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Most people wouldn’t come to this talk:

An Etude on the Regularization and Renormalization of Divergences in
Primordial Observables

Anna Nr;rgr and Subodh P. Pati

Instituut-Lorentz for Theoretical Physics,
Leiden University, 2333 CA Leiden, The Netherlands

(Dated: February 20, 2024)

Many cosmological observables of interest derive from primordial vacuum fluctuations
evolved to late times. These observables represent statistical draws from some underlying
quantum or statistical field theoretic framework where infinities arise and require regular-
ization. After subtracting divergences, renormalization conditions must be imposed by mea-
surements or observations at some scale, mindful of scheme and background dependence. We
review this process on backgrounds that transition from finite duration inflation to radiation
domination, and show how in spite of the ubiquity of scaleless integrals, UV divergences can
still be meaningfully extracted from guantities that nominally vanish when dimensionally

arXiv:2402.10008; La Rivista del Nuovo Cimento, in press



Or come to this talk either...

Hadamard Regularization of the Graviton Stress Tensor

Anna Ncgr(EI and Subodh P. Pati

Instituut-Lorentz for Theoretical Physics,
Leiden University, 2333 CA Leiden, The Netherlands

(Dated: March 26, 2024)

We present the details for the covariant renormalization of the stress tensor for vacuum
tensor perturbations at the level of the effective action, adopting Hadamard regularization
techniques to isolate short distance divergences and gauge fixing via the Faddeev-Popov pro-
cedure. The subsequently derived renormalized stress tensor can be related to more familiar
forms reliant upon an averaging prescription, such as the Isaacson or Misner-Thorne-Wheeler
forms. The latter, however, are premised on a prior scale separation (beyond which the aver-
aging is invoked) and therefore unsuited for the purposes of renormalization. This can lead to
potentially unphysical conclusions when taken as a starting point for the computation of any
observable that needs regularization, such as the energy density associated to a stochastic
background. Any averaging prescription, if needed, should only be invoked at the end of the
renormalization procedure. The latter necessarily involves the imposition of renormalization
conditions via a physical measurement at some fixed scale, which we retrace for primordial
gravitational waves sourced from vacuum fluctuations through direct or indirect observation.

arXiv:2403.16806
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gravitational waves sourced from vacuum fluctuations through direct or indirect observation.

but it’s the talk you're more or less going to get...



What is a ‘quantum correction’?
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Do we get to calculate corrections
to ‘classical’ quantities?
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Say | calculate a bubble diagram on flat space:

e ————

. W = 1 log [det(—D + mfb)}
w W / ds /d4 [~O4m2]

—————— dS 4 4 dS m23
_ifL?/dex’x’s _327{2 dw ] me
AZ A2

2

32% ff dife_mws — 64% [A‘l — mfb In (mfb/AQ)}
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Does this mean Minkowski gets corrected to dS?

e ————

. W = 1 log [det(—D + mfb)}
w W / ds /d4 [~O4m2]

—————— dS 4 4 dS m23
_ifL?/dex’x’s _327{2 dw ] me
AZ A2
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32% ff dife_mws — 64% [A‘l — mfb In (mfb/AQ)}
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Obviously not — regularization subtracts infinities,
renormalization conditions fix finite parts...

e ————

W = 1 log [det(—D + mfb)}

S_——_—-

ds 4 g [Tds .
25/%?/d$G$75C75 :327‘_2/\(127/%8—36
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Once you’ve fixed renormalization conditions, all one
gets to calculate is how things change with scale...

e ————

DV'zzélog‘}k%(—{]—#Tni)}

w ,,": W — 1/ fd4 D—me >
o 2

—————— 1 dS 4 ]_ 4 OOdS —m23
:5/% ?/d xG(m’x;S):32W2 d*x N 3¢ v

e dife_m?bs — L [A‘l —mfb In (mfb/AQ)}

3272 ~5 S 64772



The cosmological constant problem is a statement about
the instability of flat space as one changes scale...

e ————

DV'zzélog‘}k%(—{]—#Tni)}

w ,,": W — 1/ fd4 D—me >
o 2

—————— 1 dS 4 ]_ 4 OOdS —m23
:5/% ?/d xG(m’x;S):32W2 d*x N 3¢ v

e dife_m?bs — L [A‘l —mfb In (mfb/AQ)}

3272 ~5 S 64772



Sometimes the idea of a quantum “correction’ is itself a
category error — the only reality is the fully dressed one...

Consider the following Lagrangian in 1+1 D:

L(z) = 10,0(x)0mI(x)

2

Can quantize as usual — plane wave basis states etc...



Sometimes the idea of a quantum “correction’ is itself a
category error — the only reality is the fully dressed one...

But what about this one?

L(z) = 20,0(x)0"I(x) + g5 (cos fi(z) — 1)

Hard to quantize as usual around plane wave basis...



Sometimes the idea of a quantum “correction’ is itself a
category error — the only reality is the fully dressed one...

But what about this one?

L(z) = 20,0(x)0"I(x) + g5 (cos fi(z) — 1)

Start to notice some funny things: solitons with like
topological charges repel, equal and opposite annihilate...



Reminder: (Classical) Lagrangians are not physical

0 0(2)0"9(x) + 55 (cos B (z) — 1)
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Reminder: (Classical) Lagrangians are not physical

$0,0(x)0"9(x) + 55 (cos BI(x) — 1)
&( ) (iv" 0y — m) ()

—§g¢($)v (@) (z) ()

,l:
|

Skyrme (1964): Sine-Gordon solitons very much are the
Thirring fermions in disguise...



Reminder: (Classical) Lagrangians are not physical

Proved at operator and GF level (Mandelstam, Coleman 1975)

L(z) = 20,0(x)0"I(x) + 5 (cos f(z) — 1)




Loop corrections and anomalous dimensions

e In1+1: [¢¢p] =1 ,[cos(BY)] = 0 get mapped to each other,
so the latter has anomalous dimension of one (cf.

compositeness).

 Anybody doing scattering experiments with Thirring
Fermions sees only the fully dressed reality.



Outline

Regularizing divergences — making sense of hard cutoffs, dim reg, point splitting,
UV vs IR etc.

UV divergences can still be extracted from scaleless integrals in dim reg.

Finite duration inflation — distinguishing UV and IR scales from unknown
completion of theory/ observables from beginning and end of inflation.

Aside — various IR divergences are cured in finite duration inflation.
Vacuum stress tensor of tensor perturbations — need to go beyond Isaacson.
Energy density of tensor perturbations — observable, or shifted tadpole condition?

Relation to extracting Neff bounds + consequences.



* Regularizing divergences — making sense of hard cutoffs, dim reg, point splitting,
UV vs IR etc.

e UV divergences can still be extracted from scaleless integrals in dim reg.



Divergences are not an academic issue!

* All physical observables: momentum or energy transfer between propagating
degrees of freedom and some sort of detector or tracer.

* Primordial correlation functions are a useful calculational intermediary between
observations and underlying effective description, but not directly observable.

e Need to be acted on with derivatives and convolved with transfer functions.

* Physical observations are made at some point in space or time, sample coincident
limit of field bilinears or higher point functions.

* Observations cannot be made sense of unless divergences in the coincident limit
subtracted and renormalized.



“Just because something is infinite, doesn’t
mean it is zero” — unattributed quote



Divergences are not that bad...

* Consider the energy momentum tensor of a minimally coupled, non-interacting
test scalar field:

TH = 0' @0, ¢ — Eéff (g’j‘j@m@a@ + mzaﬂz)
2 7 142 2
@ (Vo) m- 2
To=r=55t 52 T 5%

e Start with the two point function and proceed from there:

3 N
(o(7,2)8(T,y)) :fd RPen D ke,

4r k3
[ dk_ . sin(kr)
=] BT



Divergences are not that bad...

* The coincident limit for a massless test scalar on an inflating background

li { [: J f wllx H[] zfx clk: k s —1 1 k 2 n:”"_l i
m il ool x)) ~ | — — | — +
i  TIOAT L)) 27 ok \ Hy aHp 2 —ns

e de Sitter is particularly simple —

: , | : Ho\? [ dk kY
g a o = — 7
;E%H;:}[T.UL){}{T-.H; (2?) /D k [1 i (H-HD) ]

* Allintegrals are scaleless... in mass independent schemes, the above would vanish.
Considering massive but sufficiently light fields on dS shows the same:

im (¢ oy = Hi oo > dk B 1 E\ 5~ 2m
11 (¢ L) LI = —2 Ve B f
}H%HQ(T-”C}[T ) 82 F }/D k aHy 2(vm — 1) \aHg




But just because something is zero doesn’t mean

it isn’t infinite!

* Lesson from matching calculations in NR QED/QCD: Can factor scaleless integrals
into a scaleful ones:

“dk [ kdk 1 [ d%
0 T - 0 .lfl'-'l B 2:’?2 . F

d°r KA Ity = LATRIL(B-A=3) o apin,
{(Zﬂ-]j} [:.lif-E + -}-ﬂ_g}ﬂ' ) ) =

(4m)P/2r (L) T(B)
o | H\? [> dk
lim (o(7, 2) (T, x)) = (Ej) ]D T

Ifj[!'flgjl =

H? [ d' H? [~ 1 m?
Ny Nl )y — _ 17
E}Ea@fﬂi)‘{?fﬂ z)) g4 f_l. 1A Qi j;l.d k [;L,QH._Q —|—-m.9} T k(K2 + m?2)



But just because something is zero doesn’t mean
it isn’t infinite!
* Integrals give equal and opposite contributions:

H? [~ d% H? [~ 1 m?
s Ry Y — _ 1.
:!EE“Q{T’"L}Q{T’ z)] 8t f_l, k4 8m4d /_l,d A LEH‘-E + m?2) T EY (k2 4+ m?)

H?>[1 1 m2
+—— |- ——|log ~g — 1
472 [cﬁ 2 (D“ A2 TIE )]

. H\*[ 1 1 v
liHl {G{T ,L}ﬁ:}f\‘}__ __J‘_f):".. = ( ) |: - — — _|_ lﬂg HUV ]
T0 2r ) |duv  Or JIR

e UV divergences are unambiguous. IR divergences could mean any number of
things...



But just because something is zero doesn’t mean
it isn’t infinite!

* Let’s reconsider putting a hard cutoff in physical momenta:

S . Ho\? [> dk kY’
S 3 )y = | — -
}E%IH@[T.,LJI{J{TT,ULL (21‘*) /D 2 1+ ((I-HD) ]
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"J'LIH
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* Appearance of IR divergence means we have yet to arrive at a physical observable...

e UV divergence subtracted by a cosmological constant counterterm:

_ (Ho : . H 1 2 A2
c.t. = (2’1’) {11.)g (iﬁi]_w') + ZHS (;_1. _-"1[_ 1}}




But just because something is zero doesn’t mean
it isn’t infinite!

* Let’s reconsider putting a hard cutoff in physical momenta:

| Ho\? [ dk
. i . -' . "'-:l — - —_—
}111%@[?,?#]{3&-.&); (21*) /D 2

—

lim (d )b ) = Hy 2 /aﬁl'—“' dk 14 k 2 B /a,-il-'\' dk 14 k 2
r]i:cl} o1, x)o(T, 1)) = o e T a—HD ” s iR

= () frog () + gz (2 = A (ns = 1)
o\ 2n & Amr 2H§ H SR/ (o s

* Appearance of IR divergence means we have yet to arrive at a physical observable...

 Matches UV counterterm identified in dim reg:

_(Ho\*f, [(n 11 )
C't'_(ﬂ) {L_)g(ﬁ) m—'_z{f 1 10D~1TT]}



UV log divergences agree in all schemes

* Massless fields on quasi dS: a1 )2

|1 Auv
. UV .
c.t. = Ehmcu 12 {Qe log s + }

a2m—1) /[, 2 I 1 1
c.t. = lim — + log —
e—0 2—?15 (QTT) Hﬂg {HS —1 H.D}

—de 2
. 1 _
— lim 2 F {——logi—l-,,,}

e—0 A2 2€ HD

* Time dependent counterterm via: ct.C fd‘l:w’—_g le1(w)R? + ca(p) Ry R

* Massive fields on dS et =g

Hy

m

2 o2 T2 2 | —
= HF‘ 27 17 (wm) [3% —|—1{:|gjiL — ] (physical cutoff)

20 + log E + ... (dim reg)

c.t. = =
K772 T m

B Hﬂ? QQyml"Q{ym} [3HE 1 ]



But not all schemes are equal...

* |f you cannot identify a consistent counter term within your regularization scheme,
you cannot be guaranteed to be calculating physical quantities.

e C.f. energy momentum tensor of test scalar field on dS:
_ B <k (RN (R
P= 8 [D k o0 ) To\GH

H' ""“fﬂc[ 1(,&: )i’ _(a-)*]
P=323 |3\ T2-&m
8t J, Kk 3 \aH aH
* Physical cutoffs requires counterterm that cannot be constructed from geometric
invariants. In dim reg, however, c.t. X Guv, i.e. renormalization of c.c.

» (coefficients of log divergences still agree though :)



* Finite duration inflation — distinguishing UV and IR scales from unknown
completion of theory/ observables from beginning and end of inflation.

* Aside — various IR divergences are cured in finite duration inflation.



Finite duration inflation

* Motivation for this and the next part of the talk — a typical expression one might find
in the literature:

Ay Fuov\\™ 1 1 1 |1 1 kv
W - o og ——
PCW 327Gy \ k. 2ni a*  at | ng 5 ko

UV and IR scales from unknown completion must be distinguished form UV and IR
scales corresponding to beginning and end of inflation.

* Observables cannot depend on the former, but can certainly depend on the latter.

* Bonus observation — certain IR divergences can be shown to be an artefact of a past
infinite dS approximation.



Finite duration inflation

* Consider a cosmology that transitions into and out of inflation to radiation domination:

.-"\'L"rt_.gl_ _ ng['a_ﬁj-’a_l] — lﬂg(ﬂ_xfﬂ{)

7]
= apr (E) e Nt <<y
" 1
=ap|2—— TR<T a
= RTR

e Construct mode functions for a massless test scalar via matching from initial adiabatic
vacuum state:

22 k k 2k2 kg2

2172 i 2 2 2 2
) G_FHj ‘Ei"lﬁﬁ, AR — _ial QRH 52 R + ?I ( + QIEH - iﬂ;{ﬁ ) 1

2172 i 2 172 ok
. .atH aiH . arH .apH ai H? _gi_k_
ﬂ}b — (f— — 1 | _|_ I ) GIIJ- — C}:}L (_?_ _|_ 7 R jI R € Ef'H T




Finite duration inflation

Consider the two coincident limit of the point function:

1

lim (¢(1,x)d(T,y)) =

ey 2mla

[
Eo2
L [EEy

ko2

[1 + 2|.3H 2 HjR ;I;?f (Ij ffr{] + ﬂf*“ jH 1_1;;}; (j_ﬁ]

+ E| 3 |]:n:nm:1 T {D"’C}]

5

Straightforward to show that oscillatory terms do not contribute to UV divergences.

ﬂ}l{Hl U.I H 1 ﬂllﬂIl{HS
454 8k

On the other hand: |8 [3ower =

* But oscillations freeze in the IR, cancel would be (aggravated) IR power divergences:

uRHI + uIlHI quRHb . [3(11 ar + 2a( QR — aj }}E
2k4 4k 9::11 GR

li sct =
lim {osc}



Finite duration inflation

 Remaining UV divergence now parameterized by the beginning and end of inflation:

.- 2a . 4 S| 0
1 ot Y Yoo — __4-'"\'Lr_-t _i""-"tut._l - I
Lim (¢(7, £)o(7, y))ar = € <3+ . e }) Sﬁﬂgagfu dk k

* |R divergences regulated by the physical scale corresponding to the start of inflation:

104
Pk = ﬂ].l’;.r k= ftn_r‘r
100} 1 100
Py k)
|_H__-'2=_|- l| v
::I.L'\la L l-|r 1
§
0.m B
|
......................... |
- :
10 o8
1:_ " N 1 L n i i L
1g=11 105 0.1 k/ag 108 0,001 kjeg ' 1000
(a) Power spectra evaluated at reheating a = ag, (b) Power spectra evaluated at different times during

where a; = 107 '2ap in units where H is set to 2w.  radiation domination.



Finite duration inflation

* Can do the same with the power spectral energy density
< dk af H?
p= / [ (2 ) (2 ) + Lol
< dk

Woer (k) + Qe (F)|

power

. 1 H4 4 _|_H-1 4 1 o Hz
* UV divergences: rav=g5; 4/ d“‘k( o ‘11) BW%G/ A

A

* Coefficients of log divergence agree in all schemes:

p]Dg H.;L['l + E—'L""u't.-_.t)
div 872(a/ar)? |duv

+1— g +log (%)}



Finite duration inflation

.
1 1
00 ‘
I Stot b= H k={apfa)f & =arH
001
1022
10# 10~ 10 kfar 1075 1 kfar
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. .
0l 25598
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il 1 104
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Figure 2: Power spectral energy density for a massless test scalar field comparing past infinite vs
finite duration de Sitter inflation (dashed and bold lines, respectively) matched to a terminal stage of
radiation domination. The panels are evaluated at subsequent times during radiation domination,
with a; = 1071%g, and with a/ag = 1,1078,1071%, and 107!2, respectively, in units where H = 2.



* Vacuum stress tensor of tensor perturbations — need to go beyond Isaacson.
* Energy density of tensor perturbations — observable, or shifted tadpole condition?

* Relation to extracting Neff bounds + consequences.



Isaacson stress tensor is not fit to purpose

e Assumes the Brill-Hartle averaging scheme — not valid for wavelengths comparable too
background curvature:

I.' § i . o o %
= Y. {Hh;j[?‘. :IL-}:I?-;!“T[T.;;JI}

* Instead we can retrace derivation without BH averaging, and undo approximations
reliant on prior scale separation (cf. Maccallum-Taub w/o BH averaging).

. , 1 P S R D
z%ﬂ}li .If}gw[T:_.i.'.y] = S.;IT{I_?GN <§h;?h;j — _—&th.;;jd h'l — 5:‘?-;‘}5;‘.0 h* + Eakhgjdjh-z + Hf’i-ij'i-;J> .

* Perhaps this wasn’t done before because people tripped over lack of positive
definiteness of spectral density? This is a well known property of gravity (c.f. positive
energy theorems).



Isaacson stress tensor is not fit to purpose

4 T T T T - ¥
i Ew i B
177 $eot | 17801
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Figure 3: Power spectral density of the Isaacson stress tensor (dashed lines) evaluated at a = 10°ag
(left) and a = 10%aR (right), with a; = 107'2aR in units where H is set to 27. The blue line is the
comparison to the spectral density of the improved stress tensor, plotted in Fig. 4. The gray shaded
regions correspond to scales outside the domain of validity of the Isaacson stress tensor, where we
note that the oscillations would not appear in its time averaged form.



Now we can finally reconsider /V, off bounds

* In essence, this is a question about how the background gets renormalized from
vacuum tensor perturbations.

HY(1+ e Wer) [ 1
872(a/ar )"

* Let’sreconsider the academic case of a test scalar: iz = +1— 75 +log (g)}

v

S = SgH + Sbg + ¢ + Set

1 1 _’
PR (R;m — 5}?9#1,) = I;]:'E + 1":!.-'1} + I:E::.}
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J'_i.
8n2(a/aR)* +1 =75 +log (E)} T Pet T Pg finite

oyv

3H2 B_ H2 1 :3_'1-"'\"1(:1,
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Now we can finally reconsider /V, off bounds

Do we (multiplicatively) renormalize G_N, or (additively) renormalize background
matter sector?

Shifted tadpole condition: doesn’t matter!

1 1 H2 ) |
( — = - B — ]_ 1-_ L'\" tot { 1 — 1 ) ( ) }
8tGy(pn) 8mGp 0 g._-lﬁz{ T ) /e + log

o=

Fix G_N via measurement (Cavendish) at some scale:

1 1 2 ) .
= _ : B 1 —4Not {1 — A e (_)}
8rGp  8rGy(ps) T 5o+ Q4ﬂ2[ T ) e + log Vi

e Use this to eliminate G_B in the above, so that:

]' ]- ‘H-:E r ,;i
= 1 . — = — {1 _|_(:~_L"|"'tn::|tjlag (_)
8wGn(p) SnGn(p.) 24w2 AW




Now we can finally reconsider /V, off bounds

* We finally obtain: 201 o —4Niot !
= gz i) ()

— 52 fpr N2 N2
a.‘l.{p] .——]:h Jl_{pl

* Can’t go any further for test scalars, but for GWs, we have a classically evolving
background (FRLW), and can fix one more renormalization condition to fix shifted

tadpole: »
SHE 1 a Hz(l +e L-'\-'L:L'J 7
= y finite | |1 — log | —
{ﬂ-;'fﬂfﬁ} 1 ﬂ‘rlfl (pbg + Pgw ._ﬁmlf_) [ ]_"ZTr?ﬂfli 0g 1
cl 2 — 4N -1
Pbg c H (1 T e tet ) ( H >
=—=(1+4)|1— — log | — .
ﬂfp“l ! 12."-;*“;1151 [

e But thisis indistinguishable from rescaling scale factor at reheating. i.e. all one finds is
a shift in the temperature-redshift relation.



Can repeat the exercise in a fully covariant formalism

1

k2 — |1 1
Saw = S + Sy, + Sgn = - f d*z /=g {Ehmmhﬂf’ — hOh+ R? paohg®h? + hoPh Rpy — hh* Ry —

l | Lt
+1MR + 7" (g — Ry ) } :

* Divergences that need to be regularized:

? 1 ) 11 , (1 o1l ., 23
(Sew)asy = FJII}E:{]/{E Ty —g {ER + In(Aa) (HRWR"” — ER — EI:IR

(S} = Sgu + Srp + Sct + (Sew)

| . . x . .
Se; = — lim /{f*.f'xf—_y[fn (o, 1) R + ag(o, p) R B + ag(o, R + ay(o, }E]HR}
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Can repeat the exercise in a fully covariant formalism

(S) = Spi + SrD + Set + (Sew)  Sgp = f d'zy—gP(X)  P(X)= X2, with X := —1¢#8,00,¢

{.H} = fﬁfi-f'xq |jlﬁ"'{];-'(ﬂj R+ x2 (ﬂ}RhwR“” + F"J‘](.“}Rz + g (IE}ER L P{X”J] + l'{*ILJ\‘F-""“':!'If']n

1 L ot (1)

16mG(p) 16xGp  4x2
L L1, A
aalp) = 13 Elug‘ﬂ—g + s (p)]
IEDER U B § B, RN
az(p) = 12 _—Elugﬁ—z—hcr:; (,r:.}_ :
o 1 [ 23, A &, ]
ay(p) = 12 __Elllf_%ru—z—hfu (,r:.jl_ .




Can repeat the exercise in a fully covariant formalism

(S} = Seu + Srp + Sct + (Sew) Srp = fﬂf't-fwﬁ—_ﬁphgﬁa‘{) T&# (Xp) = 64, P — Phg:ﬁ- Ippdip
! e . I l . . b ’ ! o - : . r k- .l-
(S) = fﬂ“-rxf—::f [;ﬂfﬁ{;cﬂ? + P8(Xp, ;c)] + (Sew)gn PP (Xp. p) = X% + 12}{;,5%,
2 MA(
_ ﬁ'-}fl,l‘:.:l
TP8H — _ARX [ —
H b M)

Einstein gravity is not scale invariant — makes sense that the effective stress tensor has a
trace. Foliation specific computation before suggests canceled by adiabatic vacuum
contributions.

Repeat as before, contributions that redshift like radiation have the same interpretation...



Can repeat the exercise in a fully covariant formalism

1 1

1
1 ar (p) — o (pe) 2 4 az(pr) (Tgw i n)
q-”'( I:IHJ erzj {l + )m-ﬁ L{‘E SHR(3CUR - ].) 48XB M6 —I_
P
1 ) —af(u)] B
2 _ L of (1) —of () | _ Pg __ o
1H WII‘;}] (.lrﬂ g fjg';\r 1111) 1+ 572 1-{1‘3[ } JI];!J {l -+ ft'j_‘.,:' i = |':l _|_ fj_ﬂ] g

Newton’s constant fixed via Cavendish type experiment at laboratory scales, does not run
at cosmological scales. Fix equation of state parameter with another measurement.

Repeat as before, effects wave function renormalization...



So what?

« Nef bounds are physically about entropy to baryon ratio of light species that have
frozen out. It makes physical sense that vacuum fluctuations do not contribute to this.

* To anyone interested in measuring GHz, THz GW backgrounds: Neg bounds do not
kill your science case.

* Keep calm, regularize, and renormalize.
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Thank you for listening!
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