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Inflation

The period of accelerated expansion in the early Universe before structure
was formed.
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To better understand the early
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To constrain physical parameters
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curvature/isocurvature
perturbations
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Cosmological de Sitter spacetime

Metric:

ds2 = dt2 − a(t)2(dr2 + r2dΩ2
2) ; a(t) = eHt

Horizon at RH = 1/H.

Subhorizon: scales < 1/H
Superhorizon: scales > 1/H
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Spectator scalar field in de Sitter

Action:

S[ϕ] =

∫
d4xa(t)3

[
1

2
ϕ̇2 − 1

2a(t)2
(∇ϕ)2 − 1

2
m2ϕ2 − 1

4
λϕ4

]

Equation of motion:

(
ϕ̇
π̇

)
=

 π

−3Hπ +
1

a(t)2
∇2ϕ−m2ϕ− λϕ3


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What are we trying to calculate?

Long distance behaviour of scalar fields during inflation

Why?

Modes are amplified by the spacetime expansion, causing them to exit
the de Sitter horizon

These are “frozen”

Later (today!), they re-enter the de Sitter horizon
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The Feynman propagator

The object of interest is

i∆F (t,x; t
′,x′) = ⟨0BD| T̂ ϕ̂(t,x)ϕ̂(t′,x′) |0BD⟩

Perturbative QFT can be used to compute this...

... but results contain infrared (IR) divergences that cannot be
renormalised with current techniques
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Feynman propagator to one-loop order

Feynman propagator to one-loop order in ϕ4 theory is given by

The tadpole diagram contains both infrared and ultraviolet (UV)
divergences.

To deal with the UV divergences, we renormalise the mass m −→ mR.
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Feynman propagator to O(λH4/m4)

The UV-finite part of the Feynman propagator to one-loop is

i∆F (t,0; t,x) =

(
H2

16π2

Γ( 32 − νR)Γ(2νR)4
3
2−νR

Γ( 12 + νR)
− 27λH8

64π4m6
R

+O
(
λH6

m4
R

))

× |Ha(t)x|
−2

(
3
2−νR+ 3λH2

8π2m2
R

+O(λ)

)

νR =

√
9

4
−
m2

R

H2
.
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Feynman propagator to O(λH4/m4)

The UV-finite part of the Feynman propagator to one-loop is

i∆F (t,0; t,x) =

(
H2

16π2

Γ( 32 − νR)Γ(2νR)4
3
2−νR

Γ( 12 + νR)
− 27λH8

64π4m6
R

+ O
(
λH6

m4
R

) )

× |Ha(t)x|
−2

 3
2−νR+

3λH2

8π2m2
R

+ O(λ)



IR divergent unless λ≪ m4/H4 UV renormalised (scale-dependent)
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The stochastic approach

The idea:

Quantum modes can be approximated by a statistical noise
contribution to the classical equations of motion.

We expect it to work if fields are sufficiently light m ≲ H such that long
wavelength modes are stretched by spacetime expansion.
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The overdamped (OD) stochastic approach

In the limits m≪ H and λ≪ m2/H2, we can derive stochastic
equations

0 = 3Hϕ̇+m2ϕ+ 3λϕ2 − ξOD(t,x)

where
〈
ξ(t,x)ξ(t′,x)

〉
=

9H5

4π2
δ(t− t′).

This is done by introducing a strict cut-off between sub and
superhorizon modes.
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OD field correlator

To one-loop order,

⟨ϕ(t,0)ϕ(t,x)⟩ =
(

3H4

8π2m2
−

27λH8

64π4m6
+O(λ2)

)
|Ha(t)x|

−2

(
m2

3H2 + 3λH2

8π2m2 +O(λ2)

)
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OD field correlator

To one-loop order,

⟨ϕ(t,0)ϕ(t,x)⟩ =
(

3H4

8π2m2
−

27λH8

64π4m6
+O(λ2)

)
|Ha(t)x|

−2

 m2

3H2
+

3λH2

8π2m2
+O(λ2)



same as free term in QFT if m2 ≪ H2

same as O
(
λH4/m4) term in QFT
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OD field correlator

To one-loop order,

⟨ϕ(t,0)ϕ(t,x)⟩ =
(

3H4

8π2m2
−

27λH8

64π4m6
+O(λ2)

)
|Ha(t)x|

−2

(
m2

3H2 + 3λH2

8π2m2 +O(λ2)

)

(a) Doesn’t fully reproduce the free Feynman propagator.

(b) Never includes the renormalisation scale-dependent terms.

N.B. Non-perturbative methods are available to compute the OD field
correlator [arXiv:1904.11917 ]
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The state of play
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A second-order stochastic effective theory

Make the ansatz

(
ϕ̇
π̇

)
=

(
π

−3Hπ −m2ϕ− λϕ3

)
+

(
ξϕ(t,x)
ξπ(t,x)

)
with a stochastic white noise contribution

〈
ξi(t,x)ξj(t

′,x)
〉
= σ2ijδ(t− t′).

where i, j ∈ {ϕ, π}.

Archie Cable Imperial College London 18 / 33
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The Fokker-Planck equation

The time evolution of the probability distribution function (PDF)
P (ϕ, π; t) is given by the Fokker-Planck equation associated with the
Langevin equation

∂tP (ϕ, π; t) =

[
3H − π∂ϕ +

(
3Hπ +m2ϕ+ λϕ3

)
∂π

+
1

2
σ2ϕϕ∂

2
ϕ + σ2ϕπ∂ϕ∂π +

1

2
σ2ππ∂

2
π

]
P (ϕ, π; t)

= LFPP (ϕ, π; t).

Archie Cable Imperial College London 19 / 33
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Outline of solving the Fokker-Planck equation

1 Perform a spectral expansion

2 Solve this exactly for free fields and calculate stochastic correlators

3 Determine the free field noise contribution σ
2(0)
ij by matching to the

QFT [arXiv:2011.00907]

4 Do a perturbative calculation to solve the PDF to O(λ) and calculate
stochastic correlators

5 Determine the O(λ) stochastic parameters m,σ2ij by matching to the
QFT

6 Solve the Fokker-Planck equation numerically to obtain
non-perturbative results

Archie Cable Imperial College London 20 / 33
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1. The spectral expansion: 1-PDF

Write the 1-PDF in terms of eigenfunctions ΨN (ϕ, π) and eigenvalues ΛN

P (ϕ, π; t) = Ψ∗
0(ϕ, π)

∑
N

ΨN (ϕ, π)e−ΛN t

where the eigenproblem is

LFPΨN (ϕ, π) = −ΛNΨN (ϕ, π),

L∗
FPΨ

∗
N (ϕ, π) = −ΛNΨ∗

N (ϕ, π).

{ΨN (ϕ, π)} obey biorthogonality and completeness relations.

Archie Cable Imperial College London 21 / 33
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1. The spectral expansion: correlators

From this basis, one can find an expression for the spacelike correlation
function of two functions f(ϕ, π) and g(ϕ, π) composed purely of the
eigenfunctions and eigenvalues:

⟨f(ϕ, π; t,0)g(ϕ, π; t,x)⟩ =
∫

dϕr

∫
dπr

Ψ0(ϕr, πr)

Ψ∗
0(ϕr, πr)

∑
N′N

Ψ∗
N (ϕr, πr)Ψ

∗
N′(ϕr, πr)

×
∫

dϕ1

∫
dπ1Ψ

∗
0(ϕ1, π1)ΨN (ϕ1, π1)f(ϕ1, π1)

×
∫

dϕ2

∫
dπ2Ψ

∗
0(ϕ2, π2)ΨN′(ϕ2, π2)g(ϕ2, π2)

× |H(a(t)x|−
ΛN+Λ

N′
H .

Archie Cable Imperial College London 22 / 33
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2. Free field solutions: field correlator

Using these solutions, we evaluate the free field spacelike stochastic
correlator to be

⟨ϕ(t,0)ϕ(t,x)⟩(0) = 1

4ν2H3

[
1

2α

(
σ2(0)
ππ + 2βHσ

2(0)
ϕπ + β2H2σ

2(0)
ϕϕ

)
|Ha(t)x|−3+2ν

+
1

2β

(
σ2(0)
ππ + 2αHσ

2(0)
ϕπ + α2H2σ

2(0)
ϕϕ

)
|Ha(t)x|−3−2ν

− 2

3

(
σ2(0)
ππ + 3Hσ

2(0)
ϕπ +m2σ

2(0)
ϕϕ

)
|Ha(t)x|−3

]

α/β =
3

2
+ /− ν with ν =

√
9

4
−

m2

H2
.

Archie Cable Imperial College London 23 / 33
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3. Free field noise

To reproduce the free Feynman propagator,

σ
2(0)
ϕϕ =

H3Γ(2ν)Γ
(
5
2 − ν

)
2π5/2

,

σ
2(0)
ϕπ = −

H4αΓ(2ν)Γ
(
5
2 − ν

)
2π5/2

,

σ2(0)ππ =
H5α2Γ(2ν)Γ

(
5
2 − ν

)
2π5/2

.
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4. The perturbative calculation

We now perform a perturbative expansion around the free eigenspectrum
i.e.

ΛN =Λ
(0)
N + λΛ

(1)
N

Ψ
(∗)
N (ϕ, π) =Ψ

(0)(∗)
N (ϕ, π) + λΨ

(1)(∗)
N (ϕ, π)

Using standard perturbative techniques, these are written as

Λ
(1)
N = −

∫
dϕ

∫
dπΨ

(0)∗
N (ϕ, π)L(1)

FPΨ
(0)
N (ϕ, π)

Ψ
(1)
N (ϕ, π) =

∑
N ′

Ψ
(0)
N ′ (ϕ, π)

∫
dϕ′
∫
dπ′Ψ

(0)∗
N ′ (ϕ′, π′)L(1)

FPΨ
(0)
N (ϕ′, π′)

Λ
(0)
N ′ − Λ

(0)
N

.
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4. The perturbative calculation: O(λ) field
correlators

To O(λ),

⟨ϕ(t,0)ϕ(t,x)⟩

=

[
H2

16π2

Γ
(
3
2 − ν

)
Γ(2ν)4

3
2−ν

Γ
(
1
2 + ν

) +
3λ(3− 4ν)H4Γ(ν)2Γ

(
3
2 − ν

)2
32π5νm2

+O
(
λ2
)]

× |Ha(t)x|−3−2ν+
3HΓ(ν)Γ( 3

2
−ν)

8π5/2ν
+O(λ2)

−

(
λH4Γ(ν)2Γ

(
5
2 − ν

)2
8π5νm2

+O(λ)

)
|Ha(t)x|−3+O(λ2)

.
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4. The perturbative calculation: O
(
λH4/m4

)
field

correlators

To O
(
λH4

m4

)
,

⟨ϕ(t,0)ϕ(t,x)⟩ =

[
H2

16π2

Γ
(
3
2 − ν

)
Γ(2ν)4

3
2−ν

Γ
(
1
2 + ν

) − 27λH8

64π4m6
+O

(
λH6

m4

)]
× |Ha(t)x|−3−2ν+ 3λH2

8π2m2 +O(λ)
.

This has the same form as the Feynman propagator to O
(
λH4

m4

)
!
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5. Stochastic parameters to O
(
λH4/m4

)
Assuming λ is the same in both QFT and stochastic theory,

m2 =m2
R

(
1 +O

(
λH2

m2

))

σ2 =
H3Γ(2ν)Γ

(
5
2 − ν

)
2π5/2

 1 − 2m2

H(3 + 2ν)

− 2m2

H(3 + 2ν)

4m4

(3 + 2ν)2H2

+O
(
λH2

m2

)
.

Crucially, they don’t have an IR divergent part O
(
λH4/m4

)
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R
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(
λH2

m2
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5
2 − ν
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6. The numerical calculation

To solve numerically, we expand about free eigenstates

ΨN (ϕ, π) =
∑
R

c
(N)
R ψ

(0)
R (ϕ, π) such that the eigenequation becomes

∑
R

c
(N)
R LFPψ

(0)
R (ϕ, π) =

∑
RR′

c
(N)
R MRR′ψ

(0)
R′ = −

∑
R

c
(N)
R ΛNψ

(0)
R (ϕ, π)

Thus we have the matrix equation

∑
R′

MT
RR′c

(N)
R′ = −ΛNc

(N)
R

such that MT can be diagonalised to find c
(N)
R and ΛN .
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R and ΛN .
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6. The numerical calculation: convergence of
solutions

Solutions converge quickly therefore we can truncate our sum

m2

H2
= 0.01

λ = 0.0005

=⇒ Λ
(∞)
1 = 0.00453
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New regime of validity plot
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Future work

Can we evaluate the stochastic parameters to obtain results beyond
the limit λ≪ m2/H2?

Is there a manifestation of the second-order stochastic approach from
the microscopic picture?

Can we apply this to cosmology e.g. curvature/isocurvature
perturbations?

Thanks for listening! ,
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