm fs}(t) \equiv a(t) \int_{t_i}^t dt' \, \frac{v(t')}{a(t')} \approx 1 \, {\rm Mpc} \frac{\rm keV}{M} \frac{\langle p_{\rm DM} \rangle}{\langle p_{\nu} \rangle}$$

affects matter power spectrum

Structure Formation

Sterile Neutrino Dark Matter

Boyarsky/MaD/Lasserre/Mertens/Ruchayskiy 18 M [keV]

Sterile Neutrino Dark Matter

Boyarsky/MaD/Lasserre/Mertens/Ruchayskiy 18 M [keV]

Leptogenesis Senarios

"big bang"

 $T = 130 \ GeV$

Leptogenesis with 2RHN

The region in which the freeze-out scenario ("resonant leptogenesis") and freeze-in scenario ("ARS leptogenesis") work overlap!

Klaric/Shaposhnikov/Timirsyasov 2008.13771

How to make a large lepton asymmetry?

been done

- We showed a long time ago that the asymmetry needed for resonant DM production can be generated in the vMSM from the late time decay of the heavier N
- But our analysis contained a number of simplifications

Complementarity in the vMSM

Resonant production relies on properties of the two heavier RHN

 $M_{\rm H} = 2.0 \, {\rm GeV}$

Their properties can be constrained by combining data from many sources

Accelerator-based Heavy Neutrino Searches

Overview

- introduction
- model independent bounds

phase space density

indirect detection (x-ray)

nuclear β decay spectra

• model dependent bounds

minimal model (vMSM)

DM from scalar decay

Example I: DM from scalar singlet decay

consider scalar singlet model: $\mathcal{L} = \mathcal{L}_{SM} + \left| \frac{i}{2} \overline{N} \partial N + \frac{1}{2} (\partial_{\mu} S) (\partial^{\mu} S) - \frac{y}{2} S \overline{N^c} N + \text{h.c.} \right| - V_{\text{scalar}} + \mathcal{L}_{\nu}$

scalar potential:

 $V_{\text{scalar}} = \frac{1}{2}m_S^2 S^2 + \frac{\lambda_S}{4}S^4 + 2\lambda \left(\Phi^{\dagger}\Phi\right)S^2$

- DM can be produced before scalar comes into equilibrium ("freeze in", left panel) or after ("freeze out", right panel)
- DM momentum distribution differs in both cases

Konig/Merle/Totzauer 2004.10766

Example I: DM from scalar singlet decay

Example I: DM from scalar singlet decay

new scalar Φ with Yukawa coupling $y\Phi\bar{\Psi}N$ to charged fermion Ψ and heavy neutrinos N

 $N = sterile \ neutrino \ Dark \ Matter$ $\Phi = leptophilic \ Higgs$ $\Psi = charged \ lepton$

N can be produced in decays $\Phi \rightarrow \Psi N$

new scalar Φ with Yukawa coupling $y\Phi\bar{\Psi}N$ to charged fermion Ψ and heavy neutrinos N

 $N = sterile \ neutrino \ Dark \ Matter$ $\Phi = leptophilic \ Higgs$ $\Psi = charged \ lepton$

N can be produced in decays $\Phi \rightarrow \Psi N$ Decay occurs in the hot primordial plasma

- modified (quasi)particle dispersion relations
- quantum statistical effects
- scatterings of Φ in the plasma contribute to Dark Matter production

new scalar Φ with Yukawa coupling $y\Phi\bar{\Psi}N$ to charged fermion Ψ and heavy neutrinos N

 $N = sterile \ neutrino \ Dark \ Matter$ $\Phi = leptophilic \ Higgs$ $\Psi = charged \ lepton$

Decay rate in the medium MaD/Kang 16

$$\tilde{\Gamma}_{\Phi\mathbf{q}} \simeq \tilde{\Gamma}_0 \frac{M_{\Phi}}{m_{\Phi}} \frac{M_{\Phi}}{\Omega_{\Phi\mathbf{q}}} \left[\frac{T}{\mathbf{q}} \log \left[\frac{f_F\left(\frac{\Omega_{\Phi\mathbf{q}}-\mathbf{q}}{2}\right)}{f_F\left(\frac{\Omega_{\Phi\mathbf{q}}+\mathbf{q}}{2}\right)} \right] + \alpha \left[-1 + \frac{T}{\beta\mathbf{q}} \log \left[\frac{f_F\left(\beta \frac{(\Omega_{\Phi\mathbf{q}}-\mathbf{q})}{2}\right)}{f_F\left(\beta \frac{(\Omega_{\Phi\mathbf{q}}+\mathbf{q})}{2}\right)} \right] \right] \right]$$

new scalar Φ with Yukawa coupling $y\Phi\bar{\Psi}N$ to charged fermion Ψ and heavy neutrinos N

 $N = sterile \ neutrino \ Dark \ Matter$ $\Phi = leptophilic \ Higgs$ $\Psi = charged \ lepton$

N can be produced in decays $\Phi \rightarrow \Psi N$

new scalar Φ with Yukawa coupling $y\Phi\bar{\Psi}N$ to charged fermion Ψ and heavy neutrinos N

 $N = sterile \ neutrino \ Dark \ Matter$ $\Phi = leptophilic \ Higgs$ $\Psi = charged \ lepton$

N can be produced in decays $\Phi \rightarrow \Psi N$

scatterings of Φ also contribute to the production

new scalar Φ with Yukawa coupling $y\Phi\bar{\Psi}N$ to charged fermion Ψ and heavy neutrinos N

N = *sterile neutrino Dark Matter*

 $\Phi = leptophilic Higgs$ $\Psi = charged lepton$

Heavy Neutrino Dark Matter Summary

JCAP01(2017)025

Important Aspects of Sterile Neutrino DM

Indirect searches

• radiative decay $N \rightarrow v\gamma$ gives emission line at M/2

- 3.5 keV excess observed, but disputed
- new missions (XRISM, ATHENA, Lynx...)

Structure formation

Free streaming of DM affects formation of structures at sub-Mpc lengths

- matter power spectrum (Lyman α forest, 21 cm astronomy, weak lensing)
- # collapsed structures (dwarf galaxy counts, reionisation history; collapsed objects at high-z)
- matter distribution within collapsed objects

• uncertainties: baryonic feedback, IGM temperature...

Production mechanisms

Three known production mechanisms:

- thermal production through mixing-suppressed weak interaction (resonant or non-resonant)
- thermal production through new interactions at high energies (e.g. gauge interactions in L-R symm. model)
- decay of heavy particle/field (e.g. inflaton during reheating)

Phase space

- fermions are subject to Pauli principle M > 25 eV
- applying this throughout the history of the universe yields Temaine-Gunn bound
- Tremaine-Gunn bound depends on production mechanism, • excludes M < 0.5 keVdisfavours M < 2 keV

