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Overview

• Veneziano QCD

• The model and determining the potentials

• Computing thermodynamics

• Results

• Outlook



Veneziano QCD

Veneziano QCD is a YM theory with Nc colors and Nf fermion

flavors, at the limit Nc, Nf →∞ but xf ≡
Nf

Nc
constant.

The holographic model and its vacuum structure described in
arXiv:1112.1261, and in the previous talk by Järvinen. For
studying the thermodynamics, we add a black hole to the bulk.
The model stays the same, but the metric ansatz now becomes

ds2 = b2(r)

[
−f(r)dt2 + dx2 +

dr2

f(r)

]
, (1)
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Action
To recap the setup, the gravity action is

S = M3N2
c

∫
d5xL ≡ 1

16πG5

∫
d5xL, (2)

where

L =

[√
−g
(
R− 4

3

(∂λ)2

λ2
+ Vg(λ)

)
(3)

−Vf (λ, τ)
√

det (gab + κ(λ, τ)∂aτ ∂bτ)
]
.

The metric Ansatz is

ds2 = b2(r)

[
−f(r)dt2 + dx2 +

dr2

f(r)

]
, (4)

and the two scalar functions, 1/λ sourcing F 2 and τ sourcing
〈q̄q〉, are

λ = λ(r) = eφ(r), τ = τ(r). (5)



The duality

• λ dual to field theory t’Hooft coupling

• b dual to field theory energy scale

• Therefore field theory beta function β(λ) = dλ
d log b

• small λ is UV, large λ is IR

• The potentials Vg, Vf and κ are to be determined.

• UV limit: match β(λ) with perturbation theory

• IR limit: confinement and τ divergence
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Potential zoo

The potentials we used come essentially from a cartesian
product of four choices

• choice of τ divergence: exponential is potential I,
squareroot is potential II

• The confinement factor in just Vg, or both Vg and Vf
(potentials I and II, versus I∗ or II∗ )

• W0 = constant ∈ (0, 2411 ], or W0 = W0(xf ) such that the UV
pressure matches the Stefan-Boltzmann limit

• The string frame to Einstein frame conversion factor κ may
be corrected by a logarithmic factor.
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Boundary conditions

Solutions to the gravity equations from numerics. For that we
need the boundary conditions, which we set at the horizon:

• λ(rh) ≡ λh determines the temperature (but temperature
does not determine λh uniquely).

• τ(rh) ≡ τh determines the quark mass via
τ(r) ∝ mqr log(r)a at the limit of small r

Want mq = 0:

• chiral symmetry ⇒ τ(r) ≡ 0

• chiral symmetry broken ⇒ τ(r) 6= 0, but mq = 0
determines τh as a function of λh
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Solving τh

Several solutions to the equation mq(τh, λh) = 0, corresponding
to different Efimov vacuums

T0

m

• However, only the one with largest τh is
thermodynamically relevant (smallest free energy)

• Overall, two separate branches of black hole solutions, one
with τ ≡ 0, and one with a dynamic tachyon.
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Thermodynamics

T = − 1

4π
f ′(rh(λh))

s =
1

4G5
b3(λh)

p = −F =
1

4G5

∫ λ∗

λh

dλh

(
− dT
dλh

)
b3(λh) + p0

ε = Ts− p

c2s =
β(λ)

3T

dT

dλh

Note that c2s > 0 requires that dT
dλh

< 0.
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Temperature
The function T (λh) determines the possible phases of the
theory.

Tu(ΛhL
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Below λh < λend the τh 6= 0 phase doesn’t exist ⇒ no chiral
symmetry breaking at high T
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Computing pressure

To compute the pressure, we need to fix the integration
constants in the two branches:

• At the λh →∞ limit, the τ 6= 0 solution becomes the τ 6= 0
vacuum solution, i.e. pb(λh =∞) = 0.

• At λ∗, the τ ≡ 0 solution has T = 0 ⇔ the τ ≡ 0 vacuum
solution.

• Require that the difference in free energy between these is
the same as between the corresponding vacuum solutions

⇒ numerically equivalent to requiring that pu(λend) = pb(λend)
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Pressure
Typical p(T ), with xf = Nf/Nc = 3:
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Phase transitions in order of decreasing T :

• A crossover around Tcrossover
• The second order chiral symmetry breaking transition at
Tend

• The confining, or hadronization, transition at Th from the
black hole phase to the hadron gas phase



Numerics

From the above, calculate the (xf , T ) phase diagram and other
thermodynamic variables for a comprehensive subset of all
choices of potential. A numerical code which near-automatically
gives the full thermodynamics given the potentials as inputs
allowed us to explore ten different potentials with reasonable
time and effort.

Some examples to follow. Legend:

• blue lines: transitions which involve either the τ 6= 0
-branch or the τ 6= 0 vacuum solution

• red lines: transitions which only involve the τ = 0 -solution.

• thick lines: transitions between two stable phases

• thin lines: transitions between two metastable phases
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Potential II, W0 SB-normalized
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Reasonable phase diagram, but meson masses go as Mn ∼ n, so
not a good QCD model.



Potential I, W0 = 12/11
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Potentials I∗ and II∗
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I∗ has no χSB at low-xf , II∗ has the same spectrum problem as
II.
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Potential I with log-modified κ
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• phase diagram compatible with expectations for QCD-like
theory

• meson trajectory is Regge-like

• ⇒ best candidate for modeling QCD-like theories (for now,
Kiritsis et. al. working further on this)
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The conformal window
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No τ 6= 0 solution in the conformal window ⇒ thermodynamics
in the conformal window is qualitatively independent of the
choice of potential.



Finite mass (potential II, W0 SB
-normalized)
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Conclusions

Generic conclusions independent of the potential:

• A conformal window between xc ∼ 4 (depends weakly on
the potential) and xf = 11/2, where asymptotic freedom is
lost

• Miransky scaling, i.e. all mass scales go as exp(− κ√
xc−xf

)

when xf → xc

• A region with a walking coupling constant, i.e.
quasi-conformality, when xf is slightly below xc

• at small xf , chiral symmetry restoration always coincides
with deconfinement.
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• Work on finite baryon density is underway

• More detailed analysis of the best fit potential, including
finite quark mass

• non-degenerate quark masses
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That’s all, folks! Thank you!
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