

Long-lived particles Connecting early universe dynamics to collider signatures

Anastasia Filimonova

Helsinki, 2.12.2020

DM particles: general properties

What we do know:

- Interact through gravity
- Massive (to cluster)
- If DM particles ever were relativistic they should have slowed down early in the history of the Universe
- Electrically neutral (do not interact with photons)
- Stable on cosmological scales

Γ_{int} SM Why the electroweak scale? ? DM SM **Assumption:** thermal production **Relic abundance** $\langle \sigma v \rangle \sim \frac{\alpha^2}{m_{DM}^2} ~~ {\rm +}~~ n_{DM} \langle \sigma v \rangle \sim H \label{eq:sigma_def}$ at decoupling **Very simplified WIMPS** One new "heavy" particle $\Omega_{DM}h^2 \sim \underbrace{0.12}_{\text{Planck}} \underbrace{\frac{10^{-26}\text{cm}^3 s^{-1} (\text{or } 10^{-9} [GeV]^{-2})}{\langle \sigma v \rangle}}_{\langle \sigma v \rangle}$ Planck

"Natural" choice: $\alpha \sim \alpha_{EW}$ $m_{DM} \sim O(100 \text{GeV})$

Constraints

Scattering (direct detection)

Xenon experiment

Production

Annihilation (indirect detection)

Fermi satellite

Large Hadron Collider

Main problem: direct detection

"WIMPless miracle"

Feng & Kumar [0905.3039]

Co-annihilation

Griest & Seckel 1991

at decoupling

But eventually

DM

No Direct detection signal

"Exceptions"

7

"4th" exception: co-scattering

 $(n_{SM} \langle \sigma v \rangle_{DM \to M} \sim H$ Very high

Correct relic abundance for much smaller couplings

Compare to (co-)annihilation:

 $(n_{dark} \langle \sigma v \rangle_{eff} \sim H$

Example: singlet-triplet model

2 majorana fields:
$$SU(2)$$
 singlet χ_S and triplet χ_T Naturally small
 $\mathcal{L}_{eff} \supset -\frac{m_S}{2} \overline{\chi}_S \chi_S - \frac{m_T}{2} \operatorname{Tr}[\overline{\chi}_T \chi_T] + \frac{\kappa_{ST}}{\Lambda} \left[(H^{\dagger} \overline{\chi}_T H) \chi_S + h.c. \right]$

with
$$\chi_S = \chi_S^0$$
, $\chi_T = \begin{pmatrix} \chi_T^0 / \sqrt{2} & \chi^+ \\ \chi^- & -\chi_T^0 / \sqrt{2} \end{pmatrix}$

Three new parameters:
$$m_S, \; m_T, \; \mu = rac{\kappa_{ST} v^2}{\sqrt{2}\Lambda}$$

Conventional processes

Gauge and Higgs couplings

Main contributions from:

Annihilation

Co-annihilation

Mediator annihilation + further decay to χ_l

Naive picture

Lines: $\Omega_\psi h^2 = 0.1199 \pm 0.0022$ [Planck coll., 1502.01589]

Co-scattering

Small portal coupling

	process	scaling		process	scaling
pair annihilation	$\chi_\ell \chi_\ell \to W^+ W^-$	$(g\sin\theta)^4$	mediator annihilation	$\chi_h \chi_h \to W^+ W^-$	$(g\cos\theta)^2$
	$\chi_\ell \chi_\ell \to h^* \to f\bar{f}, VV$	$(\mu\sin(2\theta)/v)^2$		$\chi_h \chi^+ \to f \bar{f'}, VV$	$(g\cos heta)^2$
	$\chi_\ell \chi_\ell o hh$	$(\mu\cos(2\theta)/v)^4$		$\chi^+\chi^- \to f\bar{f}, VV$	g^2
co-annihilation	$\chi_\ell \chi^+ \to f\bar{f}', VV$	$(g\sin\theta)^2$	mediator decays	$\chi^+ \to \chi_\ell f f'$	$(g\sin\theta)^2$
	$\chi_\ell \chi_h \to W^+ W^-$	$(g\sin\theta)^2$		$\chi_h o \chi_\ell f \bar{f}$	$(\mu/v)^2$
	$\chi_\ell \chi_h \to h^* \to f\bar{f}, VV$	$(\mu/v)^2$			
co-scattering	$\chi_\ell f \to \chi^+ f'$	$(g\sin\theta)^2$	scattering	$\chi_\ell f \to \chi_\ell f$	$(\mu\sin\theta/v)^2$
	$\chi_\ell f o \chi_h f$	$(\mu/v)^2$			

- Mediator annihilations are still in chemical equilibrium
- Decays become very slow
- Equilibrium may be lost for dark matter

Relic abundance: co-scattering + mediator annihilation

Is a common feature of theories with nontrivial dark sector in a small-coupling regime See also Garny et. al[1705.09292], D'Agnolo et al. [1705.08450], [1803.02901], [1906.09269] and Junius et al. [1904.07513]

So just continue searching?

- Mediator decays are slow during decoupling.
- But they are also long-lived at colliders!

Prompt searches are having a hard time

Only light masses are probed

Bharuchaa, Brümmer, Desai [1804.02357] CMS [1206.3949]

LLP analyses at ATLAS & CMS

[R. Rosten's talk at 5th LLP Workshop]

Latest reports from the LHC LLP Community available at https://indico.cern.ch/event/922632/

Promising soft displaced signatures

Collider searches

Prompt searches can not help

Lifetimes accessible @ LHC

Higgs portal again: freeze-out phases

LLPs @ the LHC

F. Blekman, N. Desai, AF, A. R. Sahasransua & S. Westhoff [2007.03708]

Displacements considered

Sensitive to

Benchmarks

	#	$m_c \; [\text{GeV}]$	$\Delta m \; [{ m GeV}]$	$c\tau_c$ [cm]	$\mathcal{B}(\ell^+\ell^-)$
DM candidate	$\begin{array}{c}1\\2\end{array}$	324 220	20 20	2 3	$0.025 \\ 0.014$
Various lifetimes	$3 \\ 4 \\ 5 \\ 6$	220 220 220 220	20 20 20 20	0.1 1 10 100	1 1 1 1
Cross-check (excluded)	7	220	40	1	1

Signal/background discrimination

F. Blekman,a N. Desai,b AF, A. R. Sahasransua & S. Westhoff [2007.03708]

Resorting to neural networks

- Using 9 MET and geometry-related variables (d₀- related ones are excluded to prevent unrealistic modelling)
- Trained (80%) and tested (20%) on (324, 20, 2)
- Modest kinematic differences between BP \Box one classifier for all benchmarks.

Hard cut at NN > 0.9: successful for red/magenta, blue is unseen due to small cross section

Expected sensitivity

Poisson log likelihood ratio

$$Q = \sum_{i=I,II,III} -2\log\left(\frac{\mathcal{L}_{S_i+B_i}}{\mathcal{L}_{B_i}}\right), \qquad \mathcal{L}_{S_i+B_i} = e^{-(S_i+B_i)}\frac{(S_i+B_i)^{N_i}}{N_i!}, \qquad R_{95} = Q/5.99$$

LLPs beyond the LHC

LLPs @ Belle II: example of light scalars

Search regions

AF, R. Shäfer, S. Westhoff [1911.03490]

 m_t

v

 m_{f}

v

S heta

 $s_{ heta}$

Displaced semi-leptonic decays

AF, R. Shäfer, S. Westhoff [1911.03490]

Displaced signatures @ Belle II

$$\begin{split} N_{f\bar{f}} &= N_{B\bar{B}} \times 1.93 \,\mathcal{B}(B \to KS) \mathcal{B}(S \to \mu\bar{\mu}) \\ &\times \int_{r_{\min}}^{r_{\max}} \frac{r^2 dr}{2d_S^3} \int_{\vartheta_{\min}}^{\vartheta_{\max}} \frac{d\vartheta}{2\sin^2\vartheta} e^{-\frac{r/\sin\vartheta}{d_S}} \end{split}$$

B-factories: comparison

AF, R. Shäfer, S. Westhoff [1911.03490]

Belle II and fixed-target experiments

Take-home message(s)

- Strong direct detection constraints point us to a very weakly coupled dark sectors.
- Consequently, the "non-conventional" processes set the DM relic abundance.
- This also leads to a natural appearance of the long-lived states at collider scales. The most promising collider signatures involve displaced particles.
- New searches are needed to conclusively test this scenario: displaced soft leptons, appearing tracks, etc.
- Soft objects require new experimental developments (e.g. cross-triggers).

[S.Westhoff's talk at 5th LLP Workshop]

- How powerful are displaced searches?
- Which experiments can probe the co-scattering regime (are the lifetimes at the scale of ATLAS/CMS or beyond i.e. FAZER/MATHUSLA/ShiP...)?
- What happens for even weaker couplings? At which point we switch to the freeze-in scenarios?
- Are there any hints from cosmological observations about the properties of the non-thermal dark matter momentum distribution?

Thank you!

Singlet-triplet model: mass basis

Scalar scenarioPseudo-scalar scenario $m_S > \mu^2/m_T$ $m_S < \mu^2/m_T$ $\begin{pmatrix} \chi_\ell \\ \chi_h \end{pmatrix} = \begin{pmatrix} \cos\theta \chi_S^0 - \sin\theta \chi_T^0 \\ \sin\theta \chi_S^0 + \cos\theta \chi_T^0 \end{pmatrix}$ $\begin{pmatrix} \chi_\ell \\ \chi_h \end{pmatrix} = \begin{pmatrix} \cos\theta \chi_S^0 + \sin\theta i\gamma_5 \chi_T^0 \\ \sin\theta i\gamma_5 \chi_S^0 + \cos\theta \chi_T^0 \end{pmatrix}$ $m_{h,\ell} = \frac{1}{2} \Big(m_T + m_S \pm \Delta m_{h\ell} \Big)$ $m'_{h,\ell} = \frac{1}{2} \Big(\Delta m_{h\ell} \pm (m_T + m_S) \Big) = \pm m_{h,\ell}$ $m_c = m_T$ $m_c = m_T$

with
$$\Delta m_{h\ell} = \sqrt{(m_T - m_S)^2 + 4\mu^2}$$
 $\theta \simeq \frac{\mu}{m_T - m_S}$

In both scenarios $m_\ell/m_\ell'>0$

Couplings of dark fermions

Two physical scenarios, depending on parameters of the theory:

Scalar case: Couplings $\propto 1, \gamma_{\mu}$

Pseudo-scalar case:

Couplings $\propto \gamma_5, \gamma_\mu \gamma_5$

Connected through chiral rotation:

 $\chi_l
ightarrow i\gamma_5 \chi_l$

• Changes the sign of the mass term:

 $-m_l \bar{\chi}_l \chi_l \to m_l \bar{\chi}_l \chi_l$

• Leads to pseudo-scalar (axial-vector) interactions:

 $\bar{\chi}_h \chi_l \to i \bar{\chi}_h \gamma_5 \chi_l$ $\bar{\chi}_+ \gamma^\mu \chi_l \to i \bar{\chi}_+ \gamma^\mu \gamma_5 \chi_l$

See also [hep-ph/0702148]

Relic density: threshold effects

$$\theta \simeq \frac{\mu}{m_T - m_S}$$

Blue/green: $\Omega_{\psi}h^2 = 0.1199 \pm 0.0022$ [Planck coll., 1502.01589]

AF & S. Westhoff [1812.04628]

Surviving regions: pseudoscalar case

Mediator annihilation + further decays to χ_l

 $(g\cos\theta)^2$

Lines: $\Omega_\psi h^2 = 0.1199 \pm 0.0022$ [Planck coll., 1502.01589]

Relic density: implementation

Co-scattering processes are important for accurate

prediction of dark matter relic density.

Not included in public codes e.g. MicrOMEGAs, MadDM, DarkSUSY

Complication:

the DM particles are frequently not in thermal equilibrium

In principle

the coupled system non-integrated Boltzmann equations for all dark states must be solved

However, in many cases simplified approaches are possible (see Binder at al. 1805.00526, D'Agnolo et al. 1906.09269)

Collider searches: details

CMS-PAS-EXO-16-022 analysis

- Oppositely charged e and μ with ΔR >0.5
- One μ: p_T > 40 GeV, η < 2.4,
 Isolation < 0.15
- One e: $p_T > 42$ GeV, $\eta < 2.4$, Isolation < 0.12

F. Blekman,a N. Desai,b AF, A. R. Sahasransua & S. Westhoff [2007.03708]

NN performance

