

The CMS Level 1 Trigger Algorithms & Performance

Jim Brooke, University of Bristol

Level-1 Trigger

- Some figures...
 - pp interaction rate : 10⁹ Hz
 - Crossing rate : 40 MHz
 - L1 accept rate : < 100 kHz
 - L1 latency : < 3 μs
- Sub-detectors :
 - EM calorimeter
 - Hadronic calorimeter
 - Muon chambers

- Calorimeter Trigger
 - E/gamma
 - Jet (inc Tau)
 - Total/Missing E_t
 - Hadronic E_t
- Muon Trigger
 - Muons ...
- Trigger Tables
 - 2x10³³ cm⁻²s⁻¹
 - 10³⁴ cm⁻²s⁻¹

L1 Calorimeter Trigger

L1 Trigger Towers

1 tower = 5 x 5 crystals

- 28 towers in η , 72 towers in ϕ
- Forward calorimeters have coarser granularity

Electron/Photon Algorithm

- Neighbours quiet
- FG & H/E veto on neighbours

Jet Algorithm

Jim Brooke, University of Bristol

Tau Algorithm

- Improve efficiency for hadronic τ decays
- Regional τ tag
 - hit towers not in one of 8 patterns
- Jet τ tag
 - all 9 regions conform

Full details in talk by A. Nikitenko !

Jim Brooke, University of Bristol

Muon Endcap

- 6 layers radial strips / station
- 6 layers tangential wires / station
- 540 CSCs
- RPCs also used

Jim Brooke, University of Bristol

L1 Muon Trigger

Drift Tube Local Trigger

Jim Brooke, University of Bristol

Barrel Track Finder

Extrapolate track segments to outer stations (6 pairs)

Find all tracks with ≥ 2 segments

Validate tracks by requiring all possible matches e.g.

(1-2, 2-3, 1-3)

(1-2, 1-3, 1-4, 2-3, 2-4, 4-3)

Assign quality based on # segments

CSC Local Trigger

Radial cathode strips measure ϕ coordinate & bending angle

(+ vertex constraint $\rightarrow p_t$)

Anode wires perp. to strips - measure η Also used in trigger for BX ID

Endcap Track Finder

L1 Muon Trigger

Drift Tubes Cathode Strip Chambers

Resistive Plate Chambers

Jim Brooke, University of Bristol

RPC Trigger

- Algorithm now extended to include all 6 RPC layers
 - Reduces fake rate due to noise...

L1 Global Trigger

- 128 trigger algorithms
- Including cuts on
 - E_t (or p_t)
 - η, φ, Δη, Δφ
- e.g.
 - 2 back to back electrons

• e.g.

• ee +
$$E_t^{miss}$$
 OR $\mu\mu$ + E_t^{miss}

Jim Brooke, University of Bristol

Electron / photon

CMS IN 2002/019 – P. Chumney, S. Dasu, W. Smith

Jim Brooke, University of Bristol

Tau jets

- Tau algo provides improved τ efficiency at lower E_t
- Full efficiency requires jet trigger as well
- Turn-on curve not really meaningful...

See talk by

A. Nikitenko !

S. Dasu, W. Smith Chumney, **CMS IN 2002/019**

Missing E_t

Output to Global Trigger includes azimuthal angle

Total E_t & 'H_t'

Muon Trigger Turn-on

10 GeV/c

20 GeV/c

30 GeV/c

40 GeV/c

50 GeV/c

60 GeV/c

• 10 GeV/c

20 GeV/c

30 GeV/c

50 GeV/c

60 GeV/c

7 40 GeV/c

60

60

Jim Brooke, University of Bristol

GMT Efficiency

Jim Brooke, University of Bristol

GMT Efficiency

Jim Brooke, University of Bristol

Muon Rate

Rate from whole detector, $|\eta| < 2.4$

Jim Brooke, University of Bristol

Calo Triggers

2x10³³ cm⁻²s⁻¹ luminosity

Trigger	Threshold (GeV)	95% Eff. (GeV)	Ind. Rate (kHz)	Cum. Rate (kHz)	
е	21	27	3.9	3.9	
ee	15	19	0.2	4.0	
τ	85	-	4.9	8.8	
ττ	75	-	0.7	8.8	
j	110	134	3.2	10.4	
jj	90	113	2.1	10.6	
jjj	60	71	0.8	10.8	
jjjj	50	53	0.3	10.9	
e · jet	10 & 100	15 & 125	0.4	11.0	
$e\cdot\tau$	10 & 75	-	0.8	11.2	
E ^{miss} t	140	200	0.01	11.2	
$e \cdot E_t^{\text{ miss}}$	10 & 75	125 & 140	0.4	11.5	
$j \cdot E_t^{\text{ miss}}$	60 & 90	80 & 150	0.7	11.7	
Total E _t	600	1200	0.04	11.7	
H _t	400	470	0.6	11.8	
e(NI)	45	51	0.2	11.8	
ee(NI)	25	37	0.3	11.8	
Total Rate	11.8				

CMS IN 2002/019 – P. Chumney, S. Dasu, W. Smith

Jim Brooke University of Bristol

Signal Efficiencies - 2x10³³

Channel	Eff. (%)	Trigger efficiencies by type (individual) cumulative					
$W \rightarrow ev$	69	e (69) 69					
$\mathbf{t} \rightarrow \mathbf{eX}$	92	e (81) 81	e · τ (62) 85	τ (59) 89	e · j (54) 92		
$Z \rightarrow ee$	94	e (93) 93	ee (76) 94				
$H_{115} \rightarrow \gamma\gamma$	99	e (99) 99	ee (82) 99				
$H_{150} \rightarrow WW \rightarrow evX$	86	e (76) 76	e · τ (43) 80	τ (38) 82	e · j (39) 84	j (39) 86	
${\rm H_{135}} \rightarrow \tau\tau \rightarrow ej$	83	e (67) 67	e · τ (46) 76	e · j (46) 80	τ (41) 84	j (44) 83	
${\sf H^{\pm}}_{200} \rightarrow$	99	τ (86) 86	j (94) 99	j · mE _t (60) 99			
${\rm H_{200}} \rightarrow \tau\tau \rightarrow jj$	87	τ (80) 80	ττ (50) 82 j (54) 87		jj (40) 87		
${\rm H}_{\rm 500} \rightarrow \tau\tau \rightarrow jj$	99	τ (94) 94	ττ (64) 94	j (98) 99	jj (89) 99		
$t \rightarrow jets$	70	H _t (39) 39	jjjj (34) 48	jjj (47) 57	jj (40) 63	j (50) 70	
mSUGRA	99	j (99) 99					
$H_{120} \rightarrow bb$	52	jjj (23) 23	j (39) 45	τ (29) 52	jj (29) 52		
$H_{120} \rightarrow invisible$	46	j · mE _t (39) 39	j (30) 43	τ (15) 46			

CMS IN 2002/019 – P. Chumney, S. Dasu, W. Smith

Calo Triggers

10³⁴ cm⁻²s⁻¹ luminosity

Trigger	Threshol d (GeV)	95% Eff. (GeV)	Ind. Rate (kHz)	Cum. Rate (kHz)	
е	30	35	7.2	7.2	
ee	15	20	0.6	7.5	
τ	150		1.3	8.7	
ττ	80		2.5	10.9	
j	250	285	0.4	11.2	
jj	200	225	0.4	11.3	
jjj	100	125	0.7	11.6	
jjjj	80	105	0.2	11.6	
e · jet	15 & 150	20 & 165	0.2	11.8	
$e\cdot\tau$	15 & 90		1.4	12.2	
E ^{miss}	150		0.005	12.2	
$e \cdot E_t^{\text{ miss}}$	15 & 100		0.005	12.2	
$j \cdot E_t^{\text{ miss}}$	80 & 100		0.1	12.3	
Total E _t	1000		0.03	12.3	
e(NI)	55	60	0.7	12.8	
ee(NI)	25	30	0.2	12.9	
Total Rate	12.9				

CMS Note 2000/074 - P. Chumney, S. Dasu, W. Smith

Jim Brooke University of Bristol

10³⁴ cm⁻²s⁻¹ luminosity

Trigger	Threshold (GeV)	Indiv. Rate (kHz)	Cumul. Rate (kHz)
μ	25	8.1	8.1
μμ	5, 8	2.8	10.4
μ·e	5, 22	1.7	11.9
$\mu \cdot \tau$	5, 70	0.4	12.0
μ·j	5, 80	0.8	12.3
$\mu \cdot \text{Total } E_t$	5, 400	0.6	12.6
$\mu \cdot E_t^{\text{miss}}$	5, 60	0.6	12.9
Total Rate			12.9

Overlap with pure calorimeter triggers deducted from cumulative rate figures

CMS Note 2000/061 – M. Fierro, A. Jeitler, M. Konecki

Signal Efficiencies - 10³⁴

CMS Note 2000/074 – P. Chumney, S. Dasu, W. Smith

Channel	Total Eff. (%)	Triggers used				
$H_{110} \rightarrow \gamma \gamma$	99	e	ee			
$H_{135} \to \tau \tau \to ej$	72	e	ч	j	$e\cdot\tau$	e · j
$H_{200} \to \tau\tau \to ej$	74	e	ч	j	$e\cdot\tau$	e · j
$H_{200} \to \tau \tau \to jj$	60	Υ	ττ	j	jj	
$H_{500} \to \tau \tau \to jj$	86	τ	ττ	j	jj	
$H_{120} \rightarrow \text{invisible}$	56	$j\cdotmE_t$	mE _t	j		

NB. Total efficiency here is calculated with respect to 'offline' cuts on generator level quantities