MATS

Precision <u>Measurements</u> of Very-Short Lived Nuclei Using an <u>Advances Trapping System</u> for Highly-Charged lons

Ari Jokinen for the MATS Collaboration

Absolute mass:
$$B({}^{A}_{Z}X_{N}) = Zm_{H}c^{2} + Nm_{n}c^{2} - M({}^{A}_{Z}X_{N})c^{2}$$

High-accuracy mass measurements allow one to determine the atomic and nuclear binding energies reflecting all forces in the atom/nucleus

Mass differencies:

First order derivatives

Nucleon (s.p) binding energy (drip-line definition) Nucleon-pair binding energy (S_{2N}) Decay energy (Q_{β}, Q_{α}) Coulomb displacement energy (Isospin multiplets)

Second order derivatives

Pairing energy (odd-even staggering) Shell-gap energy – shell survival for exotic nuclei ? (atomic masses and/or Q-values)

Nuclear structure (10-100 keV)

Global correlations (100 keV) Local correlations (10 keV)

shell structure, spin-orbit interaction, pairing, collectivity
 Drip-line phenomena, halos, isomers (1 keV)

- Nuclear astrophysics (≥ 1 keV)
- Charge symmetry in nuclei (≤ 1 keV)
 Isospin multiplets
 Coulomb energy differences

• Test of Standard Model ($\leq 100 \text{ eV}$) $\delta m/m < 1 \cdot 10^{-9}$

Nuclear β decay. Electroweak interaction

- CVC theory and unitarity of CKM matrix
- Double β decay

NUSTAR @ FAIR

MATS & LaSpec at the LEB

EBIT

AHEAD OF ITS TIME FOR 150 YEARS

Preparation Penning trap

Test ion source

axial (v_z) and magnetron (v)

vclotron (v.)

Strong homogenous B-field

∘ U₀

• Quadrupolar electrostatic potential

 ρ_0

Three eigenmotions

- Axial v_z
- Magnetron v_
- Modified cyclotron v_+

$$\nu_{z} = \frac{1}{2\pi} \sqrt{\frac{U_{0}}{d^{2}} \frac{q}{m}}$$

$$\nu_{\pm} = \frac{1}{2} \left(\nu_{c} \pm \sqrt{\nu_{c}^{2} - 2\nu_{z}^{2}} \right)$$

$$A=100, q=1, B=7 T$$

$$\cdot \mathbf{f}_{+} \approx 1 \text{ MHz}$$

$$\cdot \mathbf{f}_{-} \approx 1 \text{ kHz}$$

$$\cdot \mathbf{f}_{z} \approx 44 \text{ kHz}$$

FREE-CYCLOTRON FREQUENCY:
$$u_c=rac{1}{2\pi}rac{q}{m}B$$

$$\frac{f_{c,ref}}{f_c} = \frac{m - m_e}{m_{ref} - m_e}$$

INVARIANCE THEOREM:

$$\nu_c^2 = \nu_-^2 + \nu_+^2 + \nu_z^2$$

Forgives some misalignments etc.

SIDEBAND FREQUENCY:

$$\nu_c = \nu_- + \nu_+$$

For ideal trap but usually precise enough

Purification & measurement; JYFLTRAP

Frequency v / Hz

C. Weber et al., Eur. Phys. J A 25, 65 (2005)

3-stage rf cooler for MATS and LaSpec

Trap-assisted spectroscopy

- Ion beam/cloud manipulation to improve spectroscopic measurements ("Post-trap spectroscopy")
 - Change of emittance, energy spread or time structure
 - Sample purification (isobaric/isomeric)
 - o Change of the chemical element via decay in the trap
 - Change of the ionic state
- 2. Spectroscopy inside the trap ("in-trap spectroscopy")

Trap-assisted spectroscopy

1. Ion beam/cloud manipulation to improve spectroscopic measurements

JYF

Example: Purification in A=115

Pure samples for unselective instruments

Total absorption spectroscopy PRL 105 (2010) 202501 PRL 115 (2015) 062502 PRL 115 (2015) 102503

Beta-delayed neutron decay Nuclear data (Valencia-JYFL)

Collaboration:

CIEMAT (Madrid) – IFIC (Valencia) – Inst. Nucl. Res. (Debrecen) – LPC (Caen) – PNPI (St. Petersburg) – Univ. Jyväskylä (Jyvaskyla) – UPC (Barcelona) – Univ. Surrey (Surrey)

The Detector Trap (LMU Munich) [α -e coinc.]

Characteristics:

- Replace inner Penning trap electrode by cubic setup of 4 Si-strip detectors
- Use detector bias for trapping potential

- Detector dimensions given by: space in magnet bore, required position resolution, efficiency optimization
- Detectors need to comply with UHV and cryogenic conditions

mock-up:

detector carrier boards between trap electrodes

cryotest:

IN₂ temperature, selection of groove dimensions

Summary

MATS

Design parameters:

Overall efficiency1-5%Maximum resolving power108Accessable half-life10 msRelative mass uncertainty10-9

Status:

TDR published in EPJ A Simulations ongoing

MATS will be an advances trapping system for mass spectrometry, laser spectroscopy, and in-trap decay spectroscopy with highly-charged, short-lived ions.

Eur. Phys. J. Special Topics 183, 1–123 (2010) © EDP Sciences, Springer-Verlag 2010 DOI: 10.1140/epjst/e2010-01231-2

THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS

MATS
4

Review

MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR

D. Rodríguez^{1,a}, K. Blaum^{2,b}, W. Nörtershäuser^{3,c}, M. Ahammed⁴, A. Algora⁵, G. Audi⁶, J. Äystö⁷, D. Beck⁸, M. Bender⁹, J. Billowes¹⁰, M. Block⁸, C. Böhm², G. Bollen¹¹, M. Brodeur¹². T. Brunner¹², B.A. Bushaw¹³, R.B. Cakirli², P. Campbell¹⁰, D. Cano-Ott¹⁴, G. Cortés¹⁵. J.R. Crespo López-Urrutia², P. Das⁴, A. Dax¹⁶, A. De¹⁷, P. Delheij¹², T. Dickel¹⁸, J. Dilling¹², K. Eberhardt³, S. Eliseev², S. Ettenauer¹², K.T. Flanagan¹⁰, R. Ferrer¹¹, J.-E. García-Ramos¹⁹, E. Gartzke²⁰, H. Geissel^{8,18}, S. George¹¹, C. Geppert³, M.B. Gómez-Hornillos¹⁵, Y. Gusev²¹, D. Habs²⁰, P.-H. Heenen²², S. Heinz⁸, F. Herfurth⁸, A. Herlert¹⁶, M. Hobein²⁴, G. Huber²⁵, M. Huyse²⁶, C. Jesch¹⁸ A. Jokinen⁷, O. Kester¹¹, J. Ketelaer², V. Kolhinen⁷, I. Koudriavtsev²⁶, M. Kowalska², J. Krämer³, S. Kreim², A. Krieger³, T. Kühl⁸, A.M. Lallena¹, A. Lapierre¹², F. Le Blanc²⁷, Y.A. Litvinov^{2,8}, D. Lunnev⁶, T. Martínez¹⁴, G. Marx²³ M. Matos²⁸, E. Minaya-Ramirez⁸, I. Moore⁷, S. Nagy², S. Naimi⁶, D. Neidherr², D. Nesterenko²¹, G. Neyens²⁶, Y.N. Novikov²¹, M. Petrick¹⁸, W.R. Plaß^{8,18}, A. Popov²¹, W. Quint⁸, A. Ray⁴, P.-G. Reinhard²⁹, J. Repp², C. Roux², B. Rubio⁵, R. Sánchez³, B. Schabinger², C. Scheidenberger^{8,18}, D. Schneider³⁰, R. Schuch²⁴, S. Schwarz¹⁰ L. Schweikhard²³, M. Seliverstov²¹, A. Solders²⁴, M. Suhonen²⁴, J. Szerypo²⁰, J.L. Taín⁵, P.G. Thirolf²⁰, J. Ullrich², P. Van Duppen²⁶, A. Vasiliev²¹, G. Vorobjev²¹, C. Weber²⁰, K. Wendt²⁵, M. Winkler⁸, D. Yordanov¹⁶, and F. Ziegler²³ ¹Departamento de Física Atómica Molecular y Nuclear, University of Granada, 18071 Granada, Spain ²Max-Planck-Institute for Nuclear Physics, 69029 Heidelberg, Germany ³Institut für Kernchemie, Johannes Gutenberg-Universität, 55099 Mainz, Germany ⁴Variable Energy Cyclotron Centre, 1/AF, Kolkata, Bidhanagar, India ⁵IFIC-CSIC University of Valencia, 46071 Valencia, Spain ⁶CSNSM-IN2P3, CNRS, 91405 Orsay, France ⁷Department of Physics, PO Box 35, 40014 University of Jyväskylä, Jyväskylä, Finland ⁸GSI, Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany ⁹CENBG/IN2P3, Bordeaux-Gradignan, France ¹⁰Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK ¹¹Michigan State University, NSCL, US-MI 48824-1321, East Lansing, USA

¹²TRIUMF, CA-BC V6T 2A3, Vancouver, Canada

¹³Pacific Northwest National Lab, PNNL, Richland, WA 99352, USA

¹⁴CIEMAT, 28040 Madrid, Spain

¹⁵UPC, 08034 Barcelona, Spain

¹⁶CERN, 1211 Geneva 23, Switzerland

¹⁷Raniganj Girls' College, Raniganj, West Bengal, India

¹⁸II. Institute of Physics, Justus-Liebig University, 35390 Gießen, Germany

¹⁹Departamento de Física Aplicada, University of Huelva, 21071 Huelva, Spain

²⁰Department of Physics, Ludwig-Maximilians University München, 85748 Garching, Germany ²¹St. Petersburg Nuclear Physics Institute, 188359 Gatchina and St. Petersburg State University, 198904 St. Petersburg, Russia

²²PNTPM, CP229, Université Libre de Bruxelles, 1050 Brussels, Belgium

^ae-mail: danielrodriguez@ugr.es

^bSpokesperson MATS collaboration.

^cSpokesperson LaSpec collaboration.