Moduli Problem, Thermal Inflation and
 Baryogenesis

Masahiro Kawasaki Institute for Cosmic Ray Research University of Tokyo

Cosmological Moduli Problem

\downarrow

gravitationally suppressed interactions

Long Lifetime

Cosmological Difficulty

\square BBN

- Cosmic Density ...

$$
V \simeq \frac{1}{2} m_{\phi}^{2} \phi^{2}+\frac{1}{2} H^{2}\left(\phi-\phi_{0}\right)^{2}
$$

Hubble induced mass

Moduli starts oscillation with large amplitude

$$
\phi_{0} \sim M_{G} \sim 10^{18} \mathrm{GeV}
$$

- Cosmic Density et al (I994), de Carlos et al (1993)

$$
\Omega_{\phi} \simeq 5 \times 10^{16}\left(\frac{m_{\phi}}{\mathrm{GeV}}\right)
$$

for stable moduli

- Moduli Decay

$$
m_{\phi} \lesssim 0.1 \mathrm{GeV}
$$

$$
\tau_{\phi} \sim \frac{M_{p l}}{m_{\phi}^{2}} \sim 10^{14} \sec \left(\frac{m_{\phi}}{\mathrm{GeV}}\right)^{-3}
$$

Background Radiations(X-rays, γ-rays)
BBN (Destroy Light elements)
Constraints
on Density

\square CBR (spectral distortion)

Cosmological Constraint

Asaka,MK (I999) + MK, Kohri, Moroi (2005) for BBN

Cosmological Constraint

Asaka,MK (1999) + MK, Kohri, Moroi (2005) for BBN

Solution to Moduli Problem

- Large Entropy Production dilute moduli
- Thermal Inflation
- Domain Wall Decay

MK, F.Takahashi (2005)
Others

- Heavy Moduli
- Large Hubble induced mass
$V \sim C H^{2} \phi^{2}$
$C \gg 1 \quad$ Linde (1996)

Thermal Inflation

Lyth, Stewart (1995) Yamamoto (I986)

Flaton (X) potential

$$
V \simeq V_{0}+\left(T^{2}-m_{0}^{2}\right)|\chi|^{2}+\frac{|\chi|^{6}}{M_{*}^{2}}
$$

$m_{0} \lesssim T \lesssim V_{0}^{1 / 4}$
Vacuum energy dominates
Inflation with e-fold ~10

Thermal Inflation

dilute big bang moduli

Thermal Inflation

dilute big bang moduli

However,

$$
\begin{aligned}
V & \simeq \frac{1}{2} m_{\phi}^{2} \phi^{2}+\frac{1}{2} H^{2}\left(\phi-\phi_{0}\right)^{2} \\
& \simeq \frac{1}{2} m_{\phi}^{2}\left(\phi+\frac{H^{2}}{m_{\phi}^{2}} \phi_{0}\right)^{2}+\cdots
\end{aligned}
$$

During TI the minimum of the potential deviates from 0 new oscillations of moduli

Moduli Density = Big Bang Moduli+TI Moduli

Minimum Moduli Density Predicted by TI

Hashiba, MK, Yanagida (I997) Asaka,MK (I999)

Baryon Number of the Universe?

Large entropy production with Low T_{R}

dilute pre-existing baryons

Most of conventional baryogenesis mechanisms may not work
Affleck-Dine
 baryogenesis $m_{\phi} \lesssim O(10) \mathrm{MeV}$ $n_{b} / s \sim 2 \times 10^{-9} \Omega_{\phi}\left(m_{\phi} / \mathrm{GeV}\right)^{-1}$

Baryon Number of the Universe?

Large entropy production with Low T_{R}

dilute pre-existing baryons

Most of conventional baryogenesis mechanisms may not work
Affleck-Dine
 baryogenesis $m_{\phi} \lesssim O(10) \mathrm{MeV}$ $n_{b} / s \sim 2 \times 10^{-9} \Omega_{\phi}\left(m_{\phi} / \mathrm{GeV}\right)^{-1}$

However,

Q-ball Formation

Obstacle to AD

Leptogenesis by LH_{u} Flat Direction

Superpotential

$W=y^{u} Q H_{u} u+y^{d} Q H_{d} d+y^{e} L H_{d} e$

$$
+\frac{\lambda_{\chi}}{4 M} \chi^{4}+\frac{\lambda_{\nu}}{2 M}\left(L H_{u}\right)\left(L H_{u}\right)+\frac{\lambda_{\mu}}{M} \chi^{2} H_{u} H_{d}
$$

LH_{u} has a large vev after thermal inflation

Leptogenesis

Scalar Potential of Flat Directions

$$
V=V_{F}+V_{D}+V_{S B} \quad L=\binom{0}{l}, H_{u}=\binom{h_{u}}{0}, H_{d}=\left(\begin{array}{ll}
h_{d} & 0
\end{array}\right)
$$

- F-term $V_{F}=\frac{1}{M^{2}}\left\{\left|\lambda_{\chi} \chi^{3}+2 \lambda_{\mu} \chi h_{u} h_{d}\right|^{2}+\left|\lambda_{\nu} l h_{u}^{2}\right|^{2}\right.$

$$
\left.+\left|\lambda_{\mu} \chi^{2} h_{d}+\lambda_{\nu} l^{2} h_{u}\right|^{2}+\left|\lambda_{\mu} \chi^{2} h_{u}\right|^{2}\right\}
$$

- D-term

$$
V_{D}=\frac{g^{2}}{2}\left(\left|h_{u}\right|^{2}-|l|^{2}-\left|h_{d}\right|^{2}\right)^{2}
$$

$$
\square 1
$$

- Soft SUSY breaking terms

$$
\begin{aligned}
V_{\mathrm{SB}}= & V_{0}-m_{\chi}^{2}|\chi|^{2}+m_{L}^{2}|l|^{2}-m_{H_{u}}^{2}\left|h_{u}\right|^{2}+m_{H_{d}}^{2}\left|h_{d}\right|^{2} \\
& +\left\{\frac{A_{\chi} \lambda_{\chi}}{4 M} \chi^{4}+\frac{A_{\mu} \lambda_{\mu}}{M} \chi^{2} h_{u} h_{d}+\frac{A_{\nu} \lambda_{\nu}}{2 M} l^{2} h_{u}^{2}+\text { c.c. }\right\}
\end{aligned}
$$

CP phase $\arg \left(\lambda_{\mu} \lambda_{\nu}^{*}\right) \arg \left(\lambda_{\chi} \lambda_{\mu}^{*}\right)$

Dynamics of Flat Directions

(I) At the end of thermal inflation
$\chi=0$

$$
m_{L H_{u}}^{2} \simeq m_{L}^{2}-m_{H_{u}}^{2}<0
$$

LH_{u} flat direction rolls away
from the origin

(2) Flaton rolls down

$$
\langle\chi\rangle=\chi_{0} \longrightarrow \mu \text { term }
$$

$$
m_{L H_{u}}^{2} \simeq m_{L}^{2}-m_{H_{u}}^{2}+|\mu|^{2}>0
$$

$$
\sqrt{7}
$$

LH_{u} direction starts to rotate
Lepton number generation

Lattice Calculation

 Nakayama, MK (2006)We studied the full dynamics by using lattice simulation including all relevant scalar fields

Initial angular dependence of baryon asymmetry

$$
T_{R}=1 \mathrm{GeV}
$$

$$
\arg \left(\lambda_{\mu} \lambda_{\nu}^{*}\right)=\pi / 16
$$

net baryon asym

$$
\lambda_{\mu}=35 \quad \lambda_{\nu}=10^{4}
$$

$$
m_{\chi}=180 \mathrm{GeV}, m_{H_{u}}=700 \mathrm{GeV}, m_{H_{d}}=800 \mathrm{GeV}, m_{L}=640 \mathrm{GeV}
$$

$$
\lambda_{\chi}=4, A_{\mu}=450 \mathrm{GeV}, A_{\nu}=200 \mathrm{GeV}, A_{\chi}=20 \mathrm{GeV}, \arg \left(\lambda_{\chi} \lambda_{\mu}^{*}\right)=-\pi / 4
$$

Resultant baryon asymmetry vs CP violation

$\arg \left(\lambda_{\mu} \lambda_{\nu}^{*}\right)=\pi / 4,5 \pi / 4$
\longrightarrow no CP violation

Net baryon asymmetry can be created due to $\overline{C R}$

$$
\mu \sim 800-840 \mathrm{GeV}
$$

$$
m_{\nu} \sim 10^{-3}-10^{-1} \mathrm{eV}
$$

This scenario works

However, we only investigated restricted parameter space

Conclusion

- Moduli Problem is solved by thermal inflation
- However, baryon number is also diluted by thermal inflation
- Baryon number can be re-generated through late-time AD mechanism

