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Veneziano QCD is a YM theory with NN, colors and Ny fermion

flavors, at the limit N., Ny — oo but xy = 1]\\% constant.

The holographic model and its vacuum structure described in
arXiv:1112.1261, and in the previous talk by Jarvinen. For
studying the thermodynamics, we add a black hole to the bulk.
The model stays the same, but the metric ansatz now becomes

dr?
2 QT —f(r 2 XZ
ds = B(r) |~/ (r)de* + &+ o5 (1)
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e Conformal window between z. ~ 4 and x,s = 11/2
e A deconfinement /chiral symmetry restoring transition at
Tr < Tc

e Miransky scaling at x5 < .



Action

To recap the setup, the gravity action is

1
= I\43N2/d5 = / 5
S . x L 167G- d’z L, (2)
where
4 (ON)?
L = [\/—g <R—3()\2)—|—Vg()\)> (3)

-v}(A,T)\/det(gab+-R(A,T)aaTe%T)}.

The metric Ansatz is

dr?
ds® = b2(r) [—f(r)dt2 +dx* + } , 4
() W
and the two scalar functions, 1/)\ sourcing F? and 7 sourcing

(qq), are
A=) =€ T =1(r). (5)



The duality

e )\ dual to field theory t’Hooft coupling



The duality

e )\ dual to field theory t’Hooft coupling
e b dual to field theory energy scale



The duality

e )\ dual to field theory t’Hooft coupling
e b dual to field theory energy scale

e Therefore field theory beta function S(\) = dl‘ffé 5




The duality

A dual to field theory t’Hooft coupling

b dual to field theory energy scale

Therefore field theory beta function 5(\) = dl‘ffé 5
small A is UV, large X is IR




The duality

A dual to field theory t’Hooft coupling

b dual to field theory energy scale

Therefore field theory beta function S(\) = dl‘ffé 5
small X is UV, large A is IR

The potentials V,, Vy and k are to be determined.




The duality

A dual to field theory t’Hooft coupling

b dual to field theory energy scale

Therefore field theory beta function S(\) = dl‘ffé 5
small X is UV, large A is IR

The potentials V,, Vy and k are to be determined.
UV limit: match 5(\) with perturbation theory




The duality

A dual to field theory t’Hooft coupling

b dual to field theory energy scale

Therefore field theory beta function S(\) = dl‘ffé 5
small X is UV, large A is IR

The potentials V,, Vy and k are to be determined.
UV limit: match 5(\) with perturbation theory

IR limit: confinement and 7 divergence
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Potential zoo

The potentials we used come essentially from a cartesian
product of four choices

e choice of 7 divergence: exponential is potential I,
squareroot is potential II

e The confinement factor in just Vi, or both V; and Vy
(potentials I and II, versus I, or I, )

o Wy = constant € (0, 2], or Wy = Wy(z) such that the UV
pressure matches the Stefan-Boltzmann limit
e The string frame to Einstein frame conversion factor x may

be corrected by a logarithmic factor.
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Boundary conditions

Solutions to the gravity equations from numerics. For that we
need the boundary conditions, which we set at the horizon:

e \(r,) = A\p determines the temperature (but temperature
does not determine ), uniquely).

e 7(rp) = 7, determines the quark mass via
7(r) o< mgrlog(r)® at the limit of small r

Want m, = 0:
e chiral symmetry = 7(r) =0

e chiral symmetry broken = 7(r) # 0, but my, =0
determines 75, as a function of Ay
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Solving 7,

Several solutions to the equation mgy(74, Ap) = 0, corresponding
to different Efimov vacuums

m

e However, only the one with largest 7 is
thermodynamically relevant (smallest free energy)

e Overall, two separate branches of black hole solutions, one
with 7 = 0, and one with a dynamic tachyon.
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Thermodynamics

= _%f/(rho\h))
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1 (M dT
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Note that c? > 0 requires that j)\—Th < 0.
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Temperature

The function T'(Ay) determines the possible phases of the
theory.
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Below Ap, < Aend the 7, # 0 phase doesn’t exist = no chiral
symmetry breaking at high T
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Computing pressure

To compute the pressure, we need to fix the integration
constants in the two branches:

e At the Ay — oo limit, the 7 # 0 solution becomes the 7 # 0
vacuum solution, i.e. py(Ap, = 00) = 0.

e At A, the 7 = 0 solution has T' = 0 < the 7 = 0 vacuum
solution.

e Require that the difference in free energy between these is
the same as between the corresponding vacuum solutions

= numerically equivalent to requiring that py,(Aend) = Po(Aend)



Pressure
Typical p(T'), with 5 = Ny/N. = 3:
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Phase transitions in order of decreasing T':

e A crossover around Terossover

e The second order chiral symmetry breaking transition at
Tend

e The confining, or hadronization, transition at 7T}, from the
black hole phase to the hadron gas phase



Numerics

From the above, calculate the (xf,7T) phase diagram and other
thermodynamic variables for a comprehensive subset of all
choices of potential. A numerical code which near-automatically
gives the full thermodynamics given the potentials as inputs
allowed us to explore ten different potentials with reasonable
time and effort.



Numerics

From the above, calculate the (xf,7T) phase diagram and other
thermodynamic variables for a comprehensive subset of all
choices of potential. A numerical code which near-automatically
gives the full thermodynamics given the potentials as inputs
allowed us to explore ten different potentials with reasonable
time and effort.

Some examples to follow. Legend:

e blue lines: transitions which involve either the 7 # 0
-branch or the 7 # 0 vacuum solution

e red lines: transitions which only involve the 7 = 0 -solution.
e thick lines: transitions between two stable phases

e thin lines: transitions between two metastable phases



Potential II, W, SB-normalized
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Reasonable phase diagram, but meson masses go as M, ~ n, so
not a good QCD model.



Potential I, W, = 12/11

Conformal window

T/A T/A
\ 0.
08

. " x
00 01 02 03 04 05 06 07

The most complicated phase diagram we found.
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Potentials I, and 11,

T/A T/A
2.00¢ 10.0-

1504 No chiral symmetry

100t breaking phase here

(00 S————

Conformal window
Conformal window

0.50+

¢ . , , . X

0.300 I

L, has no xsB at low-z, II, has the same spectrum problem as
1I.



Potential I with log-modified s
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Potential I with log-modified s
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e phase diagram compatible with expectations for QCD-like
theory
e meson trajectory is Regge-like

e = best candidate for modeling QCD-like theories (for now,
Kiritsis et. al. working further on this)



The conformal window
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No 7 # 0 solution in the conformal window = thermodynamics
in the conformal window is qualitatively independent of the
choice of potential.



Finite mass (potential II, W, SB
-normalized)
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Conclusions

Generic conclusions independent of the potential:

e A conformal window between x. ~ 4 (depends weakly on
the potential) and x; = 11/2, where asymptotic freedom is
lost

e Miransky scaling, i.e. all mass scales go as exp(——F——)
A/ Tec —xf
when z; — x.
e A region with a walking coupling constant, i.e.

quasi-conformality, when x ¢ is slightly below z.

e at small 2, chiral symmetry restoration always coincides
with deconfinement.
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Outlook

e Work on finite baryon density is underway

e More detailed analysis of the best fit potential, including
finite quark mass

e non-degenerate quark masses



That’s all, folks! Thank you!
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