Holographic Models of Strongly Coupled Anisotropic Plasmas

Anton Rebhan

Institute for Theoretical Physics Vienna University of Technology

work done in collaboration with Dominik Steineder

HoloGrav Workshop Helsinki March 8, 2013

INSTITUTE for THEORETICAL PHYSICS Vienna University of Technology

Outline

Anisotropic systems of interest in condensed matter theory (p-wave superfluids, liquid crystals, ...) and (here):

anisotropic (pre-equilibrium) quark-gluon-plasma

Two top-down models for N = 4 super-Yang-Mills plasma with fixed anisotropy

- Singular AdS₅ [Janik & Witaszczyk (2008)]
- Regular axion-dilaton-gravity [Mateos & Trancanelli (2011)]
- Study observables of potential interest to heavy-ion physics:
 - Electromagnetic spectral functions, conductivities
 - Hydrodynamic transport: shear viscosity
 - Jet quenching
 - Heavy quark potential

Anisotropy and heavy ion collisions

Weak coupling ("hard anisotropic loops"): increasing anisotropy after collision counteracted by **nonabelian plasma instabilities** (leading to anomalous viscosity [Asakawa, Bass, Müller '06])

Numerical studies with *fixed* anisotropy: AR, Romatschke, Strickland; Arnold, Moore; Bödeker, Rummukainen Recently: Real-time lattice simulations of nonabelian Boltzmann-Vlasov equations in *Bjorken expansion*: Attems, AR, Strickland, PRD87 (2013)

 \rightarrow large anisotropies over lifetime of quark-gluon plasma

Anisotropy and heavy ion collisions

Shock waves in AdS₅ [Chesler, Yaffe '10] – strong pressure anisotropies (not only initial)

see also: Heller, Mateos, van der Schee, Trancanelli; \rightarrow talk by Michał Heller

Florkowski, Martinez, Ryblewski, Strickland 2012: anisotropic hydro

modifications to model instrinsic anisotropies (resumming larger viscuous corrections) throughout lifetime of plasma

Dual geometry of (anisotropic) N=4 SYM plasma

Looking for simpler (holographic) model: stationary anisotropic plasma (should be good for observables on sufficiently small time scales)

In Fefferman-Graham coordinates of asymptotically AdS (boundary at z = 0)

$$ds^2 = \frac{\gamma_{\mu\nu}(x^{\sigma}, z)dx^{\mu}dx^{\nu} + dz^2}{z^2},$$

energy-momentum tensor contained in

$$\gamma_{\mu\nu}(x^{\sigma},z) = \eta_{\mu\nu} + z^4 \gamma^{(4)}_{\mu\nu}(x^{\sigma}) + \mathcal{O}(z^6)$$

as

$$\langle T_{\mu\nu}(x^{\sigma})\rangle = \frac{N_c^2}{2\pi}\gamma_{\mu\nu}^{(4)}(x^{\sigma})$$

Janik&Peschanski 2005: construct geometry for given profile $\langle T_{\mu\nu}(x^{\sigma}) \rangle$ and select physical solutions from requirement of regularity of solutions of Einstein equations $R_{MN} = -4g_{MN}$

Singular anisotropic gravity dual

Dual geometry for *isotropic* traceless energy momentum tensor: the AdS *black hole* (black brane) – Hawking temperature is dual temperature

Dual geometry for static anisotropic $\langle T_{\mu\nu}(x^{\sigma}) \rangle = \text{diag}(\epsilon, P_L, P_T, P_T)$ contains naked singularity: [Janik & Witaszczyk 2008]

$$ds^{2} = g_{tt}(u)dt^{2} + g_{LL}(u)dx_{L}^{2} + g_{TT}(u)d\mathbf{x}_{T}^{2} + \frac{1}{4u^{2}}du^{2}, \qquad u \equiv z^{2}$$

$$g_{tt}(u) = -\frac{1}{u}(1+A^2u^2)^{1/2-\sqrt{36-2B^2}/4}(1-A^2u^2)^{1/2+\sqrt{36-2B^2}/4}$$

$$g_{LL}(u) = \frac{1}{u}(1+A^2u^2)^{1/2-B/3+\sqrt{36-2B^2}/12}(1-A^2u^2)^{1/2+B/3-\sqrt{36-2B^2}/12}$$

$$g_{TT}(u) = \frac{1}{u}(1+A^2u^2)^{1/2+B/6+\sqrt{36-2B^2}/12}(1-A^2u^2)^{1/2-B/6-\sqrt{36-2B^2}/12}$$

with $\epsilon = \frac{A^2}{2}\sqrt{36 - 2B^2}$, $P_L = \frac{A^2}{6}\sqrt{36 - 2B^2} - \frac{2A^2B}{3}$, $P_T = \frac{A^2}{6}\sqrt{36 - 2B^2} + \frac{A^2B}{3}$ $B = -\sqrt{6} \dots \sqrt{2}$ delimited by $P_T > 0$ and $P_L > 0$, resp. (otherwise $B = -\sqrt{18} \dots \sqrt{18}$) $B \neq 0$: horizon at u = 1/A becomes naked singularity

(induced metric at t = const., u = 1/A is degenerate: $g_{LL}g_{TT}^2 \propto (1 - A^2 u^2) \left[6 - \sqrt{36 - 2B^2} \right]/4$

Singular anisotropic gravity dual

Asymptotically spherical congruences of (holographically) radial light-like geodesics which get deformed into ellipsoids as they approach the singularity at u = 1 in units where A = 1. Blue: prolate with $B = -\sqrt{6}$; Red: oblate with $B = \sqrt{2}$

Spectral function of current-current correlator

$$\begin{split} \chi_{\mu\nu}(K) &= -2 \operatorname{Im} C_{\mu\nu}^{ret}(K) = -2 \operatorname{Im} \int d^4 X \, e^{-iK\cdot X} \, \langle J_{\mu}^{EM}(0) J_{\nu}^{EM}(X) \rangle^{ret.} \\ \mathrm{AdS/CFT:} \end{split}$$

 $C^{ret}_{\mu\nu}$ determined by asymptotic behavior of solutions of 5D Maxwell equations $\partial_A(\sqrt{-g}g^{AC}g^{BD}F_{CD})=0$

 $(A_C \text{ bulk gauge field dual to conserved U(1) R-current, not the electromagnetic field!)$

[Son&Starinets:]

retarded correlator obtained by infalling boundary conditions (complex)

Anisotropic case:

different for wave vector \mathbf{k} parallel or orthogonal to direction of anisotropy \mathbf{e}_L :

$$\begin{split} C^{ret}_{\mu\nu} &= \sum P^a_{\mu\nu} \Pi_a(K) \text{ with orthogonal } P^a_{\mu\nu} \\ a &= T, L \text{ when } \mathbf{k} \parallel \mathbf{e}_L \\ a &= 1, 2, L \text{ when } \mathbf{k} \parallel \mathbf{e}_1 \perp \mathbf{e}_L \\ \Pi_a(K) &= -\frac{2}{g_B^2} \lim_{u \to 0} \frac{E'_a(K, u)}{E_a(K, u)} \quad \text{with } g_B = 16\pi^2 R/N_c^2 \end{split}$$

Spectral function of current-current correlator

JW-model:

$$\begin{split} E_a(K,u) & \text{described by 2nd order ODE's in } u \\ & \frac{d^2}{du^2}\phi + \frac{C_1}{(1-u)}\frac{d}{du}\phi + \frac{\omega^2 C_2}{(1-u)^\alpha}\phi = 0 \quad \text{ with } \alpha = (2+\sqrt{36-2B^2})/4 \leq 2 \end{split}$$

Isotropic: $\alpha = 2$ allows Frobenius ansatz at singular point u = 1 (horizon) with characteristic exponent $\pm i\omega/\sqrt{8}$ (ingoing/outgoing b.c.)

Anisotropic: $B \neq 0 \rightarrow \alpha < 2 \Rightarrow$ different character coordinate transform $= (1-u)^{(2-\alpha)}$ gives $\frac{d^2}{dx^2}\phi + \frac{\beta}{x}\frac{d}{dx}\phi + \frac{\gamma^2}{x}\phi = 0$ with some $\beta, \gamma (\rightarrow \infty \text{ as } \alpha \rightarrow 2)$ Solution $\phi(u) \sim (1-u)^{(2-\alpha)(1-\beta)/2}H_{1-\beta}^{(1,2)}(2\gamma(1-u)^{(2-\alpha)/2})$ where the Hankel function of the second kind $H_{\nu}^{(2)}$ corresponds to ingoing boundary conditions – used in numerical evaluation NB: JW-naked singularity rather benign! Still allows purely ingoing b.c.!

Spectral function of current-current correlator

dashed lines: oblate, and dotted lines: prolate anisotropies

B = 0 (black \equiv result of Huot, Kovtun, Starinets, Moore & Yaffe 2006), B = 0.1 (red, dashed), B = -0.1 (red, dotted), B = 1 (blue, dashed), B = -1 (blue, dotted), $B = \sqrt{2}$ (green, dashed), $B = -\sqrt{6}$ (green,dotted), $B = \pm 3$ (orange – involving negative pressures)

Anisotropic AC conductivities

full lines: longitudinal conductivity dashed lines: transverse conductivity

• DC conductivities zero \leftrightarrow hydrodynamic limit singular

Regular top-down model: Anisotropic axion-dilaton gravity

homogeneously distributed along z-direction with $n_{\rm D7} = dN_{\rm D7}/dz$

anisotropic bulk geometry, anisotropic horizon

Electrical DC conductivity

Because of regular (albeit anisotropic) horizon: ∃ hydrodynamic limit

NB: $\sigma_{\perp} > \sigma_z$ independently of whether plasma oblate or prolate! *JW model:* although $\sigma_{\perp,z} \to 0$, similarly $\forall B: \sigma_{\perp}(\omega)/\sigma_z(\omega) > 1$ for small ω

Shear viscosity in anisotropic fluid

Kubo formula

$$\eta_{ijkl} = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G^R_{ij,kl}(\omega, 0)$$

with $G^R_{ij,kl}(\omega,0) = -i \int dt \, d\mathbf{x} \, e^{i\omega t} \, \theta(t) \, \langle [T_{ij}(t,\mathbf{x}),T_{kl}(0,\mathbf{0})] \rangle$

Axisymmetry around *z*-axis (direction of anisotropy):

- \rightarrow 2 different shear viscosities:
 - $\eta_{\perp} = \eta_{xyxy}$ (shear planes $\perp z$ -axis)
 - $\eta_{\parallel} = \eta_{xzxz} = \eta_{yzyz}$ (shear planes $\parallel z$ -axis)

Calculating η/s with gauge/gravity duality

Kubo formula

$$\eta_{ijkl} = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G^{R}_{ij,kl}(\omega, 0)$$

with $G^R_{ij,kl}(\omega,0) = -i\int dt\,d{\bf x}\,e^{i\omega t}\,\theta(t)\,\langle [T_{ij}(t,{\bf x}),T_{kl}(0,{\bf 0})]\rangle$

Gauge/gravity duality

perturb metric by $\psi_a=h^i_j$ and expand action to second order in ψ_a \Rightarrow effective action for massless scalar ψ_a

$$G_a^R(q) = -\lim_{u \to 0} \frac{\Pi_a(u,q)}{\psi_a(u,q)} \qquad \text{with } \Pi_a = \frac{\partial \mathcal{L}^{(2)}}{\partial (\partial_u \psi_a)} \propto \partial_u \psi_a$$

retarded correlator ↔ infalling boundary conditions at horizon

MT model:

Obtained numerically (on numerically given background!) and also from membrane paradigm

Calculating η/s from membrane paradigm

Membrane paradigm [Iqbal, Liu '08]

at the horizon

$$\psi_a(t, u, \mathbf{x}) = \psi_a(v, \mathbf{x})$$
 where $dv = dt - \sqrt{\frac{g_{uu}}{-g_{tt}}} du$

regularity in infalling coordinates implies $\Pi_a \propto \partial_t \psi_a$

shear viscosity

$$\eta_a(u_h) = \frac{\prod_a(u_h, q)}{i\omega\psi_a(u_h, q)} \qquad \text{with } \Pi_a(u_h, q) \propto i\omega\psi_a$$

if $\partial_u \eta_a = 0$ in limit of zero momenta and frequency \rightarrow trivial RG flow to boundary

η/s from membrane paradigm

Two shear viscosity components with trivial RG flow (coinciding with numerical result from Kubo formula/absorption calculation)

Violation of the holographic viscosity bound!

unbounded: $\mathcal{H}
ightarrow \infty$ as $rac{a}{T}
ightarrow \infty$,

but eventually breakdown of supergravity approximation (naked singularity at T=0)

Third shear viscosity component in bulk (only)

3rd shear viscosity $\psi_{\tilde{L}} = h_x^z$

$$\eta_{x}^{z} {}_{x}^{z} = \eta_{\perp} \frac{g_{zz}(u_{h})}{g_{xx}(u_{h})} = \frac{s\mathcal{H}(u_{h})}{4\pi} > \frac{s}{4\pi}$$

Reason for 3rd viscosity component, while axi-symmetry should allow only 2: Wilsonian energy-momentum tensor away from the boundary is nonsymmetric! (cp. Adams, Balasubramanian, McGreevy JHEP 0811)

Nontrivial flow towards boundary! Mamo JHEP1210: analytic check to order a^2 ; Steineder (thesis 2012): to all orders numerically

$$\partial_u \big(\eta_{\tilde{L}} \big) \propto a^2 \quad \Rightarrow \quad \eta_{\tilde{L}} = \eta_{\tilde{L}}(u)$$

 \leftrightarrow only 2 shear viscosities in boundary theory

Other deviations from universal KSS result

Prior:

- higher derivative gravity!
 - finite coupling corrections increase η/s Buchel et. al., *Nucl. Phys.* B707 (2005)
 - but also higher derivative gravity theories that violate the bound were found Brigante et. al., Phys. Rev. D77 (2008); Kats, Petrov, JHEP 0901 (2009)
- spatial anisotropy:
 - non-commutative $\mathcal{N} = 4$ SYM plasma satisfies the bound Landsteiner, Mas, JHEP 0707 (2007)
 - bottom-up model for anisotropic p-wave superfluids gave non-universal shear viscosity component above, the bound Erdmenger et. al., Phys. Lett. B699 (2011); ...
 - anisotropic axion-dilaton gravity violates the bound Rebhan, DS, Phys. Rev. Lett. 108 (2012)

By now also:

 \bullet anisotropic top-down Einstein gravity model with 5+1d field theory found which violates the bound

Polchinski, Silverstein, Class. Quant. Grav. 29 (2012)

Implications for QGP hydro simulations?

 v_2 dominantly driven by η_\perp which respects KSS bound but (insignificant) effect for rapidity dependence: B. Schenke: MUSIC code (private communication) Hydro simulations with $\eta_L \neq \eta_\perp$:

Jet quenching

Chemicoff et. al. JHEP 1208; Rebhan, DS, JHEP 1208 momentum broadening Δp of a hard parton moving at angle θ wrt z-axis $\theta = 0$: rotationally invariant broadening $\theta \neq 0$: dependence on directions orthogonal to partion trajectory $\phi = 0 \dots \frac{\pi}{2}$: Δp measured orthogonal to ... in plane $[\hat{v} \ \hat{z}]$ $\theta = \frac{\pi}{2}$: $\phi = 0 \rightarrow \hat{q}_{\perp}, \phi = \frac{\pi}{2} \rightarrow \hat{q}_L$ MT: always $[\hat{q}_L > \hat{q}_{\perp}]$

oblate

prolate plasma

- agrees with Hard Anisotropic Loop calculation [Romatschke '07; Baier, Mehtar-Tani '08] for oblate, but not for prolate
- inclusion of effects of chromomagnetic fields from plasma instabilities however also points to $\hat{q}_L>\hat{q}_\perp$ for both oblate and prolate plasma

[Dumitru et al., 2006; Ipp, AR, Strickland, in preparation]

Jet quenching

Qualitative differences:

JW model ($\epsilon = const.$)

MT model (s = const.)

Opposite trend in JW model for oblate plasma (relevant for QGP)!

More differences between JW and MT models

Spectral densities for photons

AR, Steineder JHEP 1108 (2011); Patino, Trancanelli, arXiv:1211.2199

Stark differences, in particular for large momenta!

More differences between JW and MT models

Heavy quark potentials AR, Steineder, JHEP 1208 (2012)

JW: quarks separately in *z*-direction have deeper (shallower) potential for oblate (prolate) anisotropy in qualitative agreement with weak coupling (hard anisotropic loop) results

MT: always qualitatively like prolate JW

Thermodynamics of MT model (infinite coupling)

Mateos, Trancanelli, JHEP 1107; Gynther, AR, Steineder, JHEP 1210

Instability against redistribution of homogeneous anisotropy "charge" density a into inhomogeneous (lasagna) phase for $0 < a < a_2$

(vaguely reminiscent of filamentation instability in weakly coupled anisotropic plasma)

Thermodynamics of MT model (zero... weak coupling)

Gynther, AR, Steineder, JHEP 1210

plasma of weakly (or non-) interacting vector bosons coupled to anisotropic Chern-Simons charge

- anisotropic dispersion laws, but no unstable modes (unlike hard anisotropic loop theory!)
- yet: even richer phase diagram with instabilities of homogeneous phase against redistribution of anisotropy charge

 $s/u/m:\ stable/unstable/metastable;\ O/P:\ oblate/prolate$

Conclusion

- Two interesting toy models for strongly coupled anisotropric SYM plasmas: *JW model:* simple singular geometry with rather benign naked singularity *MT model:* regular equilibrium geometry with anisotropy through linear axion
- MT model leads to longitudinal shear viscosity η_L below the KSS result universal to isotropic Einstein gravity duals! (unfortunately elliptic flow rather insensitive to η_L)
- Stark differences of heavy-ion physics observables in both models! *Jet quenching:* only MT model same trend as expected from weak-coupling plasma instabilities *Heavy quark potential:* only JW model same trend as weak coupling results
- Time-dependent nonequilibrium AdS with colliding shock waves could in principle decide whether those are good toy models!