Geometry of Higher-Dimensional Black Hole Thermodynamics

(hep-th/0510139)

Narit Pidokrajt (work with Jan E. Åman)

Quantum and Field Theory Fysikum, Stockholms Universitet

Abstract

We apply the Ruppeiner theory to black hole thermodynamics in higher dimensions and obtained interesting results. We think this may be a justification for applying this theory to black hole solutions that arise from various gravity theories, *e.g.* String Theory.

Plan of talk

- Thermodynamics as Geometry
- Reissner-Nordström (RN) Black Hole
- Kerr Black Hole
- Multiple-spin Kerr Black Hole
- Summary

1. Thermodynamics as Geometry

George Ruppeiner: Phase transitions & Critical Phenomena may be approached thermodynamically by Riemannian geometry, with a metric related to thermodynamic fluctuations.

Take a Hessian matrix of thermodynamic entropy and define it as a metric on the state space

$$g^R_{ij} = -\frac{\partial^2 S(X)}{\partial X^i \partial X^j}, \quad X = X(M, N^a)$$

 ${\cal M}$ the mass and ${\cal N}^a$ the extensive parameters of the system.

- Known as the *Ruppeiner metric*.
- g_{ij}^R can take any dimension.
- Most commonly studied Ruppeiner metrics so far are the 2×2 metrics.
- If g_{ij}^R is flat, then we have a system with no underlying statistical mechanical interactions, *e.g.* the ideal gas.
- If g^R_{ij} is non-flat and its curvature has singularity(ties), we have a signal of critical phenomena.

There is a dual metric to the Ruppeiner metric, it is known as the Weinhold metric (Frank A. Weinhold 1975). It is the Hessian of the mass (internal energy) defined as

$$g_{ij}^W = \partial_i \partial_j M(S, N^a)$$

 ${\cal N}^a$ being any other extensive variables. The two metrics are conformally related to each other via

$$ds^2 = g^R_{ij} dM^i dM^j = \frac{1}{T} g^W_{ij} dS^i dS^j$$

Temperature is given by

$$T = \frac{\partial M}{\partial S}$$

- Ruppeiner theory has been successful and received support from various directions (e.g. Salamon, et al in J. Chem. Phys, vol 82, 5. 2413 (1982))
- Hawking & Bekenstein: Black holes are thermodynamic systems. S = S(M, J, Q)

- Ruppeiner theory has been applied to black holes (hep-th/9803261, gr-qc/0304015)
- Results so far have been as anticipated, *i.e.* for simple black hole solutions we have flat Ruppeiner geometry and *vice versa*.
- In 2+1, the BTZ black hole has a flat Ruppeiner metric.
- There are results in adS space, *e.g.* the RNadS where Hawking-Page transition complicates the geometry.

2. Reissner-Nordström Black Hole

The entropy of RN (after redefinition of k_B, G and $\hbar = 1$) reads

$$S = \left(M + M\sqrt{1 - \frac{d-2}{2(d-3)}\frac{Q^2}{M^2}}\right)^{\frac{d-2}{d-3}}$$

Inversion of this eq gives

$$M = \frac{S^{\frac{d-3}{d-2}}}{2} + \frac{d-2}{4(d-3)} \frac{Q^2}{S^{\frac{d-3}{d-2}}}$$

Taking the Hessian of M, we get the Weinhold metric, after diagonalization reads

$$ds_W^2 = S^{-\frac{d-1}{d-2}} \left[-\frac{1}{2} \frac{d-3}{(d-2)^2} (1-u^2) dS^2 + S^2 du^2 \right]$$

using

$$u = \sqrt{\frac{d-2}{2(d-3)}} \frac{Q}{S^{\frac{d-3}{d-2}}}$$

By conformal transformation

$$ds_R^2 = \frac{-dS^2}{(d-2)S} + \frac{2(d-2)S}{(d-3)} \frac{du^2}{1-u^2}$$

It is a flat metric. Introducing new coordinates

$$au = 2\sqrt{rac{S}{d-2}}$$
 and $\sin{rac{\sigma\sqrt{2(d-3)}}{d-2}} = u$

we get the Ruppeiner metric in Rindler coordinates as

$$ds^2 = -d\tau^2 + \tau^2 d\sigma^2$$

with

$$-\frac{d-2}{2\sqrt{2(d-3)}}\pi\leq\sigma\leq\frac{d-2}{2\sqrt{2(d-3)}}\pi$$

If we use

$$t = \tau \cosh \sigma$$
 and $x = \tau \sinh \sigma$

we obtain a Rindler wedge with an opening angle depending on d:

$$anh - \frac{(d-2)\pi}{2\sqrt{2(d-3)}} \le \frac{x}{t} \le \tanh \frac{(d-2)\pi}{2\sqrt{2(d-3)}}$$

For d = 4 we get the wedge as seen in figure. Curves of constant S are given by $S = \frac{1}{2}(t^2 - x^2)$. Note that the opening angle of the wedge of the RN black hole grows as $d \to \infty$.

4. Kerr Black Hole

Kerr black hole = uncharged spinning black hole. In d > 4 we can have more than one angular momentum. Do the single-spin case in any d.

• Cannot solve for r_+ in any d but can work with the Weinhold metric. The mass of the Kerr black hole in arbitrary d is given by

$$M = \frac{d-2}{4} S^{\frac{d-3}{d-2}} \left(1 + \frac{4J^2}{S^2}\right)^{1/(d-2)}$$

Results:

- Weinhold metric $g_{ij}^W = \partial_i \partial_j M(S, J)$ can be worked out. It is a flat metric.
- Can be transformed into Rindler coord
- Wedge of state space with specific opening angle for d = 4, 5.
- Special feature: for d ≥ 6 the wedge fills the entire light cone because there are no extremal limits for Kerr black hole in d ≥ 6.
- Ruppeiner geometry is curved and has curvature blow-up in all dimensions.

 Curvature scalar is singular at extremal limit for d = 4, 5. For d ≥ 6 it is divergent along the curve (that depends on the dimensionality), also found by Emparan and Myers (hepth/0308056) to be where the Kerr black hole becomes unstable and changes behavior to be like a black membrane.

5. Multiple-Spin Kerr Black Hole

The Kerr black hole in $d \ge 5$ can have more than one angular momentum.

- Motivation: see if there is any chance it would simpler than in Kerr-Newman (KN) case.
- Pick the Kerr in d = 5 with double spins (3-parameter problem)

$$M = M(S, J_1, J_2)$$

- Weinhold and Ruppeiner geometry are curved \Rightarrow not simpler than KN.
- Both the Weinhold and Ruppeiner curvatures have divergences in the extremal limit of the double-spin Kerr black hole in d = 5. Similar to the Kerr-Newman black hole (in d = 4).
- Calculations in 3 × 3 problems need labor of computers! We used CLASSI (free program distributed by Jan E. Åman) and GRTensor for Maple

We seek explanation for flatness condition.

• Mathematical explanation for flatness condition:

$$\psi(x,y) = x^a F\left(\frac{x}{y}\right), \quad a = \text{constant}$$

 RN black hole's entropy and Kerr black hole's mass have this form

Spacetime dimension	Black hole family	Ruppeiner	Weinhold
d = 4	Kerr	Curved	Flat
	RN	Flat	Curved
d = 5	Kerr	Curved	Flat
	double-spin Kerr	Curved	Curved
	RN	Flat	Curved
d = 6	Kerr	Curved	Flat
	RN	Flat	Curved
any d	Kerr	Curved	Flat
	RN	Flat	Curved
d = 3	BTZ	Flat	Curved
d = 4	RNadS	Curved	Curved

Table 1: Geometry of higher-dimensional black hole thermodynamics.

6. Summary

- To our surprise, the GEOMETRY of black hole thermodynamics in higher d is the same as that in d = 4
- Still cannot conclude in the ideal gas manner
 ⇔ microstructures of black holes still are unknown
- Ruppeiner curvatures are physically suggestive in all dimensions