Modifications of Gravity vs. Dark Matter/Energy

Daniel Grumiller

Massachusetts Institute of Technology Marie-Curie Fellowship MC-OIF 021421

Finnish-Japanese Workshop on Particle Cosmology Helsinki, March 2007

글 > 4 글

Outline

Gravity

• Problems with General Relativity

Galactic rotation curves

- Statement of the problem
- Dark matter?
- Alternatives

3 General relativistic description

- Motivation
- Axially symmetric stationary solutions
- Toy model for a galaxy

Outline

Gravity

- Problems with General Relativity
- 2 Galactic rotation curves
 - Statement of the problem
 - Dark matter?
 - Alternatives
- 3 General relativistic description
 - Motivation
 - Axially symmetric stationary solutions
 - Toy model for a galaxy

"Standard folklore"

GR = beautiful and experimentally established only "a few details" are missing

- No comprehensive theory of quantum gravity
- Several experimental "anomalies"

"Standard folklore"

GR = beautiful and experimentally established only "a few details" are missing

- No comprehensive theory of quantum gravity
- Several experimental "anomalies"

"Standard folklore"

GR = beautiful and experimentally established only "a few details" are missing

- No comprehensive theory of quantum gravity
- Several experimental "anomalies"

- Dark Energy
- Dark Matter
- Pioneer anomaly
- other anomalies?

Note intriguing coincidences:

Dark Energy

- Dark Matter
- Pioneer anomaly
- other anomalies?

Note intriguing coincidences:

- Dark Energy
- Dark Matter
- Pioneer anomaly
- other anomalies?

Note intriguing coincidences:

- Dark Energy
- Dark Matter
- Pioneer anomaly
- other anomalies?

Note intriguing coincidences:

- Dark Energy
- Dark Matter
- Pioneer anomaly
- other anomalies?

Note intriguing coincidences:

Outline

1 Gravit

• Problems with General Relativity

Galactic rotation curves

- Statement of the problem
- Dark matter?
- Alternatives

3 General relativistic description

- Motivation
- Axially symmetric stationary solutions
- Toy model for a galaxy

Some experimental data of galactic rotation curves

Rotation curve of our Galaxy

E ► < E</p>

(or Kepler...)

Sketch of experimental data

A typical non-Keplerian galactic rotation curve

- Curve A: Newtonian prediction
- Curve B: Observed velocity profile

(E)

Newtonian calculation

- Regime with $\rho = \text{const.: } \mathbf{v} \propto \mathbf{r}$
- Regime with $M = \text{const.: } v \propto 1/\sqrt{r}$

Conclusion

Flat rotation curves not described well by Newton

・ロト ・回ト ・ヨト ・ヨト

Outline

Gravit

Problems with General Relativity

Galactic rotation curves

- Statement of the problem
- Dark matter?
- Alternatives

3 General relativistic description

- Motivation
- Axially symmetric stationary solutions
- Toy model for a galaxy

- Postulate existence of Dark Matter
- Fit Dark Matter density as to "explain" rotation curves

Note: other hints for Dark Matter, e.g. gravitational lensing!

Exciting prospect for near future

Dark Matter might be discovered next year at LHC!

3 1 4 3

Outline

Gravit

Problems with General Relativity

Galactic rotation curves

- Statement of the problem
- Dark matter?
- Alternatives

General relativistic description

- Motivation
- Axially symmetric stationary solutions
- Toy model for a galaxy

$$\vec{F} = m\vec{a} \cdot \mu(a/a_{\rm MOND})$$

with

•
$$\mu(\mathbf{x}) \rightarrow 1$$
 for $\mathbf{x} \gg 1$

•
$$\mu(\mathbf{x})
ightarrow \mathbf{x}$$
 for $\mathbf{x} \ll \mathbf{1}$

• critical acceleration: $a_{\rm MOND} \approx 10^{-10} m/s^2$

Phenomenologically rather successful, but no deeper theoretical understanding

- Do we have the correct theory of gravity?
- Are we applying it correctly?

Possible answers:

- Regarding 1: e.g. MOND, IR modifications of GR, Yukawa-type corrections, ...
- Regarding 2: Newtonian limit justified?

Consider the second point

Study appropriate General Relativistic (exact) solutions

- Do we have the correct theory of gravity?
- Are we applying it correctly?

Possible answers:

- Regarding 1: e.g. MOND, IR modifications of GR, Yukawa-type corrections, ...
- Regarding 2: Newtonian limit justified?

Consider the second point

Study appropriate General Relativistic (exact) solutions

- Do we have the correct theory of gravity?
- Are we applying it correctly?

Possible answers:

- Regarding 1: e.g. MOND, IR modifications of GR, Yukawa-type corrections, ...
- Regarding 2: Newtonian limit justified?

Consider the second point

Study appropriate General Relativistic (exact) solutions

- Do we have the correct theory of gravity?
- Are we applying it correctly?

Possible answers:

- Regarding 1: e.g. MOND, IR modifications of GR, Yukawa-type corrections, ...
- Regarding 2: Newtonian limit justified?

Consider the second point

Study appropriate General Relativistic (exact) solutions

→ Ξ → → Ξ →

Outline

Gravit

- Problems with General Relativity
- 2 Galactic rotation curves
 - Statement of the problem
 - Dark matter?
 - Alternatives

3 General relativistic description

Motivation

- Axially symmetric stationary solutions
- Toy model for a galaxy

- Locally: can use Newton almost everywhere in galaxy (except for central galactic Black Hole region and near jet axis)
- But: GR is a non-linear theory!
- Not granted that Newton is applicable globally

Thus, use GR instead of Newton!

Ansatz:

- Axial symmetry
- Reflection symmetry
- Stationarity
- Pressurless perfect fluid sources
- Corotating perfect fluid
- Weak field limit

Claim of Cooperstock-Tieu:

GR differs essentially from Newton However, technically incorrect!

(신문) (문)

< 🗇 🕨

Ansatz:

Axial symmetry

- Reflection symmetry
- Stationarity
- Pressurless perfect fluid sources
- Corotating perfect fluid
- Weak field limit

Claim of Cooperstock-Tieu:

GR differs essentially from Newton However, technically incorrect!

・ 同 ト ・ ヨ ト ・ ヨ ト

Ansatz:

- Axial symmetry
- Reflection symmetry
- Stationarity
- Pressurless perfect fluid sources
- Corotating perfect fluid
- Weak field limit

Claim of Cooperstock-Tieu:

GR differs essentially from Newton However, technically incorrect!

(신문) (문)

< 🗇 🕨

Ansatz:

- Axial symmetry
- Reflection symmetry
- Stationarity
- Pressurless perfect fluid sources
- Corotating perfect fluid
- Weak field limit

Claim of Cooperstock-Tieu:

GR differs essentially from Newton However, technically incorrect!

▲御▶ ★ 国▶ ★ 国▶

Ansatz:

- Axial symmetry
- Reflection symmetry
- Stationarity
- Pressurless perfect fluid sources
- Corotating perfect fluid
- Weak field limit

Claim of Cooperstock-Tieu:

GR differs essentially from Newton However, technically incorrect!

★週 ▶ ★ 注 ▶ ★ 注 ▶

Ansatz:

- Axial symmetry
- Reflection symmetry
- Stationarity
- Pressurless perfect fluid sources
- Corotating perfect fluid
- Weak field limit

Claim of Cooperstock-Tieu:

GR differs essentially from Newton However, technically incorrect!

★週 ▶ ★ 注 ▶ ★ 注 ▶

Ansatz:

- Axial symmetry
- Reflection symmetry
- Stationarity
- Pressurless perfect fluid sources
- Corotating perfect fluid
- Weak field limit

Claim of Cooperstock-Tieu:

GR differs essentially from Newton However, technically incorrect!

Outline

Gravit

- Problems with General Relativity
- 2 Galactic rotation curves
 - Statement of the problem
 - Dark matter?
 - Alternatives

3 General relativistic description

- Motivation
- Axially symmetric stationary solutions
- Toy model for a galaxy

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Drop weak field limit, but keep rest:

- Axial symmetry \rightarrow spacelike Killing
- Reflection symmetry (around galactic plane)
- Stationarity \rightarrow timelike Killing $\xi^a = (\partial_t)^a$
- Pressurless perfect fluid sources $\rightarrow T^{ab} = \rho u^a u^b$
- Corotating perfect fluid $\rightarrow u^a = (u^0(r, z), 0, 0, 0)$

Consequently, line element can be brought into adapted form:

$$ds^{2} = -(dt - Nd\phi)^{2} + r^{2}d\phi^{2} + \exp(\nu)(dr^{2} + dz^{2})$$

functions ρ , N, ν depend solely on r, z

伺 とく ヨ とく ヨ と

$$r\nu_z + N_r N_z = 0, \qquad (1)$$

$$2r\nu_r + N_r^2 - N_z^2 = 0, \qquad (2)$$

$$\nu_{rr} + \nu_{zz} + \frac{1}{2r^2} \left(N_r^2 + N_z^2 \right) = 0,$$
(3)

$$N_{rr} - \frac{1}{r}N_r + N_{zz} = 0, \qquad (4)$$

$$\frac{1}{r^2} \left(N_r^2 + N_z^2 \right) = \kappa \rho \mathbf{e}^{\nu} \,. \tag{5}$$

- (4) is a *linear* PDE for *N*!
- For known N (1)-(3) yield ν (integration constant!)
- For known N, ν (5) establishes ρ

$$r\nu_z + N_r N_z = 0, \qquad (1)$$

$$2r\nu_r + N_r^2 - N_z^2 = 0, \qquad (2)$$

$$\nu_{rr} + \nu_{zz} + \frac{1}{2r^2} \left(N_r^2 + N_z^2 \right) = 0,$$
(3)

$$N_{rr} - \frac{1}{r}N_r + N_{zz} = 0, \qquad (4)$$

$$\frac{1}{r^2} \left(N_r^2 + N_z^2 \right) = \kappa \rho \mathbf{e}^{\nu} \,. \tag{5}$$

- (4) is a *linear* PDE for N!
- For known N (1)-(3) yield ν (integration constant!)
- For known N, ν (5) establishes ρ

$$r\nu_z + N_r N_z = 0, \qquad (1)$$

$$2r\nu_r + N_r^2 - N_z^2 = 0, \qquad (2)$$

$$\nu_{rr} + \nu_{zz} + \frac{1}{2r^2} \left(N_r^2 + N_z^2 \right) = 0,$$
(3)

$$N_{rr} - \frac{1}{r}N_r + N_{ZZ} = 0, \qquad (4)$$

$$\frac{1}{r^2} \left(N_r^2 + N_z^2 \right) = \kappa \rho \mathbf{e}^{\nu} \,. \tag{5}$$

- (4) is a *linear* PDE for N!
- For known N (1)-(3) yield ν (integration constant!)
- For known N, ν (5) establishes ρ

$$r\nu_z + N_r N_z = 0, \qquad (1)$$

$$2r\nu_r + N_r^2 - N_z^2 = 0, \qquad (2)$$

$$\nu_{rr} + \nu_{zz} + \frac{1}{2r^2} \left(N_r^2 + N_z^2 \right) = 0,$$
(3)

$$N_{rr} - \frac{1}{r}N_r + N_{zz} = 0, \qquad (4)$$

$$\frac{1}{r^2} \left(N_r^2 + N_z^2 \right) = \kappa \rho \mathbf{e}^{\nu} \,. \tag{5}$$

- (4) is a *linear* PDE for N!
- For known N (1)-(3) yield ν (integration constant!)
- For known N, ν (5) establishes ρ

Physical meaning of N:

$$V(r,z)=\frac{N(r,z)}{r}$$

V is 3-velocity as seen by asymptotic observer at rest with respect to center of galaxy

"Inverse problem":

- Take V as experimental input (rotation curve)
- Calculate mass density ρ
- Compare ρ with experimental data
- Compare with Newtonian prediction for ho

Physical meaning of N:

$$V(r,z)=\frac{N(r,z)}{r}$$

V is 3-velocity as seen by asymptotic observer at rest with respect to center of galaxy "Inverse problem":

- Take V as experimental input (rotation curve)
- Calculate mass density ρ
- Compare ρ with experimental data
- Compare with Newtonian prediction for ρ

・ 同 ト ・ ヨ ト ・ ヨ ト

Boundary conditions and asymptotics

Solution mathematically trivial (separation Ansatz) Physical input:

- Modes bounded for $|z| \to \infty$
- Modes bounded for $r \to \infty$
- No exotic δ -sources in galactic plane!

General solution for r > 0:

$$N(r, z) = r^2 \int_{0}^{\infty} dx C(x) \sum_{\pm} ((z \pm x)^2 + r^2)^{-3/2}$$

Remaining task:

Choose spectral density C(x) appropriately!

・ロト ・ 同ト ・ ヨト ・ ヨト

Boundary conditions and asymptotics

Solution mathematically trivial (separation Ansatz) Physical input:

- Modes bounded for $|z| \to \infty$
- Modes bounded for $r \to \infty$
- No exotic δ -sources in galactic plane!

General solution for r > 0:

$$N(r,z) = r^2 \int_{0}^{\infty} dx C(x) \sum_{\pm} ((z \pm x)^2 + r^2)^{-3/2}$$

Remaining task:

Choose spectral density C(x) appropriately!

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

Gravit

- Problems with General Relativity
- 2 Galactic rotation curves
 - Statement of the problem
 - Dark matter?
 - Alternatives

3 General relativistic description

- Motivation
- Axially symmetric stationary solutions
- Toy model for a galaxy

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Take simple 3-parameter family of C(x):

- Parameter V₀: flat region velocity (about 200km/s)
- Parameter r₀: bulge radius (about 1 kpc)
- Parameter R: choose about 100kpc

With these choices V(r, 0) looks as follows:

Crucial observation:

Solutions (necessarily) singular close to axis r = 0 for $|z| \ge r_0$

Cut out this region and paste there a different solution of GR Solutions are *not* asymptotically flat!

★ E > ★ E

Prediction for mass density

Mass density

int. const.

on large scales:

Integrating ρ over "white" region yields $\approx 10^{11}$ solar masses

→ E > < E</p>

Comparison with Newton

For any given velocity profile V Newton predicts:

$$ho_{
m Newton} \propto rac{V^2 + 2rVV'}{r^2}$$

Ratio of GR/Newton:

$$\frac{\rho}{\rho_{\text{Newton}}} = \tilde{\beta} \left(1 + \frac{r^2 (V')^2}{V^2 + 2rVV'} \right)$$

Assume a spectral density which yields a linear regime $V \propto r$ and a flat regime V = const.

Comparison with Newton

For any given velocity profile V Newton predicts:

$$ho_{
m Newton} \propto rac{V^2 + 2rVV'}{r^2}$$

Ratio of GR/Newton:

$$\frac{\rho}{\rho_{\text{Newton}}} = \tilde{\beta} \left(1 + \frac{r^2 (V')^2}{V^2 + 2rVV'} \right)$$

Assume a spectral density which yields a linear regime $V \propto r$ and a flat regime V = const.

Fix $\tilde{\beta}$ such that

Newton and GR coincide in the linear regime $V \propto r$

• This yields
$$ilde{eta}=$$
 3/4.

• Calculate the ratio in the flat regime V = const.

$$\frac{\rho}{\rho_{\text{Newton}}}\Big|_{\text{flat}} = \tilde{\beta} = \frac{3}{4}$$

Conclusion

Newton predicts 133% of the mass density as compared to GR

ヘロト ヘ回ト ヘヨト ヘヨト

Fix $\tilde{\beta}$ such that

Newton and GR coincide in the linear regime $V \propto r$

• This yields
$$\tilde{\beta} = 3/4$$
.

• Calculate the ratio in the flat regime V = const.

$$\frac{\rho}{\rho_{\text{Newton}}}\Big|_{\text{flat}} = \tilde{\beta} = \frac{3}{4}$$

Newton predicts 133% of the mass density as compared to GR

<ロ> (四) (四) (日) (日) (日)

Fix $\tilde{\beta}$ such that

Newton and GR coincide in the linear regime $V \propto r$

• This yields
$$\tilde{eta} = 3/4$$
.

• Calculate the ratio in the flat regime V = const.

$$\frac{\rho}{\rho_{\text{Newton}}}\Big|_{\text{flat}} = \tilde{\beta} = \frac{3}{4}$$

Conclusion

Newton predicts 133% of the mass density as compared to GR

→ Ξ → → Ξ

Summary

Problem of flat galactic rotation curves

- May be solved by Dark Matter
- GR attempts to avoid Dark Matter have failed
- GR predicts slightly less Dark Matter than Newton
- Outlook:
 - Improve the toy model
 - Perform patching
 - Understand better role of jets and central galactic black holes for global galactic dynamics

Summary

- Problem of flat galactic rotation curves
- May be solved by Dark Matter
- GR attempts to avoid Dark Matter have failed
- GR predicts slightly less Dark Matter than Newton
- Outlook:
 - Improve the toy model
 - Perform patching
 - Understand better role of jets and central galactic black holes for global galactic dynamics

- Problem of flat galactic rotation curves
- May be solved by Dark Matter
- GR attempts to avoid Dark Matter have failed
- GR predicts slightly less Dark Matter than Newton
- Outlook:
 - Improve the toy model
 - Perform patching
 - Understand better role of jets and central galactic black holes for global galactic dynamics

- Problem of flat galactic rotation curves
- May be solved by Dark Matter
- GR attempts to avoid Dark Matter have failed
- GR predicts slightly less Dark Matter than Newton
- Outlook:
 - Improve the toy model
 - Perform patching
 - Understand better role of jets and central galactic black holes for global galactic dynamics

- Problem of flat galactic rotation curves
- May be solved by Dark Matter
- GR attempts to avoid Dark Matter have failed
- GR predicts slightly less Dark Matter than Newton
- Outlook:
 - Improve the toy model
 - Perform patching
 - Understand better role of jets and central galactic black holes for global galactic dynamics

- C. Lammerzahl, O. Preuss and H. Dittus, "Is the physics within the Solar system really understood?," gr-qc/0604052.
- **F. I. Cooperstock and S. Tieu**, astro-ph/0507619.
- M. Korzynski, astro-ph/0508377; D. Vogt and P. S. Letelier, astro-ph/0510750.
- H. Balasin and D. Grumiller, astro-ph/0602519.

