Second-order stochastic theory for self-interacting scalar fields in de Sitter spacetime

Archie Cable

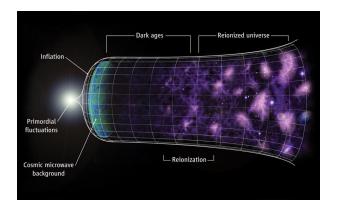
Imperial College London

arXiv:2209.02545

- 1 Introduction
- 2 QFT in de Sitter
- 3 The stochastic approach
- 4 Conclusion

Inflation

The period of accelerated expansion in the early Universe before structure was formed.

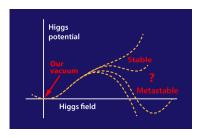


Why study inflation?

- To better understand the early Universe
- To constrain physical parameters

Why study inflation?

- To better understand the early Universe
- To constrain physical parameters
- Examples:
 - dark matter
 - curvature/isocurvature perturbations
 - primordial black holes
 - EW vacuum decay

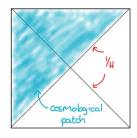


Cosmological de Sitter spacetime

Metric:

$$ds^{2} = dt^{2} - a(t)^{2}(dr^{2} + r^{2}d\Omega_{2}^{2}) \qquad ; \qquad a(t) = e^{Ht}$$

- Horizon at $R_H = 1/H$.
- Subhorizon: scales < 1/HSuperhorizon: scales > 1/H



Spectator scalar field in de Sitter

Action:

$$S[\phi] = \int d^4x a(t)^3 \left[\frac{1}{2} \dot{\phi}^2 - \frac{1}{2a(t)^2} (\nabla \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{1}{4} \lambda \phi^4 \right]$$

Spectator scalar field in de Sitter

Action:

$$S[\phi] = \int d^4x a(t)^3 \left[\frac{1}{2} \dot{\phi}^2 - \frac{1}{2a(t)^2} (\nabla \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{1}{4} \lambda \phi^4 \right]$$

• Equation of motion:

$$\begin{pmatrix} \dot{\phi} \\ \dot{\pi} \end{pmatrix} = \begin{pmatrix} \pi \\ -3H\pi + \frac{1}{a(t)^2} \nabla^2 \phi - m^2 \phi - \lambda \phi^3 \end{pmatrix}$$

Long distance behaviour of scalar fields during inflation

Long distance behaviour of scalar fields during inflation

Why?

 Modes are amplified by the spacetime expansion, causing them to exit the de Sitter horizon

Long distance behaviour of scalar fields during inflation

Why?

- Modes are amplified by the spacetime expansion, causing them to exit the de Sitter horizon
- These are "frozen"

Long distance behaviour of scalar fields during inflation

Why?

- Modes are amplified by the spacetime expansion, causing them to exit the de Sitter horizon
- These are "frozen"
- Later (today!), they re-enter the de Sitter horizon

The Feynman propagator

The object of interest is

$$i\Delta_F(t, \mathbf{x}; t', \mathbf{x}') = \langle 0_{BD} | \hat{T}\hat{\phi}(t, \mathbf{x})\hat{\phi}(t', \mathbf{x}') | 0_{BD} \rangle$$

The Feynman propagator

The object of interest is

$$i\Delta_F(t, \mathbf{x}; t', \mathbf{x}') = \langle 0_{BD} | \hat{T}\hat{\phi}(t, \mathbf{x})\hat{\phi}(t', \mathbf{x}') | 0_{BD} \rangle$$

Perturbative QFT can be used to compute this...

The Feynman propagator

The object of interest is

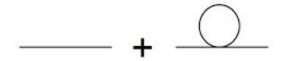
$$i\Delta_F(t, \mathbf{x}; t', \mathbf{x}') = \langle 0_{BD} | \hat{T}\hat{\phi}(t, \mathbf{x})\hat{\phi}(t', \mathbf{x}') | 0_{BD} \rangle$$

Perturbative QFT can be used to compute this...

... but results contain infrared (IR) divergences that cannot be renormalised with current techniques

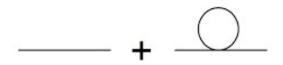
Feynman propagator to one-loop order

Feynman propagator to one-loop order in ϕ^4 theory is given by



Feynman propagator to one-loop order

Feynman propagator to one-loop order in ϕ^4 theory is given by



The tadpole diagram contains both infrared and ultraviolet (UV) divergences.

To deal with the UV divergences, we renormalise the mass $m \longrightarrow m_R$.

Feynman propagator to $\mathcal{O}(\lambda H^4/m^4)$

The UV-finite part of the Feynman propagator to one-loop is

$$i\Delta_{F}(t, \mathbf{0}; t, \mathbf{x}) = \left(\frac{H^{2}}{16\pi^{2}} \frac{\Gamma(\frac{3}{2} - \nu_{R})\Gamma(2\nu_{R})4^{\frac{3}{2} - \nu_{R}}}{\Gamma(\frac{1}{2} + \nu_{R})} - \frac{27\lambda H^{8}}{64\pi^{4}m_{R}^{6}} + \mathcal{O}\left(\frac{\lambda H^{6}}{m_{R}^{4}}\right)\right) \times \left|Ha(t)\mathbf{x}\right|^{-2\left(\frac{3}{2} - \nu_{R} + \frac{3\lambda H^{2}}{8\pi^{2}m_{R}^{2}} + \mathcal{O}(\lambda)\right)}$$

$$\nu_R = \sqrt{\frac{9}{4} - \frac{m_R^2}{H^2}}.$$

Feynman propagator to $\mathcal{O}(\lambda H^4/m^4)$

The UV-finite part of the Feynman propagator to one-loop is

$$i\Delta_{F}(t, \mathbf{0}; t, \mathbf{x}) = \left(\frac{H^{2}}{16\pi^{2}} \frac{\Gamma(\frac{3}{2} - \nu_{R})\Gamma(2\nu_{R})4^{\frac{3}{2} - \nu_{R}}}{\Gamma(\frac{1}{2} + \nu_{R})} - \frac{27\lambda H^{8}}{64\pi^{4}m_{R}^{6}} + \mathcal{O}\left(\frac{\lambda H^{6}}{m_{R}^{4}}\right)\right)$$
$$-2\left(\frac{3}{2} - \nu_{R} + \frac{3\lambda H^{2}}{8\pi^{2}m_{R}^{2}} + \mathcal{O}(\lambda)\right)$$
$$\times |Ha(t)\mathbf{x}|$$

IR divergent unless $\lambda \ll m^4/H^4$ UV renormalised (scale-dependent)

The stochastic approach

The idea:

Quantum modes can be approximated by a statistical noise contribution to the classical equations of motion.

The stochastic approach

The idea:

Quantum modes can be approximated by a statistical noise contribution to the classical equations of motion.

We expect it to work if fields are sufficiently light $m \lesssim H$ such that long wavelength modes are stretched by spacetime expansion.

The overdamped (OD) stochastic approach

• In the limits $m \ll H$ and $\lambda \ll m^2/H^2$, we can derive stochastic equations

$$0 = 3H\dot{\phi} + m^2\phi + 3\lambda\phi^2 - \xi_{OD}(t, \mathbf{x})$$

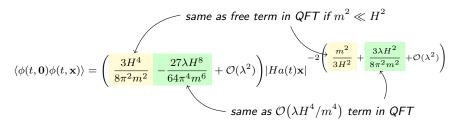
where
$$\langle \xi(t, \mathbf{x}) \xi(t', \mathbf{x}) \rangle = \frac{9H^5}{4\pi^2} \delta(t - t')$$
.

 This is done by introducing a strict cut-off between sub and superhorizon modes.

To one-loop order,

$$\langle \phi(t,\mathbf{0})\phi(t,\mathbf{x})\rangle = \left(\frac{3H^4}{8\pi^2m^2} - \frac{27\lambda H^8}{64\pi^4m^6} + \mathcal{O}(\lambda^2)\right) |Ha(t)\mathbf{x}|^{-2\left(\frac{m^2}{3H^2} + \frac{3\lambda H^2}{8\pi^2m^2} + \mathcal{O}(\lambda^2)\right)}$$

• To one-loop order.



• To one-loop order,

$$\langle \phi(t, \mathbf{0}) \phi(t, \mathbf{x}) \rangle = \left(\frac{3H^4}{8\pi^2 m^2} - \frac{27\lambda H^8}{64\pi^4 m^6} + \mathcal{O}(\lambda^2) \right) \left| Ha(t) \mathbf{x} \right|^{-2 \left(\frac{m^2}{3H^2} + \frac{3\lambda H^2}{8\pi^2 m^2} + \mathcal{O}(\lambda^2) \right)}$$

• (a) Doesn't fully reproduce the free Feynman propagator.

• To one-loop order,

$$\langle \phi(t, \mathbf{0}) \phi(t, \mathbf{x}) \rangle = \left(\frac{3H^4}{8\pi^2 m^2} - \frac{27\lambda H^8}{64\pi^4 m^6} + \mathcal{O}(\lambda^2) \right) |Ha(t)\mathbf{x}|^{-2\left(\frac{m^2}{3H^2} + \frac{3\lambda H^2}{8\pi^2 m^2} + \mathcal{O}(\lambda^2)\right)}$$

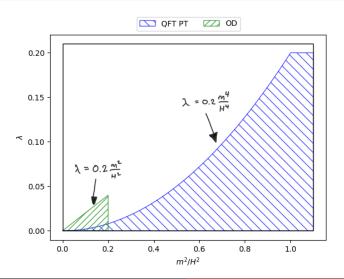
- (a) Doesn't fully reproduce the free Feynman propagator.
 - (b) Never includes the renormalisation scale-dependent terms.

• To one-loop order,

$$\langle \phi(t, \mathbf{0}) \phi(t, \mathbf{x}) \rangle = \left(\frac{3H^4}{8\pi^2 m^2} - \frac{27\lambda H^8}{64\pi^4 m^6} + \mathcal{O}(\lambda^2) \right) |Ha(t)\mathbf{x}|^{-2\left(\frac{m^2}{3H^2} + \frac{3\lambda H^2}{8\pi^2 m^2} + \mathcal{O}(\lambda^2)\right)}$$

- (a) Doesn't fully reproduce the free Feynman propagator.
 - (b) Never includes the renormalisation scale-dependent terms.
- N.B. Non-perturbative methods are available to compute the OD field correlator [arXiv:1904.11917]

The state of play



A second-order stochastic effective theory

Make the ansatz

$$\begin{pmatrix} \dot{\phi} \\ \dot{\pi} \end{pmatrix} = \begin{pmatrix} \pi \\ -3H\pi - m^2\phi - \lambda\phi^3 \end{pmatrix} + \begin{pmatrix} \xi_\phi(t,\mathbf{x}) \\ \xi_\pi(t,\mathbf{x}) \end{pmatrix}$$

with a stochastic white noise contribution

$$\langle \xi_i(t, \mathbf{x}) \xi_j(t', \mathbf{x}) \rangle = \sigma_{ij}^2 \delta(t - t').$$

where $i, j \in \{\phi, \pi\}$.

The Fokker-Planck equation

The time evolution of the probability distribution function (PDF) $P(\phi,\pi;t)$ is given by the Fokker-Planck equation associated with the Langevin equation

$$\partial_t P(\phi, \pi; t) = \left[3H - \pi \partial_\phi + \left(3H\pi + m^2 \phi + \lambda \phi^3 \right) \partial_\pi \right.$$

$$\left. + \frac{1}{2} \sigma_{\phi\phi}^2 \partial_\phi^2 + \sigma_{\phi\pi}^2 \partial_\phi \partial_\pi + \frac{1}{2} \sigma_{\pi\pi}^2 \partial_\pi^2 \right] P(\phi, \pi; t)$$

$$= \mathcal{L}_{FP} P(\phi, \pi; t).$$

Perform a spectral expansion

- Perform a spectral expansion
- Solve this exactly for free fields and calculate stochastic correlators

- Perform a spectral expansion
- Solve this exactly for free fields and calculate stochastic correlators
- **3** Determine the free field noise contribution $\sigma_{ij}^{2(0)}$ by matching to the QFT [arXiv:2011.00907]

- Perform a spectral expansion
- Solve this exactly for free fields and calculate stochastic correlators
- $\ \,$ Determine the free field noise contribution $\sigma_{ij}^{2(0)}$ by matching to the QFT [arXiv:2011.00907]
- ${\bf 40}$ Do a perturbative calculation to solve the PDF to $\mathcal{O}(\lambda)$ and calculate stochastic correlators

- Perform a spectral expansion
- Solve this exactly for free fields and calculate stochastic correlators
- $\mbox{\bf @}$ Determine the free field noise contribution $\sigma_{ij}^{2(0)}$ by matching to the QFT [arXiv:2011.00907]
- ${\bf 4}$ Do a perturbative calculation to solve the PDF to $\mathcal{O}(\lambda)$ and calculate stochastic correlators
- $\mbox{\Large 0}$ Determine the $\mathcal{O}(\lambda)$ stochastic parameters m,σ_{ij}^2 by matching to the QFT

- Perform a spectral expansion
- Solve this exactly for free fields and calculate stochastic correlators
- $\ \,$ Determine the free field noise contribution $\sigma_{ij}^{2(0)}$ by matching to the QFT [arXiv:2011.00907]
- ${\bf 0}$ Do a perturbative calculation to solve the PDF to ${\cal O}(\lambda)$ and calculate stochastic correlators
- $\mbox{ \Large only Determine the } \mathcal{O}(\lambda)$ stochastic parameters m,σ_{ij}^2 by matching to the QFT
- Solve the Fokker-Planck equation numerically to obtain non-perturbative results

1. The spectral expansion: 1-PDF

Write the 1-PDF in terms of eigenfunctions $\Psi_N(\phi,\pi)$ and eigenvalues Λ_N

$$P(\phi, \pi; t) = \Psi_0^*(\phi, \pi) \sum_N \Psi_N(\phi, \pi) e^{-\Lambda_N t}$$

where the eigenproblem is

$$\mathcal{L}_{FP}\Psi_N(\phi,\pi) = -\Lambda_N \Psi_N(\phi,\pi),$$

$$\mathcal{L}_{FP}^* \Psi_N^*(\phi,\pi) = -\Lambda_N \Psi_N^*(\phi,\pi).$$

 $\{\Psi_N(\phi,\pi)\}$ obey biorthogonality and completeness relations.

1. The spectral expansion: correlators

From this basis, one can find an expression for the spacelike correlation function of two functions $f(\phi,\pi)$ and $g(\phi,\pi)$ composed purely of the eigenfunctions and eigenvalues:

$$\langle f(\phi, \pi; t, \mathbf{0}) g(\phi, \pi; t, \mathbf{x}) \rangle = \int d\phi_r \int d\pi_r \frac{\Psi_0(\phi_r, \pi_r)}{\Psi_0^*(\phi_r, \pi_r)} \sum_{N'N} \Psi_N^*(\phi_r, \pi_r) \Psi_{N'}^*(\phi_r, \pi_r)$$

$$\times \int d\phi_1 \int d\pi_1 \Psi_0^*(\phi_1, \pi_1) \Psi_N(\phi_1, \pi_1) f(\phi_1, \pi_1)$$

$$\times \int d\phi_2 \int d\pi_2 \Psi_0^*(\phi_2, \pi_2) \Psi_{N'}(\phi_2, \pi_2) g(\phi_2, \pi_2)$$

$$\times |H(a(t)\mathbf{x}|^{-\frac{\Lambda_N + \Lambda_{N'}}{H}}.$$

2. Free field solutions: field correlator

Using these solutions, we evaluate the free field spacelike stochastic correlator to be

$$\langle \phi(t, \mathbf{0}) \phi(t, \mathbf{x}) \rangle^{(0)} = \frac{1}{4\nu^2 H^3} \left[\frac{1}{2\alpha} \left(\sigma_{\pi\pi}^{2(0)} + 2\beta H \sigma_{\phi\pi}^{2(0)} + \beta^2 H^2 \sigma_{\phi\phi}^{2(0)} \right) |Ha(t)\mathbf{x}|^{-3+2\nu} + \frac{1}{2\beta} \left(\sigma_{\pi\pi}^{2(0)} + 2\alpha H \sigma_{\phi\pi}^{2(0)} + \alpha^2 H^2 \sigma_{\phi\phi}^{2(0)} \right) |Ha(t)\mathbf{x}|^{-3-2\nu} - \frac{2}{3} \left(\sigma_{\pi\pi}^{2(0)} + 3H \sigma_{\phi\pi}^{2(0)} + m^2 \sigma_{\phi\phi}^{2(0)} \right) |Ha(t)\mathbf{x}|^{-3} \right]$$

$$\alpha/\beta = \frac{3}{2} + / - \nu$$
 with $\nu = \sqrt{\frac{9}{4} - \frac{m^2}{H^2}}$.

2. Free field solutions: field correlator

Using these solutions, we evaluate the free field spacelike stochastic correlator to be

$$\langle \phi(t, \mathbf{0}) \phi(t, \mathbf{x}) \rangle^{(0)} = \frac{1}{4\nu^2 H^3} \left[\frac{1}{2\alpha} \left(\sigma_{\pi\pi}^{2(0)} + 2\beta H \sigma_{\phi\pi}^{2(0)} + \beta^2 H^2 \sigma_{\phi\phi}^{2(0)} \right) |Ha(t)\mathbf{x}|^{-3 + 2\nu} \right. \\ \left. + \frac{1}{2\beta} \left(\sigma_{\pi\pi}^{2(0)} + 2\alpha H \sigma_{\phi\pi}^{2(0)} + \alpha^2 H^2 \sigma_{\phi\phi}^{2(0)} \right) |Ha(t)\mathbf{x}|^{-3 - 2\nu} \right. \\ \left. - \frac{2}{3} \left(\sigma_{\pi\pi}^{2(0)} + 3H \sigma_{\phi\pi}^{2(0)} + m^2 \sigma_{\phi\phi}^{2(0)} \right) |Ha(t)\mathbf{x}|^{-3} \right]$$

$$\alpha/\beta = \frac{3}{2} + / - \nu$$
 with $\nu = \sqrt{\frac{9}{4} - \frac{m^2}{H^2}}$.

3. Free field noise

To reproduce the free Feynman propagator,

$$\sigma_{\phi\phi}^{2(0)} = \frac{H^3\Gamma(2\nu)\Gamma\left(\frac{5}{2} - \nu\right)}{2\pi^{5/2}},$$

$$\sigma_{\phi\pi}^{2(0)} = -\frac{H^4 \alpha \Gamma(2\nu) \Gamma\left(\frac{5}{2} - \nu\right)}{2\pi^{5/2}},$$

$$\sigma_{\pi\pi}^{2(0)} = \frac{H^5 \alpha^2 \Gamma(2\nu) \Gamma\left(\frac{5}{2} - \nu\right)}{2\pi^{5/2}}.$$

4. The perturbative calculation

We now perform a perturbative expansion around the free eigenspectrum i.e.

$$\begin{split} \Lambda_N = & \Lambda_N^{(0)} + \lambda \Lambda_N^{(1)} \\ \Psi_N^{(*)}(\phi, \pi) = & \Psi_N^{(0)(*)}(\phi, \pi) + \lambda \Psi_N^{(1)(*)}(\phi, \pi) \end{split}$$

Using standard perturbative techniques, these are written as

$$\begin{split} &\Lambda_N^{(1)} = -\int d\phi \int d\pi \Psi_N^{(0)*}(\phi,\pi) \mathcal{L}_{FP}^{(1)} \Psi_N^{(0)}(\phi,\pi) \\ &\Psi_N^{(1)}(\phi,\pi) = \sum_{N'} \Psi_{N'}^{(0)}(\phi,\pi) \frac{\int d\phi' \int d\pi' \Psi_{N'}^{(0)*}(\phi',\pi') \mathcal{L}_{FP}^{(1)} \Psi_N^{(0)}(\phi',\pi')}{\Lambda_{N'}^{(0)} - \Lambda_N^{(0)}}. \end{split}$$

4. The perturbative calculation: $\mathcal{O}(\lambda)$ field correlators

To $\mathcal{O}(\lambda)$,

$$\langle \phi(t,\mathbf{0})\phi(t,\mathbf{x})\rangle$$

$$= \left[\frac{H^2}{16\pi^2} \frac{\Gamma(\frac{3}{2} - \nu)\Gamma(2\nu)4^{\frac{3}{2} - \nu}}{\Gamma(\frac{1}{2} + \nu)} + \frac{3\lambda(3 - 4\nu)H^4\Gamma(\nu)^2\Gamma(\frac{3}{2} - \nu)^2}{32\pi^5\nu m^2} + \mathcal{O}(\lambda^2)\right]$$

$$\times |Ha(t)\mathbf{x}|^{-3 - 2\nu + \frac{3H\Gamma(\nu)\Gamma(\frac{3}{2} - \nu)}{8\pi^{5/2}\nu}} + \mathcal{O}(\lambda^2)$$

$$-\left(\frac{\lambda H^4\Gamma(\nu)^2\Gamma(\frac{5}{2} - \nu)^2}{8\pi^5\nu m^2} + \mathcal{O}(\lambda)\right)|Ha(t)\mathbf{x}|^{-3 + \mathcal{O}(\lambda^2)}.$$

4. The perturbative calculation: $\mathcal{O}(\lambda H^4/m^4)$ field correlators

To
$$\mathcal{O}\left(\frac{\lambda H^4}{m^4}\right)$$
,

$$\langle \phi(t, \mathbf{0}) \phi(t, \mathbf{x}) \rangle = \left[\frac{H^2}{16\pi^2} \frac{\Gamma(\frac{3}{2} - \nu)\Gamma(2\nu)4^{\frac{3}{2} - \nu}}{\Gamma(\frac{1}{2} + \nu)} - \frac{27\lambda H^8}{64\pi^4 m^6} + \mathcal{O}\left(\frac{\lambda H^6}{m^4}\right) \right] \times |Ha(t)\mathbf{x}|^{-3 - 2\nu + \frac{3\lambda H^2}{8\pi^2 m^2} + \mathcal{O}(\lambda)}.$$

This has the same form as the Feynman propagator to $\mathcal{O}\left(\frac{\lambda H^4}{m^4}\right)!$

5. Stochastic parameters to $\mathcal{O}(\lambda H^4/m^4)$

Assuming λ is the same in both QFT and stochastic theory,

$$m^2 = m_R^2 \left(1 + \mathcal{O}\left(\frac{\lambda H^2}{m^2}\right) \right)$$

$$\sigma^{2} = \frac{H^{3}\Gamma(2\nu)\Gamma(\frac{5}{2} - \nu)}{2\pi^{5/2}} \begin{pmatrix} 1 & -\frac{2m^{2}}{H(3 + 2\nu)} \\ -\frac{2m^{2}}{H(3 + 2\nu)} & \frac{4m^{4}}{(3 + 2\nu)^{2}H^{2}} \end{pmatrix} + \mathcal{O}\left(\frac{\lambda H^{2}}{m^{2}}\right).$$

5. Stochastic parameters to $\mathcal{O}(\lambda H^4/m^4)$

Assuming λ is the same in both QFT and stochastic theory,

$$m^2 = m_R^2 \left(1 + \mathcal{O}\left(\frac{\lambda H^2}{m^2}\right) \right)$$

$$\sigma^2 = \frac{H^3\Gamma(2\nu)\Gamma\left(\frac{5}{2} - \nu\right)}{2\pi^{5/2}} \begin{pmatrix} 1 & -\frac{2m^2}{H(3+2\nu)} \\ -\frac{2m^2}{H(3+2\nu)} & \frac{4m^4}{(3+2\nu)^2 H^2} \end{pmatrix} + \mathcal{O}\left(\frac{\lambda H^2}{m^2}\right).$$

Crucially, they don't have an IR divergent part $\mathcal{O}(\lambda H^4/m^4)$

6. The numerical calculation

• To solve numerically, we expand about free eigenstates $\Psi_N(\phi,\pi) = \sum_R c_R^{(N)} \psi_R^{(0)}(\phi,\pi) \text{ such that the eigenequation becomes}$

$$\sum_{R} c_{R}^{(N)} \mathcal{L}_{FP} \psi_{R}^{(0)}(\phi, \pi) = \sum_{RR'} c_{R}^{(N)} \mathcal{M}_{RR'} \psi_{R'}^{(0)} = -\sum_{R} c_{R}^{(N)} \Lambda_{N} \psi_{R}^{(0)}(\phi, \pi)$$

6. The numerical calculation

• To solve numerically, we expand about free eigenstates $\Psi_N(\phi,\pi) = \sum_R c_R^{(N)} \psi_R^{(0)}(\phi,\pi) \text{ such that the eigenequation becomes}$

$$\sum_{R} c_{R}^{(N)} \mathcal{L}_{FP} \psi_{R}^{(0)}(\phi, \pi) = \sum_{RR'} c_{R}^{(N)} \mathcal{M}_{RR'} \psi_{R'}^{(0)} = -\sum_{R} c_{R}^{(N)} \Lambda_{N} \psi_{R}^{(0)}(\phi, \pi)$$

• Thus we have the matrix equation

$$\sum_{R'} \mathcal{M}_{RR'}^T c_{R'}^{(N)} = -\Lambda_N c_R^{(N)}$$

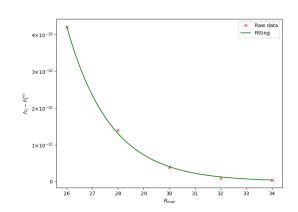
such that \mathcal{M}^T can be diagonalised to find $c_R^{(N)}$ and Λ_N .

6. The numerical calculation: convergence of solutions

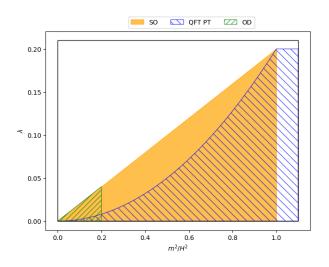
Solutions converge quickly therefore we can truncate our sum

$$\frac{m^2}{H^2} = 0.01$$
$$\lambda = 0.0005$$

$$\implies \Lambda_1^{(\infty)} = 0.00453$$



New regime of validity plot



• Can we evaluate the stochastic parameters to obtain results beyond the limit $\lambda \ll m^2/H^2$?

- Can we evaluate the stochastic parameters to obtain results beyond the limit $\lambda \ll m^2/H^2$?
- Is there a manifestation of the second-order stochastic approach from the microscopic picture?

- Can we evaluate the stochastic parameters to obtain results beyond the limit $\lambda \ll m^2/H^2$?
- Is there a manifestation of the second-order stochastic approach from the microscopic picture?
- Can we apply this to cosmology e.g. curvature/isocurvature perturbations?

- Can we evaluate the stochastic parameters to obtain results beyond the limit $\lambda \ll m^2/H^2$?
- Is there a manifestation of the second-order stochastic approach from the microscopic picture?
- Can we apply this to cosmology e.g. curvature/isocurvature perturbations?

Thanks for listening! ©