

Kati Lassila-Perini CMS Collaboration

Helsinki Institute of Physics

Outline:

- Why electrons?
- Level 1 selection
- Higher Level Trigger selection
- Complete online selection for low luminosity

pp collisions? get electrons in $14 \overline{\text{TeV}}$ Where do we

• Electrons from the primary vertex:

• Electrons from a displaced vertex:

electrons? the see to want We **00** Why

- leptonic decays of the Higgs boson and supersymmetric particles
- leptonic tagging of hadronic decay modes
- calibration.

Main SM Higgs discovery channels

Parameter space coverage in MSSM

		LHC running)			ron/photon)				acker)	At level 1, the rate single e.m. $m^{2/s}$ At level 1, the rate is completely dominated by fake electrons, e.g. jets with a leading, en- 40 45 $40 45$ 40 $40 45$ 40 40 40 40 40 40 40 40	K. Lassila-Perini 31.5.02
ction and selection in CMS Higher Level Trigger	Level 1 triggers	nosity (2.10 ³³ cm ⁻² s ⁻¹ first years of the L 50 kHz	factor 3: $50/3 \approx 16 \text{ kHz}$	trigger groups 4 kHz each:	ectromagnetic (single and double electro	(single and double)	${ m ts}~(1,~2,~3~{ m or}~4~{ m jets},~{ m missing}~{ m E_T})$	ixed $(\tau + e, jet + e, e + \mu, etc)$	agnetic trigger (only calorimeter, no trac	Sliding window centered on all ECAL/HCAL trigger tower pairs ECAL/HCAL trigger tower pairs ECAL/HCAL trigger tower pairs Max E, of 4 Nax Max E, of 4 Nax Max E, of 4 Hit + Max E, > Threshold 10 ⁻⁰⁰⁰² 25 ⁻⁰⁰⁰³⁵ Level-1 E ₁ (
Electron reconstru		• Low lumi maximum	ightarrow safety	\rightarrow four	·el	π .	·je	•	• Electrom		

d

Optimizing the Level 1 trigger thresholds

- Take trigger threshold values from the 4 kHz contour
- scan from (high single, low double) to (low single, high double)

and see what happens to the signal efficiency.

- High efficiency for $W \to e\nu$ is reached at low single threshold values.
- The efficiency for $Z \rightarrow e^+e^-$ remains constant down to fairly low single threshold values.
- \Rightarrow Choose the operation point
- -27.7 GeV for the single
- 16.6 GeV for the double

• The efficiency vs jet rejection $\stackrel{+}{\mathbb{C}}$ $\stackrel{+}{\mathbb{C}}$ is varying the pixel match source area for t^{1-} .

Pixel match efficiency

Electron reconstruction and selection in CMS Higher Level Trigger

Choose

 $\Delta \phi = 0.04, \ \Delta z = \pm 30 \ \mathrm{cm}$ for the innermost hit,

 $\Delta \phi = \pm 0.001, \, \Delta z = \pm 0.05 \, \, \mathrm{cm}$

for the second hit.

- Double photon stream $(\mathbf{H} \rightarrow \gamma \gamma)$
- apply the H $\rightarrow \gamma \gamma$ offline selection cuts of 40, 25 GeV.

• Single photon stream

To reduce the rate, set the threshold at $E_T > 80$ GeV, further reduction obtained by isolation.

electrons for 3 Level algorithms, trigger level Higher • Apply E/p (E from the calorimeter, p from the reconstructed track) for the remaining electron candidates

require E/p < 1.2 in the barrel, < 1.7 in the endcaps. 1

		Rejection	Rate: 3.9kHz	5	15	9	9
ligher Level Trigger	ectron selection	Efficiency	$egin{array}{l} 95\% & (loss due to the isolation \ requirement and gaps) \ imes \ 95\% & (at the threshold) \end{array}$	95% (at the threshold)	$egin{array}{c c c c c c c c c c c c c c c c c c c $	85%	82%
Electron reconstruction and selection in CMS H			• Level 1 - Single: $E_T > 27.7$ GeV - Double: $E_T > 16.6$ GeV	• Level 2 – Reapply the thresholds	• Level 2.5 – Pixel match	• Level 3 Barrel $-\mathbf{E/p} < 1.2, \Delta\eta < 0.004$	• Level 3 Endcap – $E/p < 1.7$, $H/E < 0.003$

Online selection for low luminosity

• Start from 3.9 kHz Level 1 event rate:

Total 27 Hz		1 Hz	3 Hz	5 Hz	36 Hz
$\begin{array}{c} {\bf Background} \\ \pi^{\pm} \ \pi^{0} \ {\bf overlap: \ 4Hz} \\ \pi^{0} \ {\bf conversions: \ 5Hz} \end{array}$	$b/c \rightarrow e$: 8.5 Hz	0 ≈	3 Hz	5 Hz	
$W \rightarrow e\nu: \ 9.7 \ \mathrm{Hz}$		$Z \rightarrow ee: 1 \mathbf{Hz}$	0 22	0 ≈	
Single e		Double e	Single γ	Double γ	

- Tools not used for this selection:
- track isolation
- $-\pi^0$ rejection with the e.m. cluster shape
- analysis of conversion e^+e^- tracks for π^0 's and signal photons.

Electron reconstruction and selection in CMS Higher Level Trigger
• The full online selection chain for the initial low luminosity has been demon- strated
- the electron trigger rate can be reduced to a required level with existing tools
– the electron efficiency is lower than we would like to (all HLT \approx 70%).
• We are developing the tools to complete the online selection for high luminosity (event rate $5 \times \text{ low lumi}$).
• Major milestones:
– DAQ Technical Design Report in the end of the year
– Physics Technical Design Report in 2004.