Finnish-Japanese Workshop on Particle Physics 2007

Moduli Problem, Thermal Inflation and Baryogenesis

Masahiro Kawasaki Institute for Cosmic Ray Research University of Tokyo

Cosmological Moduli Problem

Moduli starts oscillation with large amplitude $\phi_0 \sim M_G \sim 10^{18} {\rm GeV}$ Cosmic Density

Coughlan, Fischler, Kolb, Raby, Ross (1983) Banks et al (1994), de Carlos et al (1993)

$$\Omega_{\phi} \simeq 5 \times 10^{16} \left(\frac{m_{\phi}}{\text{GeV}}\right)$$

for stable moduli

Constraints

on Density

Moduli Decay

$$\tau_{\phi} \sim \frac{M_{pl}}{m_{\phi}^2} \sim 10^{14} \sec\left(\frac{m_{\phi}}{\text{GeV}}\right)^{-3}$$

$$m_{\phi} \lesssim 0.1 \text{ GeV}$$

Background Radiations(X-rays, γ-rays)

BBN (Destroy Light elements)

CBR (spectral distortion)

Cosmological Constraint

Cosmological Constraint

Solution to Moduli Problem

Large Entropy Production dilute moduli Thermal Inflation Lyth, Stewart (1995) Domain Wall Decay MK, F.Takahashi (2005) Others Heavy Moduli Large Hubble induced mass $V \sim CH^2 \phi^2 \quad C \gg 1$ Linde (1996)

Thermal Inflation

Thermal Inflation

However,

$$V \simeq \frac{1}{2} m_{\phi}^2 \phi^2 + \frac{1}{2} H^2 (\phi - \phi_0)^2$$
$$\simeq \frac{1}{2} m_{\phi}^2 \left(\phi + \frac{H^2}{m_{\phi}^2} \phi_0\right)^2 + \cdots$$

During TI the minimum of the potential deviates from 0

new oscillations of moduli

Moduli Density = Big Bang Moduli+TI Moduli

Minimum Moduli Density Predicted by TI

Hashiba, MK, Yanagida (1997) Asaka, MK (1999)

Baryon Number of the Universe?

Large entropy production with Low T_R dilute pre-existing baryons

Most of conventional baryogenesis mechanisms may not work

Affleck-Dine baryogenesis work for $m_{\phi} \lesssim O(10) \text{MeV}$ $n_b/s \sim 2 \times 10^{-9} \Omega_{\phi} (m_{\phi}/\text{GeV})^{-1}$ Baryon Number of the Universe?

Large entropy production with Low T_R

dilute pre-existing baryons

Most of conventional baryogenesis mechanisms may not work

Affleck-Dine
baryogenesiswork for
 $m_{\phi} \leq O(10) \,\mathrm{MeV}$
 $n_{b}/s \sim 2 \times 10^{-9} \Omega_{\phi} (m_{\phi}/\mathrm{GeV})^{-1}$ However,Q-ball Formation \bigcirc Obstacle to AD

Scalar Potential of Flat Directions $V = V_F + V_D + V_{SB} \quad L = \begin{pmatrix} 0 \\ l \end{pmatrix}, H_u = \begin{pmatrix} h_u \\ 0 \end{pmatrix}, H_d = \begin{pmatrix} h_d & 0 \end{pmatrix}$ • F-term $V_F = \frac{1}{M^2} \left\{ |\lambda_{\chi}\chi^3 + 2\lambda_{\mu}\chi h_u h_d|^2 + |\lambda_{\nu} lh_u^2|^2 \right\}$ $+ |\lambda_{\mu}\chi^{2}h_{d} + \lambda_{\nu}l^{2}h_{u}|^{2} + |\lambda_{\mu}\chi^{2}h_{u}|^{2} \Big\}$ D-term $V_D = \frac{g^2}{2} \left(|h_u|^2 - |l|^2 - |h_d|^2 \right)^2$ Soft SUSY breaking terms $V_{\rm SB} = V_0 - m_{\chi}^2 |\chi|^2 + m_L^2 |l|^2 - m_{H_u}^2 |h_u|^2 + m_{H_d}^2 |h_d|^2 + \left\{ \frac{A_{\chi} \lambda_{\chi}}{4M} \chi^4 + \frac{A_{\mu} \lambda_{\mu}}{M} \chi^2 h_u h_d + \frac{A_{\nu} \lambda_{\nu}}{2M} l^2 h_u^2 + \text{c.c.} \right\}$ **CP phase** $\arg(\lambda_{\mu}\lambda_{\nu}^{*})$ $\arg(\lambda_{\chi}\lambda_{\mu}^{*})$

Dynamics of Flat Directions (I) At the end of thermal inflation $\chi = 0$ $m_{LH_u}^2 \simeq m_L^2 - m_{H_u}^2 < 0$ LH₁₁ flat direction rolls away from the origin (2) Flaton rolls down $\langle \chi \rangle = \chi_0 \longrightarrow \mu$ term $m_{LH_u}^2 \simeq m_L^2 - m_{H_u}^2 + |\mu|^2 > 0$ $\operatorname{Im} l$ LH_{II} direction starts to rotate Lepton number generation

Lattice Calculation

Nakayama, MK (2006)

We studied the full dynamics by using lattice simulation including all relevant scalar fields

Initial angular dependence of baryon asymmetry

 $T_R = 1 \text{ GeV}$ $\arg(\lambda_\mu \lambda_\nu^*) = \pi/16$ \checkmark net baryon asym

$$\lambda_{\mu} = 35 \quad \lambda_{\nu} = 10^4$$

 $m_{\chi} = 180 \text{ GeV}, \ m_{H_u} = 700 \text{ GeV}, \ m_{H_d} = 800 \text{ GeV}, \ m_L = 640 \text{ GeV}, \ \lambda_{\chi} = 4, \ A_{\mu} = 450 \text{ GeV}, \ A_{\nu} = 200 \text{ GeV}, \ A_{\chi} = 20 \text{ GeV}, \ \arg(\lambda_{\chi}\lambda_{\mu}^*) = -\pi/4$

Resultant baryon asymmetry vs CP violation

Net baryon asymmetry can be created due to CR

 $\mu \sim 800 - 840 \text{ GeV}$ $m_{\nu} \sim 10^{-3} - 10^{-1} \text{ eV}$ This scenario works

However, we only investigated restricted parameter space

Conclusion

- Moduli Problem is solved by thermal inflation
- However, baryon number is also diluted by thermal inflation
- Baryon number can be re-generated through late-time AD mechanism