Hunting for the stochastic gravitational-wave background: implications for astrophysical and high energy physics models

- Introduction to the SGWB
- Detection method
- Detecting SGWB in the presence of correlated magnetic noise
- SGWB from compact binary coalescences: info about astrophysical models
- SGWB from cosmic strings: info beyond standard model particle physics
- Simultaneous estimation of astrophysical and cosmological SGWB
- Introduction to anisotropies in the SGWB
- Anisotropies from cosmic strings
- Anisotropies from CBCs: info about large-scale-structure
- The issue of shot noise and a new statistics

O3a: 1st April 2019 - 1st October 2019 39 candidate events in ~26 weeks of data (~1.5 per week) BBH, BNS, NSBH

LVC, arXiv:2010.14527

Besides the detection of loud individual sources at close distances, we expect to see the background formed by all the sources from the whole Universe

Produced by a superposition of many weak, independent and unresolved sources of astrophysical or cosmological origin

Binaries, Supernovae, Neutron stars

Cosmological phase transitions

Stochastic GW Background (SGWB)

Inflation

Cosmic strings

Cosmological phase transitions

Assuming the SGWB to be isotropic, Gaussian, stationary and unpolarised:

$$\Omega_{\rm gw}(f) = \frac{1}{\rho_c} \frac{\mathrm{d}\rho_{\rm gw}(f)}{\mathrm{dln}(f)}$$

$$\Omega_{\rm gw}(f) = \Omega_{\alpha} \left(\frac{f}{f_{\rm ref}}\right)^{\alpha} \qquad \qquad f_{\rm ref} = 25 \,\,{\rm Hz}.$$

Unresolved CBCs give a background spectrum with $\alpha = 2/3$

Inflation and cosmic strings give $\alpha = 0$

Also common to consider spectrum flat in GW power lpha=3 to mimic signals from PT and SN

A detection of the SGWB from unresolved compact binary coalescences could be made by Advanced LIGO and Advanced Virgo at their design sensitivities

It would appear as **noise** in a single GW detector

$$\tilde{s}_i(f) = \tilde{h}_i(f) + \tilde{n}_i(f)$$

For a stochastic GW signal: noise >> strain

To detect a SGWB take the correlation between two detector outputs:

$$\langle \tilde{s}_i^*(f)\tilde{s}_j(f')\rangle = \langle \tilde{h}_i^*(f)\tilde{h}_j(f')\rangle + \langle \tilde{h}_i^*(f)\tilde{n}_j(f')\rangle + \langle \tilde{n}_i^*(f)\tilde{h}_j(f')\rangle + \langle \tilde{n}_i^*(f)\tilde{n}_j(f')\rangle$$

Assuming the Suve to be isotropic, Gaussian, stationary and unpolarised:

 $\hat{C}_{ij}(f;t) = \frac{2}{T} \frac{\operatorname{Re}[\tilde{s}_i^*(f;t)\tilde{s}_j(f;t)]}{\Gamma_{ij}(f)S_0(f)} \qquad S_0(f) = \frac{3H_0^2}{(10\pi^2 f^3)}$ $\langle \tilde{h}_i^*(f)\tilde{h}_j(f')\rangle = \frac{1}{2}\delta_T(f-f')\Gamma_{ij}(f)S_{gw}(f)$ $S_{\rm gw}(f) = \frac{3H_0^2}{10\pi^2} \frac{\Omega_{\rm gw}(f)}{f^3}$ Single power spectral density (PSD) $\Omega_{\rm gw}(f) = \Omega_{\alpha} \left(\frac{f}{f_{\rm rof}}\right)^{\alpha} \qquad f_{\rm ref} = 25 \,\,{\rm Hz}.$

Assuming the GW signal and the intrinsic noise are uncorrelated $\langle \tilde{h}_i^*(f)\tilde{n}_i(f')\rangle = 0$ and that the noise in each frequency bin is independent

$$\langle \hat{C}_{ij}(f;t) \rangle = \Omega_{\rm gw}(f) + 2 \operatorname{Re}\left[\frac{\langle \tilde{n}_i^*(f;t)\tilde{n}_j(f;t) \rangle}{T\Gamma_{ij}(f)S_0(f)}\right]$$

In the absence of correlated noise:

bsence of correlated noise:
$$\langle \tilde{n}_i^*(f)\tilde{n}_j(f)
angle = 0,$$
 $\implies \langle \hat{C}_{ij}(f)
angle$ is an estimator for $\Omega_{gw}(f)$

Assuming the Suve to be isotropic, Gaussian, stationary and unpolarised:

 $\hat{C}_{ij}(f;t) = \frac{2}{T} \frac{\operatorname{Re}[\tilde{s}_i^*(f;t)\tilde{s}_j(f;t)]}{\Gamma_{ij}(f)S_0(f)}$ $S_0(f) = 3H_0^2/(10\pi^2 f^3)$ $\langle \tilde{h}_i^*(f)\tilde{h}_j(f')\rangle = \frac{1}{2}\delta_T(f-f')\Gamma_{ij}(f)S_{gw}(f)$ $S_{\rm gw}(f) = \frac{3H_0^2}{10\pi^2} \frac{\Omega_{\rm gw}(f)}{f^3}$ Single power spectral density (PSD) $\Omega_{\rm gw}(f) = \Omega_{\alpha} \left(\frac{f}{f_{\rm rof}} \right)^{\alpha} \qquad f_{\rm ref} = 25 \,\,{\rm Hz}.$

Assuming the GW signal and the intrinsic noise are uncorrelated $\langle \tilde{h}_i^*(f)\tilde{n}_i(f')\rangle = 0$ and that the noise in each frequency bin is independent

$$\langle \hat{C}_{ij}(f;t) \rangle = \Omega_{\rm gw}(f) + 2 \operatorname{Re}\left[\frac{\langle \tilde{n}_i^*(f;t)\tilde{n}_j(f;t) \rangle}{T\Gamma_{ij}(f)S_0(f)}\right]$$

In the absence of correlated noise: $\langle \tilde{n}_i^*(f)\tilde{n}_i(f)\rangle = 0$,

$$\langle \hat{C}_{ij}(f;t) \rangle = \Omega_{\rm gw}(f) + 2 \operatorname{Re} \left[\frac{\langle \tilde{n}_i^*(f;t) \tilde{n}_j(f;t) \rangle}{T \Gamma_{ij}(f) S_0(f)} \right]$$

sence of correlated holse:
$$\langle n_i(J) \rangle$$

 $rightarrow \langle C_{ij}(f)
angle$ is an estimator for $arOmega_{{f gw}}(f)$

Schumann Resonances

- Resonances in the global electromagnetic field of Earth
- Correlated magnetic noise contamination

Power spectral density of magnetometer data near aVIRGO

Median power spectral density of magnetometers. [1802.00885]

$$\langle \hat{C}_{ij}(f) \rangle = \Omega_{\rm gw}(f) + \Omega_{{\rm M},ij}(f),$$

magnetic contribution

Meyers, Martinovic, Christensen, Sakellariadou, PRD (2020)

Parameter estimation using <u>correlated noise model</u> and <u>power-law model for the SGWB</u>

$$\Omega_{\mathrm{M},ij}(f) = \kappa_i \kappa_j \left(\frac{f}{10 \mathrm{Hz}}\right)^{-\beta_i - \beta_j} \hat{M}_{ij}(f) \times 10^{-22}$$
$$\hat{M}_{ij}(f) = \frac{\sum_k \hat{M}_{ij,k}(f) \sigma_{ij,k}^{-2}(f)}{\sum_k \sigma_{ij,k}^{-2}(f)}. \qquad \hat{M}_{ij,k}(f) = \frac{2}{T} \frac{\mathrm{Re}\left[\tilde{m}_i^*(f;t_k)\tilde{m}_j(f;t_k)\right]}{\Gamma_{ij}(f)S_0(f)}$$

$$\Omega_{\rm gw}(f) = \Omega_{\alpha} \, \left(\frac{f}{f_{\rm ref}}\right)^{\alpha}$$

Simulate correlated data in $\tilde{m}_H(f), \tilde{m}_L(f), \tilde{m}_V(f)$ using same scheme as we do for SGWB and project onto detector using transfer functions

The coupling functions (values of κ , β) differ in both shape and amplitude at each site

Meyers, Martinovic, Christensen, Sakellariadou, PRD (2020)

Assume a Gaussian likelihood for $\hat{C}_{ij}(f)$:

$$\ln p(\hat{C}_{ij}(f)|\boldsymbol{\theta}_{gw},\boldsymbol{\theta}_{M}) = -\frac{1}{2} \sum_{f} \left\{ \frac{\left[\hat{C}_{ij}(f) - \Omega_{gw}(f,\boldsymbol{\theta}_{gw}) - \Omega_{M,ij}(f,\boldsymbol{\theta}_{M})\right]^{2}}{\sigma_{ij}^{2}(f)} + \ln\left(2\pi\sigma_{ij}^{2}(f)\right) \right\}$$

$$\boldsymbol{\theta}_{\mathrm{gw}} = \Omega_{2/3} \text{ and } \alpha = 2/3 \text{ fixed} \qquad \boldsymbol{\theta}_{\mathrm{M}} = (\kappa_i, \kappa_j, \beta_i, \beta_j)$$

Multi-baseline likelihood:

$$p(\{\hat{C}_{ij}(f)\}_{ij\in \text{pairs}}|\boldsymbol{\theta}_{\text{gw}},\boldsymbol{\theta}_{\text{M}}) = \prod_{ij\in \text{pairs}} p(\hat{C}_{ij}(f)|\boldsymbol{\theta}_{\text{gw}},\boldsymbol{\theta}_{\text{M}}).$$

Estimate posterior distribution of the parameters

Meyers, Martinovic, Christensen, Sakellariadou, PRD (2020)

Compare different models for the data using Bayesian model selection

1. NOISE:
$$\Omega_{\mathrm{M}}(f) = \Omega_{\mathrm{gw}}(f) = 0$$
,

- 2. **GW:** $\Omega_{\mathrm{M}}(f) = 0, \ \Omega_{\mathrm{gw}}(f) \neq 0,$
- 3. SCHU: $\Omega_{\mathrm{M}}(f) \neq 0, \ \Omega_{\mathrm{gw}}(f) = 0,$
- 4. **GW+SCHU:** $\Omega_{\rm M}(f) \neq 0, \ \Omega_{\rm gw}(f) \neq 0$

Compare models using Bayes factors	Parameter	Prior
Example: prior	$\frac{\Gamma \text{ arameter}}{\Omega_{2/3}}$	LogUniform $(10^{-12}, 10^{-7})$
$\mathcal{B}_{\text{NOISE}}^{\text{GW}} = \frac{\int \mathrm{d}\boldsymbol{\theta}_{\text{gw}} p(C_{ij}(f) \boldsymbol{\theta}_{\text{gw}}) p(\boldsymbol{\theta}_{\text{gw}})}{\mathcal{N}}$	κ_H	Uniform $(0, 10)$
	κ_L	Uniform(0, 10)
	κ_V	Uniform(0, 10)
	eta_{H}	Uniform(0, 10)
$\mathcal{B}_{\text{NOISE}}^{\text{GW}} > 1$: there is support for the GW model	eta_L	Uniform(0, 10)
	β_V	Uniform(0, 10)

Using realistic simulations, we have shown that this method prevents a false SGWB detection due to correlated magnetic noise.

It can also be used for a detection of SGWB in the presence of strong correlated magnetic noise

Meyers, Martinovic, Christensen, Sakellariadou (2020)

$$\Omega_{\rm gw}(\nu) = \frac{1}{\rho_{\rm c}} \, \frac{d\rho_{\rm gw}(\nu)}{d\ln\nu}$$

 $\nu_{\rm s} = (1+z)\nu$

$$\Omega_{\rm GW}(\nu,\theta) = \frac{\nu}{\rho_{\rm c}H_0} \int_0^{z_{\rm max}} \mathrm{d}z \frac{R_{\rm m}(z;\theta) \frac{\mathrm{d}E_{\rm GW}(\nu_{\rm s};\theta)}{\mathrm{d}\nu_{\rm s}}}{(1+z)E(\Omega_{\rm M},\Omega_{\Lambda},z)}$$

$$E(\Omega_{\rm M}, \Omega_{\Lambda}, z) = \sqrt{\Omega_{\rm M}(1+z)^3 + \Omega_{\Lambda}}$$

High merging rate and large masses of observed systems implies strong SGWB

Most important quantities describing each BBH are the masses and spins of each component BH

Use Bayesian techniques to infer them from GW observations

Truncated power-law BH mass distribution:

1	$m_1^{-\alpha_m}$	$m_{\min} \le m_2 \le m_1 \le m_{\max}$	$m_{ m min} = 5 M_{\odot}$
$p(m_1,m_2)\propto \langle$	$m_1 - m_{\min}$,	$m_1 + m_2 \le M_{\max}$	16 00016
	0,	otherwise	$M_{\rm max} = 200 M_{\odot}$

The total energy density varies over nearly two orders of magnitude

a new probe of population of compact objects

Jenkins, O'Shaughnessy, Sakellariadou, Wysocki, PRL 122, 111101 (2019)

$$\Omega_{\rm GW}(\nu) = \Omega_{\rm ref} \left(\frac{\nu}{\nu_{\rm ref}}\right)^{\alpha} \quad \alpha=2/3$$
$$\nu_{\rm ref} = 25 {\rm Hz}$$

$$\frac{dE_{\rm GW}}{d\nu} = \frac{(G\pi)^{2/3}}{3} \frac{m_1 m_2}{(m_1 + m_2)^{1/3}} \nu^{-1/3}$$

$$\text{SNR} = \frac{3H_0^2}{10\pi^2} \sqrt{2T} \left[\int_0^\infty df \, \sum_{i=1}^n \sum_{j>i} \frac{\gamma_{ij}^2(f)\Omega_{\text{GW}}^2(f)}{f^6 P_i(f) P_j(f)} \right]^{1/2}$$

$$10^{-5}$$

$$\Omega_{\rm GW} < 4.8 \times 10^{-8}$$
 at 25 Hz

LVC (PRD) arXiv:1903.02886

1dim topological defects formed in the early universe as a result of a PT followed by SSB, characterised by a vacuum manifold with non-contractible closed curves

Kibble (1976)

Generically formed in the context of GUTs

Jeannerot, Rocher, Sakellariadou, PRD68 (2003) 103514

CS loops (length ℓ) oscillate periodically ($T = \ell/2$) in time emitting GWs (fundamental frequency $\omega = 4\pi/\ell$) $\tau \sim \frac{\ell}{G\mu}$

GW in a highly concentrated beam

GW is isotropic

Kink-Kink Collision

Oscillating loops of cosmic strings generate a SGWB that is strongly non-Gaussian, and includes occasional sharp bursts due to cusps and kinks

Cusp

1dim topological defects formed in the early universe as a result of a PT followed by SSB, characterised by a vacuum manifold with non-contractible closed curves

Kibble (1976)

Generically formed in the context of GUTs

Jeannerot, Rocher, Sakellariadou, PRD68 (2003) 103514

- Cusps on CS collapse to form PBHs
- Many more PBHs than previously thought collapse of circular loops due to string tension – very few loops circular enough, so very few PBHs
- Subsolar-mass PBHs with large (but non-extremal) spin

The cusp-collapse spectrum is smaller than that of a non-collapsing cusp by a factor ¼ at low f, has a strong peak at very high f due to QNM ringing of the PBH, and then decays like 1/f

New constraints from PBH evaporation independent of model Gµ \precsim 10 $^{\text{-}11}$

SGWB constraints on string tension relaxes slightly (dependent on the model)

Jenkins, Sakellariadou, (2020)

GW models:

CBC background

$$\Omega_{
m CBC}(f) = \Omega_{2/3} \left(rac{f}{25\,{
m Hz}}
ight)^{2/3}$$

CS background (flat)

 $\Omega_{\rm CS}(f) = {\rm const.}$

PT background (smooth broken power law (BPL))

$$\Omega_{
m BPL} = \Omega_* \left(rac{f}{f_*}
ight)^{lpha_1} \left[1 + \left(rac{f}{f_*}
ight)^{\Delta}
ight]^{(lpha_2 - lpha_1)/\Delta}$$

we fix $\alpha_1 = 3, \alpha_2 = -4, \Delta = 2$ to approximates sound waves contribution

Meyers, Martinovic, Sakellariadou, Christensen, (2020)

Mairi Sakellariadou

IGO

Multi-baseline likelihood

The log-likelihood for a single detector pair is given by:

$$\log p(\hat{C}_{ij}(f)|\boldsymbol{\theta}_{\rm GW}) = -\frac{1}{2} \sum_{f} \frac{\left[\hat{C}_{ij}(f) - \Omega_{\rm GW}(f,\boldsymbol{\theta}_{\rm GW})\right]^2}{\sigma_{ij}^2(f)} - \frac{1}{2} \sum_{f} \log\left[2\pi\sigma_{ij}^2(f)\right]$$

The set of GW parameters in the posterior depends on the type of search we perform. We focus on

- ► CBC Power Law: $\theta = (\Omega_{2/3}),$
- $\blacktriangleright \text{ CBC} + \text{CS: } \boldsymbol{\theta} = (\Omega_{2/3}, \Omega_{\text{CS}}).$

► CBC + BPL:
$$\theta = (\Omega_{2/3}, \Omega_*, f_*).$$

The multi-baseline likelihood is a simple generalization

$$\log p(\{\hat{C}_{IJ}(f)\}_{IJ\in \text{pairs}}|\theta) = \sum_{IJ\in \text{pairs}} \log p(\hat{C}_{IJ}(f)|\theta),$$

where "pairs" simply refers to the set of available detector pairs(e.g. HL, HV, LV).Meyers, Martinovic, Sakellariadou, Christensen, (2020)

Model selection To compare two models we use Bayes factors

$$\mathcal{B}_{\mathcal{M}_2}^{\mathcal{M}_1} = \frac{\int \mathrm{d}\boldsymbol{\theta} \ p(\hat{C}_{ij}(f)|\boldsymbol{\theta}, \mathcal{M}_1) p(\boldsymbol{\theta}|\mathcal{M}_1)}{\int \mathrm{d}\boldsymbol{\theta} \ p(\hat{C}_{ij}(f)|\boldsymbol{\theta}, \mathcal{M}_2) p(\boldsymbol{\theta}|\mathcal{M}_2)}$$

 $p(oldsymbol{ heta}|\cdot)$: prior probability of parameters given a choice of model

Detector networks

- ► Hanford, Livinston, Virgo, O4 sensitivity, 1 year of run time
- Cosmic Explorers (CE) at Hanford and Livingston locations, Einstein Telescope (ET) at Virgo, 1 year of run time

Current GW detectors are unable to separate astrophysical from cosmological sources
 Future GW detectors (CE, ET) can dig out cosmological signals, provided one can subtract the *loud* astrophysical foreground

Meyers, Martinovic, Sakellariadou, Christensen, (2020)

ISS

To a first approximation, the SGWB is assumed to be isotropic (analogous to the CMB)

 $C_{\ell} = \int \mathrm{d}^{2} \hat{\boldsymbol{n}} P_{\ell}(\cos \theta) \left\langle \delta \Omega_{\mathsf{GW}} \delta \Omega_{\mathsf{GW}} \right\rangle_{\theta}$

The afterglow radiation left over from the Hot Big Bang

- its temperature is extremely uniform all over the sky
- tiny temperature fluctuations (one part 100,000)

SGWB

Gravitational wave sources with an anisotropic spatial distribution lead to a SGWB characterised by preferred directions, and hence anisotropies

Focus on anisotropy due to source density contrast & neglect most of cosmological perturbations Include peculiar motion of observer as this introduces a kinematic dipole that interferes with the anisotropy statistics

$$\Omega_{\mathsf{gw}} = \frac{\pi \nu_{\mathsf{o}}^3}{3H_{\mathsf{o}}^2} \int_0^{\eta_*} \mathrm{d}\eta \, a^2 \int \mathrm{d}\zeta \, \bar{n}R(1 + \delta_n + \hat{\boldsymbol{e}}_{\mathsf{o}} \cdot \boldsymbol{v}_{\mathsf{o}}) \int_{S^2} \mathrm{d}^2\sigma_{\mathsf{s}} \, r_{\mathsf{s}}^2 \tilde{h}^2$$

Anisotropy due to source density contrast
$$\delta_n \equiv \frac{n-\bar{n}}{\bar{n}}$$

Intensity of SGWB:

 $C_{\rm gw}(\theta_{\rm o},\nu_{\rm o}) = 2$

$$\Omega_{\rm gw}(\nu_{\rm o}, \hat{\boldsymbol{e}}_{\rm o}) \equiv \bar{\Omega}_{\rm gw}(1 + \delta_{\rm gw})$$

2PCF:
$$C_{\rm gw}(\theta_{\rm o},\nu_{\rm o}) \equiv \left\langle \delta_{\rm gw}^{\rm (s)}(\nu_{\rm o},\hat{\boldsymbol{e}}_{\rm o})\delta_{\rm gw}^{\rm (s)}(\nu_{\rm o},\hat{\boldsymbol{e}}_{\rm o}') \right\rangle$$

 $\delta_{\rm gw} = \delta_{\rm gw}^{\rm (s)} + \mathcal{D}\,\hat{e}_{\rm o}\cdot\hat{v}_{\rm o}$

Density contrast due to the source distribution alone, with the kinematic dipole subtracted

$$heta_{
m o} \equiv \cos^{-1}(\hat{e}_{
m o} \cdot \hat{e}_{
m o}')$$

Jenkins, Sakellariadou, PRD 98, 063509 (2018)

Mairi Sakellariadou

 $C_l(\nu_{\rm o}) P_l(\cos\theta_{\rm o})$

SGWB from cosmic strings: info about physics Beyond the Standard Model (BSM)

CBCs are the loudest component of the SGWB

Millenium mock galaxy catalogue (N-body simulation)

Spingel et al (Nature), arXiv:0504097

BBH / BNS / BHNS are within galaxies

Get galaxies from the Millenium catalogue -> compute merger rate for each galaxy -> superimpose to get a SGWB map

We have an explicit expression for $\, \varOmega_{\rm gw} \,$ as a function of sky location

$$\langle \Omega_{\rm gw} \Omega_{\rm gw} \rangle \longrightarrow C_{\rm gw}(\theta_{\rm o}, \nu_{\rm o}) = \left\langle \delta_{\rm gw}^{(\rm s)} \delta_{\rm gw}^{(\rm s)} \right\rangle \longrightarrow C_{l}(\nu_{\rm o}) = 2\pi \int_{-1}^{+1} \mathrm{d}(\cos\theta_{\rm o}) P_{l}(\cos\theta_{\rm o}) C_{\rm gw}$$

Angular resolution: 13.7 arcminutes ---- 7.3 galaxies per pixel

Jenkins, Regimbau, Sakellariadou, Slezak, PRD 98, 063501 (2018)

SGWB from CBC: info about Large Scale Structure (LSS)

Finite number of CBC's per observational time temporal shot noise (scale-invariant bias term)

Finite number of CBC's per observational time temporal shot noise (scale-invariant bias term)

$$egin{aligned} \mathcal{C}_\ell o \mathcal{C}_\ell + \mathcal{W} & \mathcal{W} \gg \mathcal{C}_\ell & \mathcal{W} & \propto rac{1}{T_{
m obs}} \end{aligned}$$

Finite number of CBCs and very short time within LIGO/Virgo frequency band

angular power spectrum dominated by shot noise

Finite number of CBC's per observational time temporal shot noise (scale-invariant bias term)

$$egin{aligned} \mathcal{C}_\ell o \mathcal{C}_\ell + \mathcal{W} & \mathcal{W} \gg \mathcal{C}_\ell & \mathcal{W} & \propto rac{1}{T_{
m obs}} \end{aligned}$$

Finite number of CBCs and very short time within LIGO/Virgo frequency band

angular power spectrum dominated by shot noise

Exploit statistical independence of different shot noise realisations at different times

Cross-correlate different time segments to build a (new) minimum-variance unbiased estimator

$$\hat{\mathcal{C}}_\ell^{\mathsf{new}} \equiv rac{1}{N_{\mathsf{pairs}}}\sum_{\mu
eq
u}^{N_{\mathsf{pairs}}} rac{1}{2\ell+1}\sum_{m=-\ell}^{+\ell} arOmega_{\ell m}^\mu arOmega_{\ell m}^{
u*}$$

Jenkins, Romano, Sakellariadou, PRD100 (2019) 083501

Projection effects:

- Contribution of different effects is larger at lowest angular multipoles and depends on frequency of the signal
- All effects of same order with Kaiser term the most important at all scales At largest scales, Kaiser, Doppler, gravitational potentials contribute up to a few tens of percent to the total amplitude

A detection of the SGWB from unresolved compact binary coalescences could be made by Advanced LIGO and Advanced Virgo at their design sensitivities

- Detecting a SGWB in the presence of correlated magnetic noise
- Simultaneous estimation of astrophysical and cosmological GW backgrounds with terrestrial interferometers
- SGWB will give us information about astrophysical models (compact binaries), beyond the standard model particle physics (cosmic strings, phase transitions), large-scale-structure of our Universe
- Isotropic and directional searches are an ongoing effort of the LIGO/Virgo/KAGRA Collaboration

A detection of the SGWB from unresolved compact binary coalescences could be made by Advanced LIGO and Advanced Virgo at their design sensitivities

- Detecting a SGWB in the presence of correlated magnetic noise
- Simultaneous estimation of astrophysical and cosmological GW backgrounds with terrestrial interferometers
- SGWB will give us information about astrophysical models (compact binaries), beyond the standard model particle physics (cosmic strings, phase transitions), large-scale-structure of our Universe
- Isotropic and directional searches are an ongoing effort of the LIGO/Virgo/KAGRA Collaboration

Thank you

