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supercooled phase transition

e Part ll : Dark Matter Phase-In
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First Order Phase Transitions  ~XIT

V:eff(gbn T)
e Scalar potential + thermal corrections:
High T
Vet (¢, T) = V(¢) + AV (9, T)
Ve (6, T) = (—)\1/2 + %T2)q§2 — AT + Ao
(Example of potential shape)
Low T
(¢) =0 (¢) #0
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Vveff(gbn T)
e Scalar potential + thermal corrections:
High T
Vet (¢, T) = V(¢) + AV(9, T)
Ve (6, T) = (—)\1/2 + %T2)¢2 — AT + A
(Example of potential shape)
* Motivated in many extensions of the SM for a
Low T number of reasons :
o Electroweak Baryogenesis
o Gravitational Waves Production
(#) = 0 ($) £ 0 o Primordial Black Holes

o Dark Matter Production
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Ve (¢, T)

High T

Low T

Tunnelling
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Ve (¢, T)

A The transition proceeds through bubble nucleation:
High T
() =0 (9) # 0
T > Tnuc T — TIlUC
Low T
(¢) =0 (¢) # 0
Tunnelling p
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V:eff((,ba T) The transition proceeds through bubble nucleation:

() = 0 (6) #0
false vacuum
() =10
‘ T > Tnuc T — Tnuc

AV

+ The scalar tield acts like a cosmological constant
true vacuum

(@) # 0 before the transition: wg = —1

+ For strong supercooling: AV > pr.a(ThT)
+ It the scalar field decays slowly, there will be a period of

scalar field domination after percolation
7



Scalar field domination after FOPT SKIT

‘/eff(¢a T)

It reheating is slow and the energy density in the scalar tield dominates,
such that we can focus only on the scalar dynamics:
Atter the transition, the field (on average) oscillates around the new

minimum
— Matter domination?
false vacuum

() =0 true vacuum

(@) 7 0



Scalar field domination after FOPT SKIT

Focus only on the scalar dynamics:
Ve (0, T) . After the transition, the tield (on average) oscillates around the new minimum
— Matter domination?

Equation of state: (w) = Q pressure
(0 -
energg ensl y
false vacuum In the case of homogeneous coherent R
0 ; oscillations: <w> _ @ _ §<¢’ > - <V(Cb)>
) = B A0 (o)~ (6% + (V(9))
Around the minimum: nicl Theahem,
V(Qf)) ~~ qb’“ = | (Fyin) = g(V(qb)) — For: k=2 w=~0
.. [t is however not as simple for
Y k—2 a scalar field configuration post
—~ k+2 collision




Scalar field domination after FOPT SKIT

Bubble nucleation and percolation on the lattice:

Ve (@, T) |

~7

1.Non-vanishing gradients have to
be taken into consideration
2.Bubble walls are relativistic:
- relativistic scalar waves?
- radiation domination?

1

po= 58 — (V9 ~ V(9

1

po = 58 + 5 (W + V(9
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Why does it matter ?

Gravitational Waves:

Impacts the spectrum of GW expected

General impact of MD : (Kazunori Nakayama et al. (2008), Boyle and Steinhardt (2008), Seto and Yokoyama (2003), D'Eramo
and Schmitz (2019)....)
e More specitic to FOPTs: (Ellis et al. (2019) and (2020) , Gonstal et al. (2025))

Particle production :

Dilution of pre-existing abundances in the case of matter domination (MD)
(Co. et al. (2015), Cirelli et al. (2016), Bishara et al. (2024) and many others)

Production of primordial black holes :
Smaller overdensity threshhold for collapse during MD

(PBH production during matter domination (Harada et al. arXiv: 1609.01588),
PBH production during FOPTs: Y. Gouttenoire and T. Volansky, arXiv: 2305.04942 )

I


https://inspirehep.net/authors/2894783
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Part I: What is the equation of state of the
Universe after a supercooled phase
transition?

12



Step I: Analytical understanding ... SKIT

e Build some analytical understanding of the equation of state:
Geneml [OS For a

b W — Py _ <K> - (d B 2)/d <G> B <V> with d = # of spatial dimensions
Inhomogeneous 0 <K> n <G> n <V>
scalar field:
kinetic poJ(enj(ial
gradien{

15



Step I: Analytical understanding ... SKIT

e Build some analytical understanding of the equation of state:

G | EoS f
f’":m e W= Py _ (K) — (d—2)/d{G) — (V) with d = # of spatial dimensions
Inhomogeneous 0 <K> n <G> n <V>
scalar field:
kinetic po{en{ial
gradien{

e Assume a generic polynomial potential and focus on the scalar field dynamics (no T dependence):

Equation of motion . 929 . _ m% ) ; )
in expanding background ¢ —a "V ¢ + dH¢ — _V"¢ with V(Qﬁ) _ 765 o qub + qub
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Step I: Analytical understanding ...

e Build some analytical understanding of the equation of state:
Genem[ [OS For a

inhomogeneous

scalar field:

_ Py _ (K) —(d—2)/d(G) — (V) with d = # of spatial dimensions
P (K) +(G) + (V)

e Assume a generic polynomial potential and focus on the scalar field dynamics (no T dependence):

[qua{ion of motion . 99 . : - m;‘; 9 3 4
in expanding background ¢ —a "V QS T dH¢ B _‘/’gb with V(QS) B 7¢ B H:@ + leqb
e Consider the average tfield after percolation and apply the virial theorem to determine a relation

between the averaged energy densities:

Approxima{e around the minimum

(K)~ @)+ (¢Ve/2) +d(HD) 2 = V(p)~d® = (K)=(G)+ (V)

15



Step I: Analytical understanding ... ST

e Build some analytical understanding of the equation of state:

6 | EoS £
f’":m e W= Py _ (K) — (d—2)/d{G) — (V) with d = # of spatial dimensions
iInnomogeneous 0 <K> n <G> n <V>

scalar field:

e Assume a generic polynomial potential and focus on the scalar field dynamics (no T dependence):

2

b—a Vi +dHG= -V, with V(p)= 26" — k6’ + ag!

Equa{ion of motion

in expanding background

e Apply the virial theorem to determine a relation between the averaged energy densities: After
percolation, the solution can be approximated by oscillations of the field

Approxima’(e around the minimum

(K) = (G) + (#Vy/2) +d(H$) /2 = V()~¢® = (K)~(G)+(V)
otential
<G> gmdien{ P

e We find a simplitied expression: w=d"



Step II: Let a computer do it Sl

m

2
Solve on the lattice: ¢ — a_2§2¢ +dH¢ = —Vy  with V(¢) = 2¢’ »* — ko + ad?

Example: 2D simulation with random nucleation
and static background

Initial configuration :
randomly nucleated critical bubbles

0 50 100
x[mg’]
17



Step II: Let a computer do it =L

m

2
Solve on the lattice: ¢ —a2V2p+dHp = -V,  with V(¢) = 2¢‘ b2 — k® + ad?

Example: 2D simulation with random nucleation

The EoS can be determined from the and static background

evolution of the energy densities: P _ (K) — (d —2)/d(G) — (V) =
ps () + (G) + (V) -
1.0
1.0
0.5 4o radiafion-like 0.8 -
_|_ Lot
3 00 Imtt'frhkf' %U'ﬁ' i i ;
04 ot S VR )
05 /
02
-0 100 200 300 400 005 100 200 300 400 0 50 100
cosmic time [ ] cosmic time [ | 1"[ m=1
¢
Uiniab Jheonem

(K) ~ (G) + (V) is fullfilled! .



Step II: Let a computer do it

ST

2
Solve on the lattice: ¢ — a_2§2¢ +dH¢ = —Vy  with V(¢) = 2¢’ ¢° — kp° + ad?

The EoS can be determined from the

evolution of the energy densities: _DPe _ (K) —(d—2)/d{(G) — (V)
Py (K) +(G) + (V)
1.0
1.0
0.5 il | radialion-like 08
. —+— Prot
e matterlike | > 061~ P
0.0 g' gﬂ_ —t— Pgrad Wmm
0.41 ot
051 LR T e e e wrh
0.2
-1.0— . ! ' ' 0.0 L | | . :
0 100 200 300 400 0 100 200 300 400

cosmic time [ ] cosmic time [15']

The lattice results show an equation of state value between

matter and radiation domination.

Example: 2D simulation with random nucleation
and static background

0 50 100

19
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Wall thickness, Lorentz factor

We track the wall thickness during the

expansion of 1D bubbles to contirm the

L=~64
relation between 7Y and Reoi/Rini . 00 Lt n—gle
— N=16384
17.5 4 —— N=32768
—— N=6553
15.0 - . ot
125 - |
(':‘h-.
10.0 - BT
75 -
50 -
25 1
3.8 4.0 4.2 4.4 46 I I I I I I I I
X 25 50 75 100 125 150 175 200

R/ Rjpj 20
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What determines the EoS?

(Step lI: Let a computer do it again and again)

Systematic study of the simulation results for bubble Summarized restlfs for the EoS after percolation

141, 1+2 and 1+3 simulati
collisions in 1, 2 and 3 spatial dimensions (141, 1+2 and 1+3 simulations)

Varying the initial bubble separation to reach ditterent bubble 1.0 d=3
wall velocities: — d=2
087 —— d=1
Larger bubble separation P
L A 0.6
— more relativistic bubble walls A
— more energy in graaients V 0.4
— closer to radiation domination
0.2 1
What about predictivity? Is it possible to determine 0.0 _— ] I
a function w(7v,) ? 10¢ 10! 102

Rcc-l;"{Rini ~ ’Y*

21



Step IV: develop more analytical understanding... SKIT

Move to fourier space and re-write the previous expressions in terms of the power spectrum
($d) = Ps(k)(2m)°6 (k + ')

We introduce the dimensionless power spectrum

kd
(2m)

Ay(k) = Sq_1Py(k), with Sq_1 =27Y2/T'(d/2)

With some simplitications, one can re-express the energy densities in terms of the power

spectrum:

o alG) o, [dn k(k/a)’Ag(k)

K) " Jdink (m3+ (k/a)*) Ag(h)

22



Step IV: develop more analytical understanding...

Move to fourier space and re-write the previous expressions in terms of the power spectrum
($d) = Ps(k)(2m)°6 (k + ')

We introduce the dimensionless power spectrum

kd
(2m)

Ay(k) = Sq_1Py(k), with Sq_1 =27Y2/T'(d/2)

With some simplitications, one can re-express the energy densities in terms of the power

spectrum:

w=d 17 _ g1 [dInk(k/a)” Ay (k)
K) " Jdink (m3+ (k/a)*) Ag(h)

Is it possible to determine a function w(7,) ?
Maybe if we find determine an analytic form for the power spectrum in terms of the lorentz factor of the wall 7Y«

23



y[my']

3

120
100

20
0

2D slice at z=67.3[m,']

15
w
=
T
=
0.5

x[%‘]

Step V: Study the power spectrum

2D slice at z=67.3 [mrgl] : 2D shce at z= 63 [
o~ | _

2D slice atz=67.3 [m

50 100

Compute the power spectrum from the Fourier transtorm at ditferent

steps ot the evolution

ST

Karlsruher Institut fir Technologie
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Step V: Study the power spectrum SIT

; — 1 ; — 1
2D slice at z=67.3[m,'] 2D slice at z=67.3[m,'] 15
1.5 — ~ 1.5
120
1.0 100 1.0 10
T oW T T !
05 £ 05 I g &
- = = = =
0.0 0 0.0 0.0
20
-0.5 0+ — 05 -0.5
0 50 100 0 50 100
x[mg'] x[mg!]
t=9.0[m;1 t=15.0[m 1 t=240[m,1 t=180.0{m 1
. [mi 1] . [mi 1] o [mi 1] . [y 1]
! — Dylk)
10° !
102 5 /
%’; 101 5 :
3 |
10° 4 i
i"" 210714 iw
-2 !
0 100 101

k,f m.;,
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Step V: Study the power spectrum KIr

Evolution of the power spectrum before and after
collision/percolation (results of 3D simulation)

104

- ﬁr*_‘ i UV-Peak: |
ol 3 5 e Imprint of the wall?i
- o Ry :

10010

26



Time —

Step V: Study the power spectrum KIr

Evolution of the power spectrum before and after

collision/percolation (results of 3D simulation) Tests performed for 2D simulations. For fixed resolution the

104 peaks appears at the same location and does not depend on

: the wall thickness.
10° "'*_‘ - UV-Peak: ; ;
* : N Imprint of the wall ?: 10
102 784 :
10" =<4 | '
oy : i | Not quite
-, . | i
= 10°4 . i
<] i |
1011 r
1024 :
1[]‘3—; ’ | 10-6 - To1E —— 147
1 ' ¥.=37 — y, =170
104 :. ——— : Y.=73 —— q.=229
1071 1009 — . =92 — 9, =293 '.
10-8 — 1 1
kfm.:p 102 10-1 100 10!
k/mg

27



Step V: Study the power spectrum S\

We have performed checks using 2D simulations. These show
Evolution of the power spectrum before and after

collision/percolo’rion (results of 3D simulation) that the peok d|ssopeors with better resolution.

i 10_1'; —— nGrids=1024 i
ﬂ# . | ] — nGrids=2048 i
, * L. lmpn:\:: :hlk;vau?i 10'2‘? — im”
T o , .. — / 10_3_% %
1 B B ( %10—4_
= EB= 10_15 ; :r 10_5; i
2] i ]
t4 b 00 o i1
k/myg k/myg

The peak is a lattice artifact. The power spectrum follows instead a broken power law with a peak around %, ~ my .
28



Step VI: Modelling the power spectrum

Equation of state as a function of the power spectrum:

2
w—d1 (G) — 41 Jdnk(k/a)" Ay (k) split the integral : contributions from

(K) Jdlnk (m? + (k/a)) Ay (k) k< ko and ko <k < ymg

29



Step VI: Modelling the power spectrum SKIT

Equation of state as a function of the power spectrum:

LGy [dnk(k/a)’Ay(k)

w—d —d split the integral : contributions from

(K) Jdlnk (m? + (k/a)) Ay (k) k< ko and ko <k < ymg

Our simulations suggest that the shape of the power spectrum for
low-k is independent of 7« . The corresponding contributions to
the EoS are constant and the exact shape is for k < kg theretore
not important.

Under these assumptions and with some approximations:
_ 4! a + K(7x)
b+ K(7x)

w (7*)

The equation of state depends strongly on the UV-tail of the
spectrum. This determines the functional dependence on Yx .

50



Step VI: Modelling the power spectrum SKIT

Equation of state as a function of the power spectrum:

W= d—lﬂ — 4! Jdln k(k/a)2A¢(k) split the integral : contributions from
(K) [dInk (mé + (k/a)z) Ay (k) k<ko and ko <k <7y.my [PRELIMENARY]
1.0 1 7
Our simulations suggest that the shape of the power spectrum for
low-k is independent of 7« . The corresponding contributions to 0.8 1
the EoS are constant and the exact shape is for k < kg theretore b
not important. A 0.6 a+cmiy
Under these assumptions and with some approximations: E - | fJH,”‘_:-ﬁ,
Ly a+ K(7x) 0.4
w () =d : d=23
b+ K(7x) J
| —— d=2
The equation of state depends strongly on the UV-tail of the 0.2 i1
spectrum. This determines the functional dependence on Yx . 10 | B
100 10! 102 103 104
Our results for the EoS in 3D seem to go the best with &k oc £ 1in
Reot/Rini ~ Yx

the high-k range. -



Conclusions ST

(Part1i)

Immediately after a first order phase transition we find that:
Larger bubble separation

—> more relativistic bubble walls
— more energy in gradients
—> closer to radiation domination

This makes the realisation of early matter domination atfter relativistic bubble collisions
questionable.

't thermalization is very slow, the expansion will eventually suppress the gradients and
might still allow for a purely matter-dominated epoch.

Detailed results on the evolution of the EoS with expansion are upcoming.

52



Part Il
How does a strong phase transition
impact dark matter freeze-in ?

53



Non-Thermal Dark Matter Production

Strong bounds from direct detection experiments

on WIMPs

— non-thermal production ?

Interactions so feeble that DM and SM were
never in thermal equilibrium
— DM abundance builds up

IR freeze-in demands extremely small couplings

[Hall et al. 0911.1120]

Comoving number density

54



Non-Thermal Dark Matter Production

Another realisation of freeze-in:

AN
Interactions via non-renormalizable operators freeze oy
with dimension n+4: g\ DM >~
o :
o
©
SM DM 3
£
>
(-
and thermally averaged crosssection: 2
< .
o 1€
.
- Temperature of SM radiation bath O
(ov)
AZn
K? UV-suppression scale




Non-Thermal Dark Matter Production

Another realisation of freeze-in: 1
Interactions via higher dimensional operators: freeze-oy;
|
Temperature of
SM DM SM radiation bath >
T2(n—1) =
(-
(ov) Aon 5
SM DM o
\\? UV-suppression scale JE) |
)
- UV freeze-in
& =
—> UV-dominated freeze-in 3 18"
& \Q“e
o
O
log(—
o)
S\
The bulk of DM production is at

primordial reheating :

T ~ Trnu



Non-Thermal Dark Matter Production

UV-dominated freeze-in: 1
Interactions via higher dimensional operators: freeze-oyy
|
S DM
M 72(n—1) =
C
(ov) Aon 5
SM DM o
o)
£ |
>
g) UV freeze-in |\
(-
: % ee"'e:‘“
\!
Problem: sensitivity of the DM abundance to the reheating § W
and maximal temperature of SM radiation bath:
[Bernal et al. 1909.07992] m ’
[Elahi et al. 1410.6157] P\ 1Og(_X)
MplTéﬁ_l Reheating Temperature of T

YDM X A2n SM radiation bath
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UV- freeze-in and First Order Phase

Transitions

UV freeze-in:

DM relic density is determined by the reheating / maximal temperature

First-Order Phase Transition (FOPT):

= The scalar field acts like a cosmological constant before the transition.
= Energy injection to the radiation bath after the phase transition : Can dilute
pre-existing relics if supercooled.

= Relevant temperature scale is Tpr

Question: Under which conditions does Tpr become the
relevant scale that determines the relic density?

2n—1
. MyTgy
DM A2n
[Elahi et al. 1410.6157 ]
[Bernal et al. 1909.07992]
V:aff(gba T)

false vacuum

(¢) =0

(
AV &

true vacuum

{¢) #0

58




The DM phase-in scenario

undergoes FOPT
decays afterwards to SM bath

produces DM via
non-renormalizable interaction

T2(n—1)
A2n

k Operator of dim n+4
SM +SM — DM+DM

(ov) =

Henda Mansour 29" October 2025 - Helsinki



The DM phase-in scenario

undergoes FOPT

produces DM via

Scalar decays afterwards to SM bath non-renormalizable interaction
Field X
¢ T2(n—1)
<UU> - A?2n

Boltzmann equations for energy/number densities:

dpoy B 3(1 + w) T dosm 4 I dnpm —in n (ov) n2

da a ¢ uH"? da a A aH P da  a "M qH M

Beforethe PT: I'=0 ond w = —1 a {7
After the PT: I' = const and 0 < w< 1/3 Friedmann eq: H = a — YL (’OSM - ’0¢)
Pl

40




The DM phase-in scenario

UOILISUDJ}

SOIISUIP AgIauy

Scale factor
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UOILISUDJ}

The DM phase-in scenario

SOIISUIP AgIauy

Scale factor
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The DM phase-in scenario

1 | I
| I |
1 | | |
g | Vacuum | Scalar field | Back to
g Ps I domination i domination i radiation
Q L.
o | | De I domination
| | QY oF |
2 | | th |
- | | @SOQ/ i
Q | |
e | | Qf/?@/o, . dpsm 4 L
— — — PSM
| | T da g R T
| |
| I |
: : '
< | : |
IS | | |
2 | = |
o O I''&x |
. i =15 :
i |

ARH avyp aptT Scale factor
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The DM phase-in scenario

Dt

n | |
QO I I
-E I Vacuum I Scalar field Back to
é’ pr I domination I domination radiation
) | domination
2 | | }’ofCh
S I I @SC
Qq) hZDM ) I | O/Q/'/;, dnpm _ _in n <0"U> 2
= QDM I I @/Q' da a M g M
[
|
|
[

— ——
- °

-

o)

Z e-l
%) - -

2 p\\os n
2

—f—

Phase

Reheating
DM freeze-in

Q
=
an

4VD 4PT aRrD Scale factor
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Energy densities

Phase-in condition

/08/74
Vacuum Scalar field Back to
domination domination radiation
o domination
” Dark matter is produced in
DM ) |
D0, different phases.

Reheating
DM freeze-in

C

00

8 E 7 //’(;S—e—__”j

£15 N
el

ARH avp apt aRrD Scale factor
QDM FI Qpwm,pr Sensitive to the radiation bath
J J temperature after the decay:
DeTermined by Determined by n ~ Tzn_l
reheating temperature parameters of the scalar field DM, PI RD

2n—1
npMmF1 X Tqy



Phase-in condition

Phase-in condition:

Scalar field

Q .
domination DM,PI  phase —in

QDM,FI ~ freeze — in

9
——1-n

o m=2n4l—3 A1 s —(n+1)/2 [ VAV [\

r~Tgy TprAV 2 g, (MPII‘ + 8_7r)

|
|
|
I Vacuum
I domination

Po T(TRH,TPT,AV,P,W, ’I’L) > 1 with: r =

Energy densities

S
S
N
S

Reheating
DM freeze-in

I
0! 5 ~— i Parameters of the problem:
Olg -~ ase-in |
|5 //6\\I\Ph0 | Try : Reheating temperature
+ |
| TpT : Phase transition temperature
aRH avD apt aRrRD
Scale factor AV . Potential energy/ latent heat
Qo QDM PI I' : Decay rate of the scalar field
J J w : Equation of state parameter
Defermined by Determined by n : Dimensions of operator (-4)
reheating temperature parameters of the scalar field
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Stage IlI: scalar field domination

Energy densities

Reheating
DM freeze-in

QL
=
an

N
g
N
£

Highly inhomogeneous scalar field contfigurations
after percolation
— Equation of state non-trivial

w#07

part | of this talk

avD apT GRD Scale factor
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Phase-in condition : results

More supercooling

&vp = Tru/Tvp

Higher reheating temperature

fr1 = Qom.pr/ DM tot

0.0

48



Phase-in condition : results

matter dom. modified cosmology

w=0n=1 w=02n=1
21 20
— ILIRL —_— 1010
— 1.0} — 1.1
— i1 — i1
15{ — =00l 154 = 1 =001
(.06 = (LN
— NumeTIcal PhOSe\- m— Mumerical
=== Approx. analviical //) === Appros. analviical PhQS@ ; -_I_h
.‘_. i ] LH: FTIE i o !-_. LN REER, i [ L]} \//7 WI :
vz 101 /))//')O w10 %o;/f.)
o ol (0
Dim 5 operator 9, ® T :
P v ¢pr = =2 (amount of supercooling)
. . Tpr
[ phase—in dominates [
e e = = ] _— - Try
1 frecze—in dominates : { ﬁ EVD = _T (hlgh/lOW rehec’rlng ’remp)
l 0 1 15 20 | B 1) 15 20 VD
&vp §vp T

w=0n=2

"= H{apn) (speed of the decay)

2

wr 104

Phase-in is easier to achieve

1000
1.1)

Dim 6 operator 10.0

— =0 01 when the scalar tield decays
— 0.0 (1K1}

51 — = 0001 0.001 instantaneously.
— TR MNumserical

= Approx. analviical = Approx. analvtical

l O 1 15 2 1 o ] 15 200

{vp §vp
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Conclusions

(Part i)

= Phase-in is feasible in many scenarios. In this case, the DM re

mostly sensitive to the temperature of the radiation atter the
to the reheating temperature.

ic density becomes

PT and not as much

= While the reheating temperature is challenging to determine from cosmological

data, the temperature of the thermal bath after a strong cosmological Irst order

PT is more “accessible” through the expected gravitational waves background:

fpeak ¢ TRD
\j P€a K_/

= Since, DM production would happen at ditfferent times in the evolution, the later

produced DM could contribute via a WDM component

(more details in [2504.10593])
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COSMOLOGICAL FIRST-ORDER PHASE
TRANSITIONS IN A NVUTSHELL

IT ALL STARTS IN THE
SYMMETRIC VACVUM ...

DVE TO
_VAcuum
\PRESSURE THE
" BUBBLES
EXPAND AND
~ACCELERATE

THE TEMPERATVRE OF THE PLASMA
DROPS, UNTIL THE SYMMETRIC STATE
BECOMES METASTABLE AND BUBEBLES
OF THE TRVE VACUUM NUCLEATE

SINCE THE EXPANSION
TAKES PLACE IN PLASMA.,
THE BUBBLES ARE
.SUBJECT TO FRICTION

. EFFECTS.

THE DYNAMICS AND’
VELOCITY OF THE BUBBLE
WALL ARE DETERMINED BY

THE GALANCE BETWEEN °
- VACUUM AND PLASMA
PRESSVURES.

S
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Some examples

n+1

r~Tpg H Tpp AV 2 g

*

Phase-in condition

2

Mp I

1——1—?7,
(n+1>/z(¢A—v N 8%) o with =

For:nmn=1and w =0 (i.e Dim 5 operator and assuming matter domination during the decay).
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More Vaccuum Energy
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Faster Decay
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Phase-in condition

Parameters of the problem:

| | |
0 | | |
oy | | | ® ogo A
.'2: I Vchum I SCO'GF .Fleld I Phase_ln COndl'hOn.
2 Py | domination i domination i -
% ' ' . DM,PI phase — in
Eg I I T(TRH, TPT, AV, F, W, n) > 1 with: r = Q R ——
= . | | DM, FI )
| |
)% ! ———1-n
"R I | . . n+1 . 1)/2 14w
D)y | | ~ 2n+1 3 5 (n+1)/ VAV 3
| i re~Tgy TprAV 9« ol T\ Br
| |
|
|
|
|
|
|
|
|
|

Reheating
DM freeze-in
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+ l/ I AV : Potential energy/ latent heat
I' : Decay rate of the scalar field
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: Equation of state parameter
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1 : Dimensions of operator (-4)
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