Thermal effects in Ising Cosmology

Norway
grants

Understanding the Early Universe: interplay of theory and collider experiments

The research leading to the results presented in this talk has received funding from the Norwegian Financial Mechanism for years 2014-2021, grant nr 2019/34/H/ST2/00707

Fotis Koutroulis
University of Warsaw
Institute of Theoretical Physics

Helsinki Institute of Physics

Cosmology seminars

$$
18 / 10 / 2023
$$

Based on Eur.Phys. J. C 83 (2023) 431 and
Universe 2023, 9, 434 (Nikos Irges and Antonis Kalogirou)

\qquad

CONTENTS

- INTRODUCTION/MOTIVATION
- OBSERVERS AND THERMAL PROPAGATORS
- COSMOLOGICAL OBSERVABLES FROM THERMAL EFFECTS
- COSMOLOGICAL OBSERVABLES FROM dS/CFT
- CONCLUSIONS

INTRO

- Inflation:

> 1) An elegant explanation for the homogeneity and isotropy of the Universe
> 2) A causal mechanism to generate the inhomogeneities

- The anisotropies leave their imprints on CMB
- Precise measurements of CMB's anisotropies and spectral index provide a test-playground for inflation

Planck Collaboration, r. Akrami et
al., Astron. Astrophys. 641 (2020)

INTRO

- Inflation works very well for a slowly rolling scalar field with

$$
\dot{\phi}^{2}<V(\phi)
$$

$$
n_{\mathrm{S}} \simeq\left(1-4 \epsilon_{\mathrm{H}}+2 \delta_{\mathrm{H}}\right)
$$

- For a (not so simple) choice of potential and a (not so) small amount of fine tuning (in ϵ_{H} and δ_{H}) n_{S} matches its experimental value

$$
0.9649 \pm 0.0042 \text { at } 68 \% C L
$$

Planck Collaboration, r. Akrami et al., Astron. Astrophys. 641 (2020)

INTRO

- What about the simplest monomial Inflaton potential?
- Our proposal

Free massive scalar field and its thermal evolution under the dS/ CFT correspondence

- The FLRW metric

$$
d s^{2}=a^{2}\left(d \tau^{2}-d \mathbf{x}^{2}\right) \quad H=\frac{\dot{a}}{a^{2}}
$$

For the expanding Poincare patch of de Sitter

A BIT OF TERMINOLOGY

- QFT in dS space:

Conformally flat metric with a time-like coordinate $\tau \in(-\infty, 0]$

$$
d s^{2}=a^{2}\left(d \tau^{2}-d \mathbf{x}^{2}\right) \quad \text { and } \quad \alpha(\tau)=-\frac{1}{H \tau}
$$

\mid in \rangle vacuum (observer) defined at $\tau \rightarrow-\infty$
\mid out \rangle vacuum (observer) defined at the horizon $\tau=0$ $\begin{array}{rc}\langle J| \Phi^{I}=\langle I| \Phi^{J} & \begin{array}{c}\text { Bogolyubov } \\ \text { Transformation }\end{array} \\ I, J=\mathrm{in} \text {, out } & \end{array}$

- The $\tau=0$ surface is also called the Horizon of the expanding Poincare patch of dS space

THERMAL PROPAGATORS

- The action to be quantized under thermal effects

$$
\mathcal{S}=\int d^{4} x \sqrt{-g}\left[\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2}\left(m^{2}+\xi \mathcal{R}\right) \phi^{2}\right]
$$

- Consider a $d+1$ dimensional FLRW spacetime

$$
d s^{2}=a^{2}\left(d \tau^{2}-d \mathbf{x}^{2}\right)
$$

- Klein-Gordon equation for the mode $\phi_{\mathbf{k}}=\frac{\chi_{\mathbf{k}}}{\alpha}$

$$
\ddot{\chi}_{\mathbf{k}}+\omega_{|\mathbf{k}|}^{2} \chi_{\mathbf{k}}=0
$$

$$
\omega_{|\mathbf{k}|}^{2}(\tau)=|\mathbf{k}|^{2}+m_{\mathrm{dS}}^{2}(\tau)
$$

$$
m_{\mathrm{dS}}^{2}(\tau)=\frac{1}{\tau}\left(M^{2}-\frac{d^{2}-1}{4}\right), M^{2}=\frac{m^{2}}{H^{2}}+12 \xi
$$

THERMAL PROPAGATORS

- The solution is a combination of the Hankel functions $H_{\nu_{c l}}^{1,2}(\tau,|\mathbf{k}|)$ with weight

$$
\nu_{\mathrm{cl}}=\frac{d}{2} \sqrt{1-\frac{4 M^{2}}{d^{2}}}
$$

- Quantization includes time-dependent vacua and a doubled Hilbert space
- Time-dependent vacua
\mid in> vacuum is empty for the "in" observer (Bunch-Davies vacuum)
N. A. Chernikov and E. A. Tagirov, '68 B. Allen, Phys. Rev. D32 (1985) 3136
|out vacuum is empty for the "out" observer

THERMAL PROPAGATORS

- Doubled Hilbert space

THERMAL PROPAGATORS

- The $T=0\left(C_{3}=0\right)$ "in-in" field propagator

$$
\mathcal{D}=\begin{array}{|ll|ll|}
\hline\langle 0| \mathcal{T}\left[\Phi^{+}\left(\tau_{1}\right) \Phi^{+}\left(\tau_{2}\right)\right]|0\rangle & =\mathcal{D}_{++}\left(\tau_{1} ; \tau_{2}\right) & \langle 0| \Phi^{-}\left(\tau_{1}\right) \Phi^{+}\left(\tau_{2}\right)|0\rangle=\mathcal{D}_{+-}\left(\tau_{1} ; \tau_{2}\right) \\
\hline\langle 0| \Phi^{+}\left(\tau_{2}\right) \Phi^{-}\left(\tau_{1}\right)|0\rangle=\mathcal{D}_{-+}\left(\tau_{1} ; \tau_{2}\right) & \langle 0| \mathcal{T}^{*}\left[\Phi^{-}\left(\tau_{1}\right) \Phi^{-}\left(\tau_{2}\right)\right]|0\rangle=\mathcal{D}_{--}\left(\tau_{1} ; \tau_{2}\right) \\
\hline
\end{array}
$$

$$
\begin{gathered}
\mathcal{D}_{-+}\left(\tau_{1} ; \tau_{2}\right)=\chi_{|\mathbf{k}|}\left(\tau_{1}\right) \chi_{|\mathbf{k}|}^{*}\left(\tau_{2}\right) \\
\mathcal{D}_{+-}\left(\tau_{1} ; \tau_{2}\right)=\mathcal{D}_{-+}^{*}\left(\tau_{1} ; \tau_{2}\right), \mathcal{D}_{--}\left(\tau_{1} ; \tau_{2}\right)=\mathcal{D}_{++}^{*}\left(\tau_{1} ; \tau_{2}\right) \\
\mathcal{D}_{++}\left(\tau_{1} ; \tau_{2}\right)=\theta\left(\tau_{1}-\tau_{2}\right) \mathcal{D}_{-+}\left(\tau_{1} ; \tau_{2}\right)+\theta\left(\tau_{2}-\tau_{1}\right) \mathcal{D}_{+-}\left(\tau_{1} ; \tau_{2}\right)
\end{gathered}
$$

- The flat space limit propagator

$$
\mathcal{D}_{++}=\frac{i}{k^{2}-m^{2}+i \varepsilon}
$$

THERMAL PROPAGATORS

- What about the "out-out" field propagator?
- Connected with the $C_{3} \neq 0$ contour
- One should make sure that the KMS condition for thermal equilibrium is satisfied

THERMAL PROPAGATORS

$\Phi^{3}(\tau)$ defined on C_{3}

$$
\begin{aligned}
& \langle 0| \mathcal{T}\left[\Phi^{3}\left(\tau_{1}\right) \Phi^{3}\left(\tau_{2}\right)\right]|0\rangle=\mathcal{D}_{33}\left(\tau_{1} ; \tau_{2}\right) \\
& \langle 0| \Phi^{+}\left(\tau_{1}\right) \Phi^{3}\left(\tau_{2}\right)|0\rangle=\mathcal{D}_{3+}\left(\tau_{1} ; \tau_{2}\right) \\
& \langle 0| \Phi^{-}\left(\tau_{1}\right) \Phi^{3}\left(\tau_{2}\right)|0\rangle=\mathcal{D}_{3-}\left(\tau_{1} ; \tau_{2}\right)
\end{aligned}
$$

Satisfy the sewing conditions

$$
\text { for } a \in\{-,+, 3\}
$$

$$
\left.\mathcal{D}_{a-}\left(\tau_{1} ; \tau_{2}\right)\right|_{\tau_{2}=\tau_{\mathrm{in}}}=\left.\left.\mathcal{D}_{a 3}\left(\tau_{1} ; \tau_{2}\right)\right|_{\tau_{2}=\tau_{\mathrm{in}}} \quad \frac{\partial}{\partial \tau_{2}} \mathcal{D}_{a-}\left(\tau_{1} ; \tau_{2}\right)\right|_{\tau_{2}=\tau_{\mathrm{in}}}=\left.\frac{\partial}{\partial \tau_{2}} \mathcal{D}_{a 3}\left(\tau_{1} ; \tau_{2}\right)\right|_{\tau_{2}=\tau_{\mathrm{in}}}
$$

THERMAL PROPAGATORS

- The $T \neq 0\left(C_{3} \neq 0\right)$ "out-out" field propagator

$$
\mathcal{D}_{\beta / 2}=\begin{array}{|c|c|}
\hline \mathcal{D}_{++}+n_{B}(\beta / 2)\left(\mathcal{D}_{++}+\mathcal{D}_{--}\right) & \mathcal{D}_{+-}+n_{B}(\beta / 2)\left(\mathcal{D}_{++}+\mathcal{D}_{--}\right) \\
\hline \mathcal{D}_{-+}+n_{B}(\beta / 2)\left(\mathcal{D}_{++}+\mathcal{D}_{--}\right) & \mathcal{D}_{--}+n_{B}(\beta / 2)\left(\mathcal{D}_{++}+\mathcal{D}_{--}\right) \\
\hline
\end{array}
$$

- the Bose-Einstein distribution parameter

$$
n_{B}(\beta)=\frac{e^{-\beta \omega_{|\mathbf{k}|}}}{1-e^{-\beta \omega_{|\mathbf{k}|}}}
$$

THERMAL PROPAGATORS

- Concrete $T \neq 0\left(C_{3} \neq 0\right)$ "out-out" field propagator should respect the KMS condition
- Proof that Schwinger-Keldysh \equiv Thermofield dynamics for time-dependent Hamiltonian via "in-in"

$\mathcal{D}_{\beta}=U_{\beta} \mathcal{D} U_{\beta}^{T}$	
$\beta=\frac{1}{T}$	

$$
\begin{gathered}
\text { A Bogolyubov Transformation (BT) with coefficients } \\
\cosh \theta_{|\mathbf{k}|}=\frac{1}{\sqrt{1-e^{-\beta \omega_{|\mathbf{k}|}}}} \text { and } \sinh \theta_{|\mathbf{k}|}=\sqrt{\cosh ^{2} \theta_{|\mathbf{k}|}-1}
\end{gathered}
$$

THERMAL PROPAGATORS

- All the allowed thermal transformations of \mathcal{D} are correlators of the form

$$
\mathcal{D}_{J, \alpha}^{I}=\langle J ; \alpha| \mathcal{T}\left[\boldsymbol{\Phi}^{I}\left(\boldsymbol{\Phi}^{I}\right)^{T}\right]|J ; \alpha\rangle
$$

- In Thermofield dynamics language $\left(\boldsymbol{\Phi}^{I}\right)^{T}=\left(\Phi^{+, I} / \Phi^{-, I}\right)$ with $I, J=$ in, out. α is a thermal index

$$
\text { Exact } d S \text { space can only suftain the } G \text { - } H \text { temperature }
$$

$$
\frac{1}{\beta}=T-T_{\mathrm{dS}}=\frac{H}{2 \pi}
$$

- The thermal dS-scalar propagator admits an explicit and compact form

$$
\mathcal{D}_{\beta}=\mathcal{D}+\left(\mathcal{D}_{++}+\mathcal{D}_{++}^{*}\right)\left(s^{2}+s c\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& s \equiv \sinh \theta_{|\mathbf{k}|} \\
& c \equiv \cosh \theta_{|\mathbf{k}|}
\end{aligned}
$$

THE COSMOLOGICAL OBSERVABLES

- The thermal power spectrum for $\tau_{1}=\tau_{2}, H|\tau|=1$ and $|\mathbf{k} \tau| \lesssim 1$

$$
\mathcal{D}_{\beta}=\mathcal{D}+\left(\mathcal{D}_{++}+\mathcal{D}_{++}^{*}\right)\left(s^{2}+s c\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

- Defines the observables $n_{S}, n_{S}^{\prime}, n_{S}^{\prime \prime}$ and $f_{N L}$
$\mathbf{1}$ is the 2×2 matrix with unit elements

$$
\begin{aligned}
\left.\kappa \equiv \omega_{|\mathbf{k}|}|\tau|\right|_{|\mathbf{k} \tau|=1} & =\left.\sqrt{\left(|\mathbf{k}|^{2}+m_{\mathrm{dS}}^{2}\right)|\tau|^{2}}\right|_{|\mathbf{k} \tau|=1} \\
& =\sqrt{\frac{5-d^{2}}{4}+M^{2}}
\end{aligned}
$$

- The picture
$\mathcal{D} \longrightarrow \mathcal{D}_{\beta} \longleftrightarrow \quad \mid$ in $>\longrightarrow \mid$ out,$\beta>$

THE COSMOLOGICAL OBSERVABLES

- Time-independent BT
\mid in $>\longrightarrow \mid$ out, $\beta_{T_{\mathrm{dS}}}>\longrightarrow$ Exact de Sitter $\longrightarrow d=3, M^{2}=0 \rightarrow \kappa=i$
P. R. Anderson, C. Molina-Paris and Emil Mottola, Phys. Rev. D 72 (2005) 043515 P. R. Anderson and E. Mottola, Phys. Rev. D 89 (2014) 104038

$$
P_{S}(\tau)=\left(\frac{H}{2 \pi}\right)^{2}(1+|\mathbf{k} \tau|) \Rightarrow P_{S}(0)=\left(\frac{H}{2 \pi}\right)^{2}
$$

scale invariant spectrum

- Time-dependent BT
\mid in $>\longrightarrow \mid$ out, $\beta>\beta_{T_{\mathrm{dS}}}>\longrightarrow$ Broken de Sitter $\longrightarrow \Omega_{|\mathbf{k}|}=\omega_{|\mathbf{k}|}\left(|c|^{2}+|s|^{2}\right)$ $\kappa \rightarrow \Lambda=\kappa\left(1+2 \frac{e^{-2 x \kappa}}{1-e^{-2 x \kappa}}\right)=\kappa \operatorname{coth}(x \kappa)$

THE COSMOLOGICAL OBSERVABLES

- $x=\frac{\pi H}{2 \pi T}$, for $x \in[\pi, \infty)$. When $x=\pi$, admits its natural dS value where $T=T_{\mathrm{dS}}$
- The transformed state has reduced isometry than Bunch-Davies

$$
\ddot{\phi}+2 \mu \dot{\phi}+\left(\mu_{H}^{2}+\xi \frac{\mathcal{R}}{H^{2}}\right) a^{2} H^{2} \phi=0, \quad \dot{H}=\not \frac{1}{2 a} \dot{\phi}^{2}=\text { const } .
$$

- The limiting cases

$T<T_{\mathrm{dS}}, \Lambda \rightarrow$ finite
$\kappa \rightarrow$ finite

Scale invariance is slightly broken

$$
T=T_{\mathrm{dS}}, \Lambda \rightarrow \infty, \kappa \rightarrow i
$$

Scale invariance (like symmetry restoration)

THE COSMOLOGICAL OBSERVABLES

- The spectral index of scalar curvature fluctuations, n_{S}, is shifted due to finite temperature effects

- All the freedom is included in Λ which admits its natural value when $x \approx \pi$

$$
n_{S, \beta}=1+\frac{d \ln \left(|\mathbf{k}|^{3} P_{S, \beta}\right)}{d \ln |\mathbf{k}|}<\delta n_{S} \equiv n_{S, \beta}-1=-\frac{2 x}{\Lambda}\left[\frac{e^{-x \Lambda}}{1-e^{-2 x \Lambda}}\right]
$$

THE COSMOLOGICAL OBSERVABLES

- The shift is extended to other observables

$$
n_{S, \beta}^{(1)}=\delta n_{S}\left[2-\frac{1}{\Lambda^{2}}-\frac{x}{\Lambda}\left(1+\frac{2 e^{-2 x \Lambda}}{1-e^{-2 x \Lambda}}\right)\right]
$$

$$
\begin{gathered}
n_{S, \beta}^{(1)}=\frac{d n_{S, \beta}}{\left.d \ln \left|\mathbf{k}_{1}\right|\right)},{ }_{2}^{2} n_{S, \beta}^{(2)}=\frac{d n_{S, \beta}^{(1)}}{d \ln |\mathbf{k}|} \quad f_{N L}=\frac{5}{6} \frac{N_{\rho \rho}}{N_{\rho}^{2}} \\
n_{S, \beta}^{(2)}=\frac{\left(n_{S, \beta}\right)^{2}}{\delta n_{S}}+\delta n_{S}\left[-\frac{2}{\Lambda^{2}}+\frac{2}{\Lambda^{4}}-\frac{x}{\Lambda}\left(2-\frac{1}{\Lambda^{2}}\right)\left(1+\frac{2 e^{-2 x \Lambda}}{1-e^{-2 x \Lambda}}\right)+\frac{4 x^{2}}{\Lambda^{2}} \frac{e^{-2 x \Lambda}}{\left(1-e^{-2 x \Lambda}\right)^{2}}\right] \\
N_{\rho}=\frac{\partial N}{\partial \rho}, N_{\rho \rho}=\frac{\partial^{2} N}{\partial \rho^{2}} \text { and } \rho \equiv P_{S, \beta}
\end{gathered}
$$

THE COSMOLOGICAL OBSERVABLES

- The physical case $\Lambda \rightarrow 1.5117, x \rightarrow \pi$

$$
\begin{gathered}
n_{S, \beta} \equiv n_{S} \approx 1-0.036=0.964 \\
(0.9649 \pm 0.0042)
\end{gathered}
$$

$n_{S, \beta}^{(1)} \approx 0.0186$
(0.013 ± 0.012)

$$
\begin{array}{|c|}
\hline f_{N L} \approx-1.7138 \\
(-0.9 \pm 5.1) \\
\hline
\end{array}
$$

$$
\begin{gathered}
n_{S, \beta}^{(2)} \approx 0.1250 \\
(0.022 \pm 0.012)
\end{gathered}
$$

Λ	x
$\rightarrow 0$	$\rightarrow \infty$
10^{-6}	$3.5 \cdot 10^{7}$
0.01	1600
0.5	14.8
$\rightarrow 1.5117$	$\rightarrow \pi$

$$
\Lambda=\kappa\left(1+2 \frac{e^{-2 x \kappa}}{1-e^{-2 x \kappa}}\right)=\kappa \operatorname{coth}(x \kappa)
$$

Planck Collaboration, r. Akrami et al., Astron. Astrophys. 641 (2020)

SPECTRAL INDEX AND dS/CFT

- The dS/CFT correspondence

4d Bulk: \mid in $>\longrightarrow \mid$ out, $\beta_{T_{\mathrm{dS}}}>\longleftrightarrow$ 3d Boundary: UV to IR RG flow

M. Bianchi, D.Z. Freedman and K. Skenderis Nucl. Phys. B 631 (2002) 159
I. Antoniadis, P. O. Mazur and E. Mottola, JCAP 09 (2012) 024

SPECTRAL INDEX AND dS/CFT

- The $\mathrm{d}=3$ scalar theory of the Ising field σ

$$
\mathcal{L}=\frac{1}{2} \partial_{i} \sigma \partial_{i} \sigma-\lambda \sigma^{4}
$$

The IR limit is a exact 3d CFT as long as the BT preserves the $S O(4)$ isometry.

Scale invariance is broken via the Coleman-Weinberg mechanism.
$R G$ brings us in the vicinity of the IR fixed point

$$
\mid \text { out; } \beta\rangle \text { with } \beta>\beta_{\mathrm{dS}}
$$

SPECTRAL INDEX AND dS/CFT

- In the dS/CFT correspondence: bulk field $\phi\left(\Delta_{-}\right)$dual to a boundary operator $\mathcal{O}\left(\Delta_{+}\right)$

$$
\begin{gathered}
\Delta_{-}=\frac{d}{2}-\nu \quad \Delta_{+}=\frac{d}{2}+\nu \\
\left(\Delta_{-}, \Delta_{+}\right)_{\mathrm{cl}}=(0,3)
\end{gathered}
$$

- Bulk and boundary propagators are related by

7. Maldacena, 7. High Energy Phys. 05 (2003) 013
8. M. Maldacena and G. L. Pimentel, JHEP 09 (2011) 045

SPECTRAL INDEX AND dS/CFT

- There is a gauge of the metric where $\zeta_{\mathbf{k}}=z(\tau) \phi_{\mathbf{k}}$

7. Maldacena, 7. High Energy Phys. 05 (2003) 013
8. M. Maldacena and G. L. Pimentel, HEP 09 (2011) 045

- Then bulk and boundary propagator connection reforms to

$$
\left\langle\zeta_{|\mathbf{k}|} \zeta_{-|\mathbf{k}|}\right\rangle \sim \frac{1}{\left\langle\mathcal{O}_{|\mathbf{k}|} \mathcal{O}_{-|\mathbf{k}|}\right\rangle}
$$

SPECTRAL INDEX AND dS/CFT

- The spectral index in holography

$$
\begin{aligned}
n_{S}-1 & =\frac{d}{d \ln |\mathbf{k}|}\left[\ln \left(|\mathbf{k}|^{3} P_{S, \beta}\right)\right]=\frac{d}{d \ln |\mathbf{k}|} \ln \left(|\mathbf{k}|^{3}\left\langle\zeta_{|\mathbf{k}|} \zeta_{-|\mathbf{k}|}\right\rangle\right) \\
& =3-\frac{1}{\left\langle\mathcal{O}_{|\mathbf{k}|} \mathcal{O}_{-|\mathbf{k}|}\right\rangle}\left(\frac{d}{d \ln |\mathbf{k}|}\left\langle\mathcal{O}_{|\mathbf{k}|} \mathcal{O}_{-|\mathbf{k}|}\right\rangle\right)
\end{aligned}
$$

- The Callan-Symanzik

$$
\begin{array}{r}
\left(\frac{\partial}{\partial \ln |\mathbf{k}|}-\beta_{\lambda} \frac{\partial}{\partial \lambda}+\left(3-2 \Delta_{\mathcal{O}}\right)\right)\left\langle\mathcal{O}_{|\mathbf{k}|} \mathcal{O}_{-|\mathbf{k}|}\right\rangle=0 \quad \Delta_{\mathcal{O}}=\Delta_{+}=\left[\Delta_{\mathcal{O}}\right]+\Gamma_{\mathcal{O}} \text { and } \beta_{\lambda} \equiv \mu \frac{\partial \lambda}{\partial \mu} \\
\begin{array}{r}
n_{S}=1-2 \Gamma_{\mathcal{O}}-\beta_{\lambda} \frac{\partial}{\partial \lambda} \ln \left\langle\mathcal{O}_{|\mathbf{k}|} \mathcal{O}_{-|\mathbf{k}|}\right\rangle \\
\text { F. Larsen and R. McN Nees, fHEP } 07 \\
\text { (2003) 051 }
\end{array} \\
\text { F. P. van der Schaar, FHEP } 01 \text { (2004) }
\end{array}
$$

SPECTRAL INDEX AND dS/CFT

- The anomalous dimension

$\gamma_{\mathcal{O}} \equiv \mu \frac{\partial}{\partial \mu} \ln z_{\mathcal{O}}$		$\gamma_{\sigma} \equiv \frac{1}{2} \mu \frac{\partial}{\partial \mu} \ln Z_{\sigma}$
	$\Gamma_{\mathcal{O}}=-\gamma_{\mathcal{O}}+2 \gamma_{\sigma}$	

- For $\mathcal{O}=\sigma^{4}\left(\Delta_{\sigma^{4}}=3\right)$ no shift to the spectral index

$$
n_{S}=1-2 \Gamma_{\sigma^{4}}=1-2 \frac{\partial \beta_{\lambda}}{\partial \lambda}
$$

F. Larsen and R. McNees, JHEP 07 (2003) 051
7. P. van der Schaar, 7HEP 01 (2004)

070

- For us $\mathcal{O}=\Theta \equiv \delta^{i j} T_{i j}\left(\Delta_{\Theta}=3\right)$ and the spectral index

a conserved current

$$
\Gamma_{\Theta}=0 \longrightarrow n_{S}=1+\frac{\partial}{\partial \ln \mu} \ln \left\langle\Theta\left(x_{1}\right) \Theta\left(x_{2}\right)\right\rangle=1-\beta_{\lambda} \frac{\partial}{\partial \lambda} \ln \left\langle\Theta\left(x_{1}\right) \Theta\left(x_{2}\right)\right\rangle
$$

SPECTRAL INDEX AND dS/CFT

- Vanishing of the anomalous dimension of Θ

$$
\langle\Theta \Theta\rangle=c_{\Theta} /|x|^{2 d}
$$

- Non-trivial vanishing for $\Gamma_{\Theta}=0 \rightarrow \gamma_{\Theta}=2 \gamma_{\sigma}$
K. G. Wilson, Phys. Rev. 179, 1499
S. E. Derkachov, 7.A. Gracey, A.N. Manashov, Eur. Phys. 7. C2 569-579
C. Coriano, L. Delle Rose and K. Skenderis, Eur. Phys. 7. C 81 2, 174

7. Henriksson, ArXiv: 2201.09520

A sunset-like diagram with $\sigma \square \sigma$ insertion cancels the usual sunset

- Near the IR Wilson-Fisher fixed point $2 \gamma_{\sigma}=\eta$ the Ising field critical exponent

SPECTRAL INDEX AND dS/CFT

- Rewrite the Callan- Symanzik equation for Θ and $\Gamma_{\Theta}=\eta-\eta$

$$
\left[\left(\frac{\partial}{\partial \ln \mu}+\eta\right)+\left(\beta_{\lambda} \frac{\partial}{\partial \lambda}-\eta\right)\right]\left\langle\Theta\left(x_{1}\right) \Theta\left(x_{2}\right)\right\rangle \simeq 0
$$

- Very close to the IR Wilson-Fisher fixed point $\beta_{\lambda}^{2} \ll \frac{\partial \beta_{\lambda}}{\partial \lambda}$

$$
\left(\beta_{\lambda} \frac{\partial}{\partial \lambda}-\eta\right)\left\langle\Theta\left(x_{1}\right) \Theta\left(x_{2}\right)\right\rangle \simeq 0
$$

- The c_{Θ}-coupling satisfies the scaling equation

$$
\beta_{\lambda} \partial_{\lambda} c_{\Theta}=\eta c_{\Theta}
$$

SPECTRAL INDEX AND dS/CFT

- The approximate conformal 2-point function

$$
\langle\Theta \Theta\rangle=c_{\Theta} /|x|^{2 d} \quad c_{\Theta} \sim\left(\frac{16 \pi^{2}-3 \lambda}{\lambda}\right)^{\eta}
$$

- The critical exponent η non-perturbatively admits the numerical value $\eta \approx 0.036$ (MC simulation)

$$
n_{S}=1-\beta_{\lambda} \frac{\partial}{\partial \lambda} \ln \left\langle\Theta\left(x_{1}\right) \Theta\left(x_{2}\right)\right\rangle
$$

$$
n_{S} \simeq 1-\eta \quad n_{S} \simeq 1-0.036=0.964
$$

- So $\Lambda \approx 1.5117$ is indeed fixed independently (without connection to the inflationary characteristics)

SPECTRAL INDEX AND dS/CFT

- Z_{σ} cannot be decoupled justifying the existence of the eigenvalue equation
- The justification from boundary arguments

Renormalized Θ comes from

$$
\begin{gathered}
\Theta \equiv-\beta_{\lambda} \mu^{\varepsilon} \sigma^{4} \\
Z \cap=1
\end{gathered} \longrightarrow \Theta=\Theta_{0} z_{\Theta}^{-1 / 2} \quad \longrightarrow \quad\left(\mu \partial / \partial \mu+\gamma_{\Theta}\right)\langle\Theta \Theta\rangle=0
$$

- From bulk arguments

Connect bulk and boundary w/o forgetting Z_{σ}

$$
\begin{gathered}
\longrightarrow \mu=a H \text { and } \lambda=\phi \longrightarrow \lambda=\phi-\frac{2 \gamma_{\sigma}}{\beta_{\lambda}} H t \simeq \phi+\ln (H|\tau|)^{\frac{2 \gamma_{\sigma}}{\beta_{\lambda}}} \\
\downarrow \downarrow
\end{gathered}
$$

CONCLUSIONS

- We considered a thermal scalar in de Sitter background. Starting from the Bunch-Davies |in $>$ vacuum, a Bogolyubov Transformation placed us somewhere in the interior of the finite temperature phase diagram.
- The BT rotation is considered in such a way that instead of returning to the BD vacuum we landed on the |out > vacuum, which is connected to an interacting IR CFT, in the universality class of the 3d Ising model.
- This interacting CFT is rather special, in the sense that the boundary operator that couples to the scalar curvature perturbations in the bulk has a classical scaling dimension. The critical exponent η is the order parameter of the breaking of the scale invariant spectrum of curvature fluctuations
- η fixes the parametric freedom in the dS scalar theory, yielding the prediction $n_{S, \beta} \approx 0.964$, up to errors associated with its lattice Monte Carlo measurements.
- Heating up the system $T \lesssim T_{\mathrm{dS}}$ numerically in a controlled way we evaluated additional cosmological observables $n_{S, \beta}^{(1)}, f_{N L}$ and $n_{S, \beta}^{(2)}$. We finally note that our predicted values of $n_{S, \beta}, n_{S, \beta}^{(1)}$ and $f_{N L}$ are well within current experimental bounds while $n_{S, \beta}^{(2)}$ exceeds them.

THANK YOU

