
Geometry of Higher-Dimensional

Black Hole Thermodynamics

(hep-th/0510139)

Narit Pidokrajt

(work with Jan E. Åman)
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Abstract

We apply the Ruppeiner theory to black hole

thermodynamics in higher dimensions and obtained

interesting results. We think this may be a justifi-

cation for applying this theory to black hole solu-

tions that arise from various gravity theories, e.g.

String Theory.
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1. Thermodynamics as Geometry

George Ruppeiner: Phase transitions &
Critical Phenomena may be approached thermo-
dynamically by Riemannian geometry, with a met-
ric related to thermodynamic fluctuations.

Take a Hessian matrix of thermodynamic en-
tropy and define it as a metric on the state space

gR
ij = −

∂2S(X)

∂X i∂Xj
, X = X(M,N a)

M the mass and N a the extensive parameters of
the system.

• Known as the Ruppeiner metric.

• gR
ij can take any dimension.

• Most commonly studied Ruppeiner metrics so
far are the 2× 2 metrics.

• If gR
ij is flat, then we have a system with no

underlying statistical mechanical interactions,
e.g. the ideal gas.

• If gR
ij is non-flat and its curvature has singular-

ity(ties), we have a signal of critical phenom-
ena.
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There is a dual metric to the Ruppeiner met-
ric, it is known as the Weinhold metric (Frank A.
Weinhold 1975). It is the Hessian of the mass
(internal energy) defined as

gW
ij = ∂i∂jM(S,Na)

Na being any other extensive variables. The two
metrics are conformally related to each other via

ds2 = gR
ijdM

idM j =
1

T
gW

ij dS
idSj

Temperature is given by

T =
∂M

∂S

• Ruppeiner theory has been successful and re-
ceived support from various directions ( e.g.
Salamon, et al in J. Chem. Phys, vol 82, 5.
2413 (1982) )

• Hawking & Bekenstein: Black holes are ther-
modynamic systems.S = S(M,J,Q)
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• Ruppeiner theory has been applied to black
holes (hep-th/9803261, gr-qc/0304015 )

• Results so far have been as anticipated, i.e.

for simple black hole solutions we have flat
Ruppeiner geometry and vice versa.

• In 2+1, the BTZ black hole has a flat Rup-
peiner metric.

• There are results in adS space, e.g. the RN-
adS where Hawking-Page transition compli-
cates the geometry.
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2. Reissner-Nordström Black Hole

The entropy of RN (after redefinition of kB, G
and ~ = 1) reads

S =



M +M

√

1−
d− 2

2(d− 3)

Q2

M 2





d− 2

d− 3

Inversion of this eq gives

M =
S

d−3
d−2

2
+

d− 2

4(d− 3)

Q2

S
d−3
d−2

Taking the Hessian of M , we get the Weinhold
metric, after diagonalization reads

ds2
W = S−

d−1
d−2

[

−
1

2

d− 3

(d− 2)2
(1−u2)dS2+S2du2

]

using

u =

√

d− 2

2(d− 3)

Q

S
d−3
d−2

By conformal transformation
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ds2
R =

−dS2

(d− 2)S
+

2(d− 2)S

(d− 3)

du2

1− u2

It is a flat metric. Introducing new coordinates

τ = 2

√

S

d− 2
and sin

σ
√

2(d− 3)

d− 2
= u

we get the Ruppeiner metric in Rindler coordi-
nates as

ds2 = −dτ 2 + τ 2dσ2

with

−
d− 2

2
√

2(d− 3)
π ≤ σ ≤

d− 2

2
√

2(d− 3)
π
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x

t
curves of constant S

If we use

t = τ cosh σ and x = τ sinh σ

we obtain a Rindler wedge with an opening angle
depending on d:

tanh−
(d− 2)π

2
√

2(d− 3)
≤
x

t
≤ tanh

(d− 2)π

2
√

2(d− 3)

For d = 4 we get the wedge as seen in figure.
Curves of constant S are given by S = 1

2(t
2−x2).

Note that the opening angle of the wedge of the
RN black hole grows as d→∞.
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4. Kerr Black Hole

Kerr black hole = uncharged spinning black hole.
In d > 4 we can have more than one angular mo-
mentum. Do the single-spin case in any d.

• Cannot solve for r+ in any d but can work
with the Weinhold metric. The mass of the
Kerr black hole in arbitrary d is given by

M =
d− 2

4
S

d−3
d−2

(

1 +
4J2

S2

)1/(d−2)

Results:

• Weinhold metric gW
ij = ∂i∂jM(S, J) can be

worked out. It is a flat metric.

• Can be transformed into Rindler coord

• Wedge of state space with specific opening
angle for d = 4, 5.

• Special feature: for d ≥ 6 the wedge fills the
entire light cone because there are no extremal
limits for Kerr black hole in d ≥ 6.

• Ruppeiner geometry is curved and has curva-
ture blow-up in all dimensions.

9



The 20th Nordic String Meeting: 28 October 2005

x

t

• Curvature scalar is singular at extremal limit
for d = 4, 5. For d ≥ 6 it is divergent along
the curve (that depends on the dimensional-
ity), also found by Emparan and Myers (hep-
th/0308056) to be where the Kerr black hole
becomes unstable and changes behavior to be
like a black membrane.
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5. Multiple-Spin Kerr Black Hole

The Kerr black hole in d ≥ 5 can have more
than one angular momentum.

• Motivation: see if there is any chance it would
simpler than in Kerr-Newman (KN) case.

• Pick the Kerr in d = 5 with double spins (3-
parameter problem)

M = M(S, J1, J2)

• Weinhold and Ruppeiner geometry are curved
⇒ not simpler than KN.

• Both the Weinhold and Ruppeiner curvatures
have divergences in the extremal limit of the
double-spin Kerr black hole in d = 5. Similar
to the Kerr-Newman black hole (in d = 4).

• Calculations in 3 × 3 problems need labor of
computers! We used CLASSI (free program
distributed by Jan E. Åman) and GRTensor
for Maple
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We seek explanation for flatness condition.

• Mathematical explanation for flatness condi-
tion:

ψ(x, y) = xaF

(

x

y

)

, a = constant

• RN black hole’s entropy and Kerr black hole’s
mass have this form
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Spacetime dimension Black hole family Ruppeiner Weinhold

d = 4 Kerr Curved Flat
RN Flat Curved

d = 5 Kerr Curved Flat
double-spin Kerr Curved Curved
RN Flat Curved

d = 6 Kerr Curved Flat
RN Flat Curved

any d Kerr Curved Flat
RN Flat Curved

d = 3 BTZ Flat Curved
d = 4 RNadS Curved Curved

Table 1: Geometry of higher-dimensional black hole thermodynamics.
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6. Summary

• To our surprise, the GEOMETRY of black hole
thermodynamics in higher d is the same as
that in d = 4

• Still cannot conclude in the ideal gas manner
⇔ microstructures of black holes still are un-
known

• Ruppeiner curvatures are physically suggestive
in all dimensions

14


