MONSTER and BELEN

Beta delayed neutron detectors at DESPEC

Beta delayed neutrons

- Far from stability energy window opens up for beta delayed neutron emission (β-1n, β-2n, ...)
- P_n values important for the r-process final distribution, control of advanced reactors
- Information about unbound states via neutron energy measurement
- **β**-strength function $S_{\beta}(E)$ far from stability

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Neutron detectors at DESPEC

- GOAL: To measure neutron emission probabilities and energies for neutron rich isotopes with relevance to basic nuclear physics, nuclear astrophysics and nuclear technologies.
- High production: TOF spectrometer MONSTER (in combination with a dedicated gamma ray setup)
- Low production, P_n values: 4π neutron counter BELEN

MONSTER

- Modular Neutron Time of Flight Spectrometer
- Array of 100 scintillator cells
- Different geometries possible
- Gamma-neutron separation from pulse shape
- Cross talk minimized; β-2n detection possible
- Possible to couple with other detector arrays (gamma detectors)
- Part of the array can be used as a detector itself

Neutron Time of Flight

- Start from beta decay signal from AIDA
- Stop signal from one of MONSTER detector cells
- Relative energy resolution depends on timing resolution of both detectors, length of the neutron flight path and neutron energy
- Design values 2-4 m flight path, 1.5 ns timing resolution ΔE/E < 10%

Detector cell

- Liquid scintillator
 - BC501A/EJ301
 - Diameter 20 cm
 - Thickness 5 cm
- Hamamatsu R4144
 PMT 5"
- PMMA light guide

Pulse shape analysis

26/11/2015

MONSTER Gantt chart

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

26/11/2015

BELEN

- High-efficiency neutron counter
- *P*_n value
 determination
- AIDA 8x8cm² inside the central bore

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

³He proportional counter tubes

- Based on reaction
 ³He + n →
 - ¹H + ³H + 765 keV
- No information on neutron energy
- Cross section increases as energy decreases → moderator
- Not sensitive to gammarays

26/11/2015

Evolution of BELEN

- BELEN-20A, 27%; JYFLTRAP 2009
- BELEN-20B, 35%; JYFLTRAP 2010
- BELEN-30, 40%; FRS@GSI 2011
- BELEN-48, 45% (61%); JYFLTRAP 2014
- BRIKEN-174, 66% (2016)

26/11/2015

BELEN-48 for 1- and 2n emission

DTAS

- This is not a neutron detector!
- Decay Total Absorption Spectrometer
- Pandemonium effect
- Instead of single discrete gamma-rays record the energy of the full gamma cascade at once
- Extract beta decay intensity to exited levels, β -strength function $S_{\beta}(E)$ below S_{n}

Nucl. Instrum. and Meth. Phys. Res. A803(2015)36-46

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

DTAS at JYFLTRAP

- 16 (+2) NaI(TI) modules
- 5" PMT (50% light collection)
- Commissioning at JYFL (02-03/2014)
- PHASE 0 experiments for NUSTAR

Acknowledgements

- D. Cano-Ott, CIEMAT
- J.-L. Tain, A. Algora, CSIC-Universidad Valencia
- T. Davinson, UoEdinburgh
- Z. Podolyak, UoSurrey
- I. Moore, H. Penttilä, JYFL

- References:
 - BELEN TDR
 - MONSTER TDR
 - DTAS: Nucl. Instrum. and Meth. Phys. Res. A803(2015)36–46

