Workshop on B/tau Physics at LHC Helsinki, May 30 - June 1, 2002

Review of Higgs searches in CMS

R. Kinnunen

Helsinki Institute of Physics

Physics meeting, May 16, 2002

Progress in H, **A** -> ττ -> **2** τ **jets**

with full simulation

R. Kinnunen

 τ jet selection and QCD rejection in the tracker τ tagging with impact parameter in H -> $\tau\tau$ -> 2 τ -jets Higgs mass reconstruction

H, A -> $\tau\tau$ -> 2 τ -jets are expected to enlarge the H_{SUSY} discovery reach towards large masses at high tan β

Fylly hadronic channel:

an efficient hadronic τ trigger needed

QCD background has to be kept under control

We expect ~ 10^{12} QCD jet events for E_t^{j1} , $E_t^{j2} > 60$ GeV for 60 fb⁻¹ rejection $\ge 10^3$ per jet needed

τ jet identification in the tracker

based on the low multiplicity, 1 (~76%) or 3 (~24%) prongs, narrowness and, isolation of the τ jet

Hard track cuts:

1 track, $p_t{>}$ 40 GeV within $\Delta R{<}$ 0.1 around the calo jet axis

2 other tracks or no tracks with $p_t\!>\!1$ GeV within $\Delta R\!<0.03$ around the hardest track

Isolation: no track, $p_t{>}~1~GeV$, within $0.03 < \Delta R < 0.4$ around the hardest track

QCD jet rejection with isolation

Selection of the isolation and signal cone sizes:

Level3 (Pixel) tau trigger:

using signal cone 0.07 leads to constant efficiency in $\ensuremath{m_{H}}$

May not be possible in off-line:

degrates the isolation power against QCD jets

High track reconstruction efficiency needed

 $\gtrsim 100~per$ jet for $E_t^{\;jet} > 60\;GeV$

Rejection factor against QCD jets with isolation and hard track cuts on hadronic τ canditate

Full simulation with ORCA

Version 5_4_1

Tracker digidization for QCD samples in the p_t bins:

50 - 80 GeV 80 - 120 GeV 120 - 170 GeV

Jet reconstruction in calorimetry: $\Delta R = 0.5$ Select two highest E_t jets

Reconstruction of full tracker in ORCA_5_4_1 very slow (no regional tracking) ->

we use pixel lines inside jets as tracker seeds

Need large statistics for QCD, expected rejection ~ 1000 per jet!

QCD jet rejection with full simulation ORCA_5_4_1

Isolation in tracker

for QCD jet 120 GeV $< p_t^{gen} < 170 \text{ GeV}$ isolation efficiency Isolation >0 tracks in signal cone 0 tracks in isolation cone -2 10 ■ MC tracks, p_t>1 GeV ■ rec tracks, p_t>1 GeV pixel lines used as a seeds -3 10 80 100 120 140 160 180 200 40 60 E, of MC Jet, GeV

Isolation + hard track cuts

Selection efficiency for signal, $m_H = 500 \text{ GeV}$

Efficiencies per event

	ORCA	CMSJET
isolation	54.5 %	74.6%
isolation + 1 track, pt> 40 GeV	18.4 %	17.4 %
isolation+ hard track + ECAL isolation	13.5 %	
isolation+ hard track + ip-cut		
isol.+ hard track + ECAL isol. + ip-cut	9.9 %	
isol.+ hard track + ECAL isol. + ip-cut $+Q_1Q_2 < 0$	9.4 %	

τ tagging with impact parameter

Track ip-measurements in jet1 and jet2 can be combined into one variable

 $\sigma_{12} = \forall \sigma_{ip}(\tau_1)^2 + \sigma_{ip}(\tau_2)^2$

where $\sigma_{ip}(\tau_1)$ and $\sigma_{ip}(\tau_1)$ are the impact parameter significancies, $ip/\Delta(ip)$, for tracks from τ_1 and τ_2

 σ_{12} with leading track in jet

Full CMS simulation:

QCD rejection of 5 - 10 is expected from τ tagging

Higgs mass reconstruction in H -> $\tau\tau$, τ -> τ jet + ν

from the visible τ momenta (τ jets) and E_t^{miss}

Assumption: $v_1 \parallel \tau_1$ and $v_2 \parallel \tau_2$, $\Delta \phi(\tau_1, \tau_2) \neq 180^\circ$

Reconstructed Higgs mass for A,H -> \tau\tau -> 2 \tau jets + 1 b jet + X

Event selection cuts:

Higgs mass resolution in H -> $\tau\tau$ as a function of m_H

Mass resolution dominated by E_t^{miss} measurement

-> resolution best for H -> $\tau\tau$ -> 2 τ -jets

with smallest fraction of H energy in neutrinos

Signal superimposed on the total background for 60 fb⁻¹ Preliminary

Conclusions

Work in progress for ORCA simulation of τ jet identification in the tracker

ORCA version 6 with regional tracking needed for conclusions

If QCD rejection confirmed by ORCA the reach may be $tan\beta\gtrsim 15 \ at \ m_A=200 \ GeV$ $tan\beta\gtrsim 20 \ at \ m_A=500 \ GeV$