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» Holographic V-QCD models

[MJ, Kiritsis arXiv:1112.1261]

» Spectra and the S-parameter
[Arean, latrakis, MJ, Kiritsis, arXiv:1211.6125, arXiv:130n.xxxx]

» Turning on finite temperature: Next talk!
[Alho, MJ, Kajantie, Kiritsis, Tuominen arXiv:1210.4516]
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QCD: SU(N.) gauge theory with N¢ quark flavors (fundamental)

» Often useful: “quenched” or “probe” approximation, Nf < N,

» Here Veneziano limit: large Nf, Nc with x = N¢/N, fixed =
backreaction

Important new features can be captured in the Veneziano limit:
» Phase diagram of QCD (at zero temperature, baryon density,
and quark mass), varying x = N¢ /N,
» The QCD thermodynamics as a function of x

» Phase diagram as a function of baryon density
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Holographic V-QCD: the fusion

Holographic bottom-up models (V-QCD) that describe QCD
significantly well in the Veneziano limit
[MJ, Kiritsis arXiv:1112.1261]

The fusion:
1. IHQCD: model for glue by using dilaton gravity
[Gursoy, Kiritsis, Nitti; Gubser, Nellore]

2. Adding flavor and chiral symmetry breaking via tachyon brane

actions
[Klebanov,Maldacena; Bigazzi,Casero,Cotrone,latrakis,Kiritsis,Paredes]

Consider 1 + 2 with full backreaction = V-QCD models
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Defining V-QCD

Degrees of freedom:
» 74 qq ;A TrF?
» )\ = e? is identified as the 't Hooft coupling g2 N,

4 (ON)?
SV—QCD = N3M3/d5x\/§ |:R— 3( /\2) + Vg()\)

—NgN-M3 / d®xVi(\, 7)\/— det(gap + £(N)Da70pT)

Vi(A, 7) = Vio(N) exp(—a()\)TQ) : ds® = e2A(dr2 + N xtx")

The simplest and most reasonable potential choices do the job!
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Matching to QCD

> In the UV ( A — 0):

» UV expansions of the various potentials can be matched with
the perturbative QCD beta function and the anomalous
dimension of the quark mass/chiral condensate

> After this, a single undetermined parameter in the UV: W,

> In the IR, the tachyon action x e=2MN7™ must become small

» Vg(A) chosen as for Yang-Mills, so that a “good” IR
singularity exists

» Vio(A), a(A), and k() chosen to produce tachyon divergence:
several possibilities (— Potentials | and II)

» Extra constraints from the asymptotics of the meson spectra
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Background analysis: zero temperature

Analysis of the backgrounds (r-dependent solutions of EoMs) at
zero temperature
» Expect two kinds of solutions, with
1. Nontrivial tachyon profile (chirally broken)
2. ldentically vanishing tachyon (chirally symmetric)
» Fully backreacted system = rich dynamics, complicated
numerical analysis ...
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Phase diagram

At zero quark mass:

» Conformal window for x. < x < xgz, ChSB for 0 < x < x,
» Critical value xc ~ 4 arising from dynamics

» Walking backgrounds for x slightly below x.

~ X, ~11/2
? Lhs Xc: 4  chs | >X=Nf/Nc
QCD-like i IR-Conformal
Running Walkingi IRFP Banks
! Zaks

» Meets standard expectations from QCD!
» How does this diagram arise?
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Backgrounds at zero quark mass

Sketch of behavior in the conformal window (x > x.):
A
» Tachyon vanishes 25

(no ChSB)

» Similar to IHQCD,
different potential
= IR fixed point

» Dilaton flows between

UV/IR fixed points r
10® 10% 107 105 1 10°

Here UV: r — 0, IR: r —
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Right below the conformal window (x < x¢; |x — x| < 1)

A, log(T)
30
20 A
» Dilaton flows very close 10 !
to the IR fixed point Of -~ -
» “Small” nonzero tachyon X logT |
induces an IR singularity 1 7 |
) 3
1078 107 1071° 196 0.01

Result: “walking”
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Important features

log(a/Ady)
X
[— 385 399 3.95 4.00

-20
-40
—-60
-80
-100

. Miransky scaling as x — x. from below
» The ratio of the IR and UV scales behaves as expected

» E.g. (qq) x o ~ exp(—K/v/xc — x), with calculable

2. Unstable Efimov vacua observed for x < x

3. Turning on the quark mass modifies the dynamics in a natural

way
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Fluctuation analysis

1. Meson spectra (at zero temperature and quark mass)

» Four towers: scalars, pseudoscalars, vectors, and axial vectors
» Flavor singlet (U(1)) and nonsinglet (SU(Nf)) states

2. The S-parameter

5~ d"q2 (VW) — (AA)] s

Open questions in the region relevant for technicolor (x — x. from
below):

» The S-parameter might be reduced

» Possibly a light “dilaton” (flavor singlet scalar): Goldstone
mode due to almost unbroken conformal symmetry. The
125 GeV state seen at the LHC?
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Meson masses

Flavor nonsinglet masses (two choices of potentials):

Potl Wy = 3/11 Potll Wy SB
Masses of lowest modes 107 Masses of lowest modes
0.01 .- Vectors - Vectors
g - Axial vectors _6 - Axial vectors
- Scalars 10 > Scalars
0.001 & Pseudoscalars . Pseudoscalars
1078
107 M
1 " " " " " " 1.y X
! 2 8 4 05 10 15 20 25 30 35

> All masses show Miransky scaling as x — x¢

» m2 ~ nor m?~ n? depending on potentials
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Fit of p mass to Miransky scaling (Potll Wy SB)
m/Auv

107}
1077}
10—8 L
1079}
1071
1071}
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Scalar singlet masses

Potll Wy, SB:
In log scale Normalized to the lowest state
mn/ml
4 ‘“““A.rhﬁuh‘ —

X X
00 05 10 15 20 25 30 35 05 10 15 20 25 30 35

No light dilaton?
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Meson mass ratios

Potll Wy SB:
Within towers Lowest states normalized to p
Ratios of masses
- 2nd/1st vector
= 3rd/1st vector
- 2nd/1st axial vector
-& 3rd/1st axial vector m/mp
LN - 2nd/1st scalar 3.0 A‘\
10F = 3rd/1st scalar RN
W, = 2nd/1st pseudoscalar 25F N
3rd/1st pseudoscalar ‘.:\\ a'/
20 RN S IO &
e o ey
B e 15 e
e, - L
I =2 10 SEEPET ey
2 = 0.5 y— =v
N N N N N L L X —5 =y == T - - X
05 10 15 20 25 30 35 00 05 10 15 20 25 30 35

All ratios tend to constants as x — x.: indeed no dilaton
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Potl Wy = 3/11 Potll W, SB
S/(NcN¢) S/(NcNt)
0.6 Xc 1.0 Xc
05 0.8
0.4

0.6

0.3
0.2 0.4]
0.1 0.2

1 2 3 4 05 10 15 20 25 30 35

The S-parameter increases with x: no expected suppression
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Conclusion

» A class of holographic bottom-up models
(V-QCD) was obtained by a fusion of IhQCD
with tachyonic brane action

» A subclass of V-QCD models meets
expectations from QCD at qualitative level

» V-QCD has no light dilaton or suppression of
the S-parameter, which might be an issue for
some technicolor models
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Extra slides

Extra slides ...
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Potentials |

44 4619 A2

Vg (A = 124+ —A 1+ log(1+ \/(872
g(N) + 9.2 *'3888w4(14-x/(sW2»2/3V/ + log(1 + \/(872))
Vi(\,7) = \/fo()\)e—a(k)r2
- — 2
Vi) = E 4(33 2X)>\ 23473 — 2726x + 92x° 5
11 9972 4276874
3
a(A) = 5(]_1_X)
1
K(A) = —_—
/3
115—16x
(1+ 28872 A)

In this case the tachyon diverges exponentially:

(r 81 35/5(115 — 16x)*/3(11 — x) r
7(r) ~ 7o ex r
0P 812944 21/6 R
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Potentials I

44 4619 \2
Ve = 124 g0A 1+ log(1+ A/(872
g(N) + 972 + 388874 (1+)\/(87r2))2/3\/ + log(1 + \/(872))
Vf(A>T) = Vfo(A)efa(A)Tz
- — 2
V() = 12 433-29, 23473 - 2726x 4 02x
11 9972 4276874
1+ 2100\ 1+ 32)(87%)?
a\) = i(llfx) 2167 /(87%)
22 (1 + \/(872))4/3
1
k(A) =

(L1 N/ (872))"3

In this case the tachyon diverges as

(r) ~ 22 \/ﬁ
T(F) ~
4619 R
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Effective potential

For solutions with 7 = 7, = const

S = M3N§/d5x\/§ [R — ‘3‘(8?2)2 + V() — xvf(A,T*)}

IhQCD with an effective potential
Vet () = Ve(A) = xVr(\, 1) = Ve (A) — xVro(\) exp(—a(\)72)
Minimizing for 7, we obtain 7. =0 and 7, = o0
» 7o =00 Veg(A) = Vg(A) — xViro(N);
fixed point with V/;(\.) =0
> 7. — 00 Veg(A) = Vg(A) (like YM, no fixed points)
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Numerical solutions for backgrounds

Color code:

A A, 7 (=T here)
UV: r=20

IR: r =00

A~ logpu~ —logr

> log(r /¢
-30 -20 -10 Y o/
5 ~10 S
x=39 x=
A, A, log(T) A, A, log(T)
RV S2eedet L Jog(r/f e log(r/£)
-30 -25 -20 —15 —10.-=5 ~Y, 5 og(r/6) -15 -10 :_5.--1 \\ 5
-2 e —20} %
[ | )
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Efimov spiral

Ongoing work: the dependence o(m) of the chiral condensate on

the quark mass

» For x < x. spiral structure

logla|
20
15

10|

5

-15

= e m
-15 -10 =05 | 05 10 15 ™

» Dots: numerical data

L L L loglm!|
-5 5 10 ogiml
s

- —10|

» Continuous line: (semi-)analytic prediction

Allows to study the effect of double-trace deformations
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Black hole branches

Example: Potll at x =3, Wy = 12/11

2.0¢
- T@h T =0
15/
, T(An, Tro(An, Mg = 0))
1.0
0.5t
e An
0.0 ‘

1 10 100 1000 10¢ 10°

Simple phase structure: 1st order transition at T = T} from
thermal gas to (chirally symmetric) BH
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More complicated cases:

Potll at x =3, Wy SB

1000+ J* 10 100 1000

Th(An)

Potl at x = 3.5, Wp = 12/11

> Left: chiral symmetry restored at 2nd order transition with

T = Tena > Th

» Right: Additional first order transition between BH phases

with broken chiral symmetry

Also other cases ...
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2.00

1.50}

Phase diagrams on the (x, T)-plane

Potl. Wy SB

No chiral symmetry

Potll, Wy SB

100}

100l breaking phase here -g E

z s

(070 ] S £ E

— £ s

0.50¢ 8 Lg)
03% i Y0 i 2 3 z
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A step back: Glue — 5D dilaton gravity

For YM, “improved holographic QCD" (IhQCD): well-tested
string-inspired bottom-up model

[Gursoy, Kiritsis, Nitti arXiv:0707.1324, 0707.1349]
[Gubser, Nellore arXiv:0804.0434]

5= M [ xVE R~ 500 + Vi(o)]

with Poincaré invariant metric
ds® = e2A(dr? + 1, x"x")

» Potential V, <+ QCD j-function

» A—logpu energy scale
» e? = X\ 't Hooft coupling g*N,
12
Vg = 72(1 fad+-), A=0, Ve~AY3/log), A= oo

Agrees well with pure YM, both a zero and finite temperature
[Gursoy, Kiritsis, Mazzanti, Nitti; Panero; .. .]
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A step back: Adding flavor

» Fundamental quarks — probe D4 — D4 branes in 5D

» For the vacuum structure only the tachyon is relevant
» A tachyon action motivated by the Sen action

» Confining asymptotics of the geometry trigger ChSB
Gell-Mann-Oakes-Renner relation
Linear Regge trajectories for mesons
A very good fit of the light meson masses

v vy

[Klebanov,Maldacena]

[Bigazzi,Casero,Cotrone,latrakis, Kiritsis,Paredes hep-th/0505140,0702155;
arXiv:1003.2377,1010.1364]
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rounds in the walking region

Backgrounds with zero quark mass, x < xc ~ 3.9959 (A, A, 7)
Xx=3

=35
A, A, log(M T A Adlog

______

. log(r/¢) B o
el 5 -20 -15 -10 =5 5 000/0
........ ‘: -20 -20 “.

A, A, log(T)

<
~—
-~
-~
S~

~ -~
\ e g [0 (974 RN Sad=? o log(r /e
-30 =25 _2\0 —15 _-1_0‘.; A 5 g(r / )_40 \_30 20 __:.UD"- Ky og(r/f)
‘ —20| ] \ —-20p
Lo* ' \
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Beta functions along the RG flow (evaluated on the background),

zero tachyon, YM Xc ~ 3.9959
X=2 x=3
BQ) B
(o] A 0 = 0 A
> 80 100 120 : 40 -
-20 T S
—40F o T Sneeaee- -20
— 60| _30
-80
—40
-100)
-120 =50
x=35 x=39
BQ)
Oparecs A
B, 10 15 20 \ 25
-5
-10
-15
-20
-25
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Holographic beta functions

Generalization of the holographic RG flow of IhQCD

d\ dr
ﬁ()‘aT):dj 1 7()\77):617/4
linked to
dgqcp dm
dlogu ' dlog

The full equations of motion boil down to two first order partial
non-linear differential equations for 5 and
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“Good" solutions numerically (unique)

W S
s = 'é’f{?\
T S Ty oo :‘;gé;,@»
< i Lol
e i\ ! “if
¢ ke

‘\‘\“\\\““
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Miransky/BKT scaling

As x — x. from below: walking, dominant solution

> BF-bound for the A, oo™
tachyon violated at the 30 LA HAr
IRFP 20 i i
1 1
» x. fixed by the BF 18 ov i Walking 1R
bound: 10 i .................. i
_ _ [ 1
A=2&7y. =1 -20f I Halt-period |
at the edge of the —30b.. ! i
conformal window 107 1074 10711 108 105 0.01 '

> T(r) ~ r?sin(ky/xc — xlog r+ ¢) in the walking region
» "0.5 oscillations” = Miransky/BKT scaling,
amount of walking Auyy /AR ~ exp(7/(Kky/Xc — x))
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As x — x¢
with known &

log(a/Ady)

385 390 395 400
-20 T |

—40 \'\
-60 s
;;
-100 *

log(Auv/Air)

60 i
50 i
40
30 /

0 L

(@q) ~ o ~exp(—2m [(K/xc
/\UV//\IR ~ exp(7r (IQ\/
_IOQ(U'/AU\/)
100

50

20
10
5

L]
0.0050.0100.020 0.0500.1000.200 ax

.

.

1010 1015 1020 025

a/AYy

1078 "\\
1074

1072

1072

1074

I 5 Auv/Ar
1

— X))
— X))
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Prediction for x.

Dependence on the UV parameter W and (reasonable) “IR
choices” for the potentials

Resulting variation of the
edge of conformal window
Xe =3.7...4.2
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Y4 in the conformal window

Comparison to other guesses

Y«
L. 1.0}
V-QCD (dashed: variation
due to W) 0.8
Dyson-Schwinger 0.6l
2-loop PQCD
All-orders 04f

[Pica, Sannino arXiv:1011.3832] 0.2f
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Full fluctuation analysis
» Miransky scaling

» Ratios depend mildly on x

Scalars
m/Ayv

0.1

0.01

X
05 10 15 20 25 30 35

Vectors

Vertors Blveh mode, Rec: 15 mode, Yellonrd

[
[ ]
[ ]
[ ]
[ ]
[ ]
Axial vectors
]
. ¢ .
[ ]
[ ]
[ ]
[ ]
e
[ ]
[ ]
[ ]
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Parameters

Understanding the solutions for generic quark masses requires
discussing parameters

» YM or QCD with massless quarks: no parameters

» QCD with flavor-independent mass m: a single
(dimensionless) parameter m/Aqcp

> In this model, after rescalings, this parameter can be mapped

to a parameter (7p or r1) that controls the diverging tachyon
in the IR

» x has become continuous in the Veneziano limit
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Map of all solutions

All "good” solutions (7 # 0) obtained varying x and 79 or r
Contouring: quark mass (zero mass is the red contour)

s

0 1 2 3 4 5

X X
“Potentials I" <+ Ty “Potentials II" <> n
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Mass dependence and Efimov vacua

VAN

To

Conformal window (x > xc)
» For m =0, unique
solution with 7 =0

» For m > 0, unique
“standard” solution with

T#0

S To

<

Low 0 < x < x.: Efimov vacua

>

Unstable solution with 7 =0

and m=0

“Standard” stable solution,
with 7 #£ 0, for all m >0

Tower of unstable Efimov
vacua (small |m|)
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Efimov solutions

» Tachyon oscillates over
the walking regime

» Auv /AR increased wrt.
“standard” solution

A, log|T|
40

30 I
20 i i
10 i i

1 1

0 e i
of |
-20 i i
-30 i

Ay AR

10°Y 107 10" 108 10° 0.01
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Effective potential: zero tachyon

Start from Banks-Zaks region, 7. = 0, chiral symmetry conserved

(T A EICI)y Ve ()‘) =

Vg(A) — xVio(A)

» V.g defines a S-function as in IhQCD - Fixed point
guaranteed in the BZ region, moves to higher \ with

decreasing x

» Fixed point A, runs to oo either at finite x(<xc) or as x—0

Banks-Zaks Conformal Window
x—11/2 X > Xc X < Xc 17
o.slg o.eﬂ B
250
04f (A 04 A 200
150
0.2 0.2 100
A
50
[ 2 4 6 5 10" w 15 2" 1
o2 o2 -sol 50 1 150 200
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Effective potential: what actually happens

Banks-Zaks Conformal Window
x—11/2 X > X X < Xc
B B B
02) 02) A’[

.= 2
____100- 150 200

7=0 7=0 T#0

» For x < x. vacuum has nonzero tachyon (checked by
calculating free energies)

» The tachyon screens the fixed point

> In the deep IR 7 diverges, Vg — V; = dynamics is YM-like
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Where is x.7

How is the edge of the conformal window stabilized?
Tachyon IR mass at A = A\, <> quark mass dimension

24a(\y)

il = Am(® = Aw) = S T )

Y = Ar—1 _QIZR(IZR e
45 i
Breitenlohner-Freedman
(BF) bound (horizontal line)

IS
fey

_mlzRE%R =4 < =1

X
defines x. 40 45 50 55
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Why 7, = 1 at x = x.?

No time to go into details ... the question boils down to the
linearized tachyon solution at the fixed point

» For AIR,(4 — AIR) <4 (X > XC)I
7(r) ~ mgrfm® + gri-Am
» For Alp(4 — Ar) >4 (x < xc):

7(r) ~ Cr?sin [(ImAR) log r + ¢]

Rough analogy:

Tachyon EoM < Gap equation in Dyson-Schwinger approach
Similar observations have been made in other holographic
frameworks

[Kutasov, Lin, Parnachev arXiv:1107.2324, 1201.4123]
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Mass dependence

For m > 0 the conformal transition disappears
The ratio of typical UV/IR scales Ayy /Air varies in a natural way

m//\UV = ]_076, ]_075, ...,10 x =2,3.5,3.9,4.25,4.5
Auv/Air

10° Auwv/Ar
10° 10°
10* 10*
100 100
1 1

m/A
X 10 104 00L 1 100 /Avv
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sQCD phases

The case of N' =1 SU(Nc) superQCD with N quark multiplets is known and
provides an interesting (and more complex) example for the nonsupersymmetric case.
From Seiberg we have learned that:
» x = 0 the theory has confinement, a mass gap and N, distinct vacua associated
with a spontaneous breaking of the leftover R symmetry Zy,_.

> At 0 < x < 1, the theory has a runaway ground state.

> At x = 1, the theory has a quantum moduli space with no singularity. This
reflects confinement with ChSB.

> At x =14 1/Nc, the moduli space is classical (and singular). The theory
confines, but there is no ChSB.

> At 1+ 2/N. < x < 3/2 the theory is in the non-abelian magnetic IR-free phase,
with the magnetic gauge group SU(Nf — N¢) IR free.

> At 3/2 < x < 3, the theory flows to a CFT in the IR. Near x = 3 this is the
Banks-Zaks region where the original theory has an IR fixed point at weak
coupling. Moving to lower values, the coupling of the IR SU(N.) gauge theory
grows. However near x = 3/2 the dual magnetic SU(Nf — N¢) is in its
Banks-Zaks region, and provides a weakly coupled description of the IR fixed
point theory.

> At x > 3, the theory is IR free.
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Saturating the BF bound (sketch)

Why is the BF bound saturated at the phase transition (massless
quarks)??

24a( )\,
Ar(4— AR) = ()

» For Alg(4 — AR) < 4:
7(r) ~ mgr*=8m 4 grim

» For AIR(4 — AIR) > 4:
7(r) ~ Cr?sin [(ImAR) log r + ¢]

» Saturating the BF bound, the tachyon solutions will engtangle
— required to satisfy boundary conditions

» Nodes in the solution appear trough UV — massless solution
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Saturating the BF bound (sketch)

Does the nontrivial (ChSB) massless tachyon solution exist?
Two possibilities:
» x > x.: BF bound satisfied at the fixed point = only trivial
massless solution (7 = 0, ChS intact, fixed point hit)
> x < x.: BF bound violated at the fixed point = a nontrivial
massless solution exist, which drives the system away from the
fixed point
Conclusion: phase transition at x = x,
As x — x. from below, need to approach the fixed point to satisfy
the boundary conditions = nearly conformal, “walking” dynamics
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Gamma functions

. . v _ dlogT
Massless backgrounds: gamma functions I = =2
¥/
0.0

A
20 40 60 80 100 —-30 —25 —20

x =2,3,3.5,3.9
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