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Hyperscaling Violating Lifshitz

• Recently a new class of space-times with potential
applications to CMT has been introduced. These are
the so-called hyperscaling violating Lifshitz (hvLif)
space-times:

4D hvLif metric: ds2 = rθ
(

−dt2

r2z
+

dr2

r2
+

dx2 + dy2

r2

)

.

[Charmousis, Goutéraux, Kim, Kiritsis, Meyer, 2010], [Ogawa, Takayanagi,

Ugajin, 2011], [Huijse, Sachdev, Swingle, 2011], [Dong, Harrison, Kachru,

Torroba, Wang, 2011].

• These space-times are generically UV and IR singular
and should be thought of as effective geometries for a
certain energy range of the dual field theory.
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Outline of this talk

4D hvLif metric: ds2 = rθ
(

−dt2

r2z
+

dr2

r2
+

dx2 + dy2

r2

)

For related work see [Goutéraux, Kiritsis, 2012] (previous talk by
Elias Kiritsis).

• Motivation:

◦ Entanglement entropy

◦ Thermal entropy

◦ Singularities

• Holographic models:

◦ Einstein–Proca-dilaton model

◦ Probe fields
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Entanglement entropy

• Boundary entangling re-
gion with surface area Σ ∼
R.

• Minimal bulk surface end-
ing on boundary entangling
region with surface A.

• Entanglement entropy
SE ∼ A [Ryu, Takayanagi, 2006].

• For 0 ≤ θ < 1 we have an area law: SE ∼ Σ.

• For θ = 1 we have SE ∼ Σ log Σ.

• 1 < θ < 2: something between Σ log Σ and Σ2.
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Entanglement entropy

• The entanglement entropy between a region A and its
complement in a quantum field theory in its ground
state generally scales as the area of ∂A [Bombelli, Koul, Lee,

Sorkin, 1986], [Srednicki, 1993].

• Systems with a co-dimension one Fermi surface
display logarithmic violations of the area law [Swingle,

2009].
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Thermal entropy

• A typical finite temperature deformation looks like:

ds2 = rθ
(

−f
dt2

r2z
+

dr2

fr2
+

dx2 + dy2

r2

)

, f = 1−
(

r

rh

)2+z−θ

• Depending on the Lagrangian the metric may be more
complicated.

• The thermal entropy density scales with temperature
as

S ∼ rθ−2
h ∼ t(θ−2)/z ∼ T (2−θ)/z .
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Thermal entropy

• Naive scaling for a system with d spatial dimensions is
S ∼ T d/z (known as hyperscaling). Here d = 2 but
S ∼ T (2−θ)/z and so θ 6= 0 violates hyperscaling.

• If θ = 1 the thermal entropy scales with temperature as
S ∼ T 1/z.

• Hence it sees an effective one-dimensional space of
thermal excitations with dynamical critical exponent z.

• This ties in well with the fact that for θ = 1 the
entanglement entropy scales like that of a
co-dimension one Fermi surface.

• Third law of thermodynamics: 2− θ > 0.
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Singularities

• Consider the metric with θ > 0:

ds2 = rθ
(

−dt2

r2z
+

dr2

r2
+

dx2 + dy2

r2

)

• Curvature scalars blow up as r → 0 (UV) and go to
zero as r → ∞ (IR).

• Tidal forces blow up as r → ∞ (IR) unless z = 3/2 and
θ = 1 [Copsey, Mann, 2012].

• This singles out θ = 1 and z = 3/2 as an IR regular
metric whose entanglement and thermal entropies
agree with that of a co-dimension one Fermi surface.
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Singularities

• θ = 1 and z > 3/2 (NEC) can still be interesting as we
could imagine replacing the IR with something else
that is regular.

• The UV for θ = 1 is for all values of z singular so we
cannot trust this metric for r very small.

• We imagine the θ = 1 hvLif metric as being an effective
low energy description of some asymptotically
AdS/Lifshitz space-time.
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The EPD model

• A toy model (as in not necessarily low energy string
theory) Lagrangian supporting hvLif space-times:

L =
√
−g

(

R− 1

2
(∂φ)2 − 1

4
eaφF 2 − m2

2
ebφA2 − V0e

(b−a)φ

)

.

◦ For m2 = 0 this is called the Einstein–Maxwell-
dilaton (EMD) model.

◦ For m2 6= 0 we will call this the Einstein–Proca-
dilaton (EPD) model.

◦ For m2 > 0 we can write it as a Maxwell field coupled
to a charged complex scalar [Goutéraux, Kiritsis, 2012].

◦ We will allow m2 < 0 (more later).
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Solution (θ, z, α, φ0) ds2 = rθ
(

−dt2

r2z
+

dr2

r2
+

dx2 + dy2

r2

)

,

φ = φ0 + α log r ,

A = ±e−aφ0/2

(

2(z − 1)

z + bα
2

)1/2

r−bα/2dt

rz
.

• The Lagrangian parameters are:

V0 = −1

2

(

θ2 − 6θ + 8 + 2z2 − 2θz + 2z + α2
)

e(a−b)φ0 ,

m2 =
z + bα

2

2(z − 1)

[

(θ − 2)(θ − 2z + 2)− α2
]

e(a−b)φ0 ,

b =
α2 − θ(θ − 2)

(z − 1)α
,

a =
α2 − θ(θ − z − 1)

(z − 1)α
.
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Scale transformations

• Under the Lifshitz scaling

r → λr , t → λzt , ~x → λ~x ,

we have

ds2 → λθds2 , F → λ−bα/2F , φ → φ+ α log λ .

• In the θ = 0 case the Lifshitz scaling becomes a
symmetry. A natural requirement is to demand that for
θ = 0 the matter fields respect this symmetry. In order
that this symmetry is restored for θ going to zero we
need that for small θ we have

α2 = c1θ + c2θ
2 +O(θ3) , c1 6= 0 .
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The EMD vs. the EPD model

• General features of the EMD model:

◦ Easy to write down black hole solutions
(thermodynamics the same as for m2 6= 0).

◦ Matter fields break the scale symmetry when θ = 0.

◦ Does not describe θ = 1 and z = 3/2.

• General features of the EPD model:

◦ θ controls the breaking of scale invariance also for
the matter fields.

◦ Can account for all (θ, z) satisfying the NEC if we
allow m2 < 0.

◦ Difficult to construct analytic black hole solutions.
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θ = 1 and z = 3/2

• The mass parameter is

m2 =
z + bα

2

2(z − 1)

[

(θ − 2)(θ − 2z + 2)− α2
]

e(a−b)φ0 .

• For θ = 1 and z = 3/2 we get m2 < 0.

• This does not need to be a problem as e.g. on AdS we
have the Breitenlohner–Freedman bound.

• To find out whether it is admissible to have m2 < 0 we
look at linearized perturbations around an hvLif
space-time.
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Perturbations gµν = ḡµρ (δ
ρ
ν + ǫhρ

ν) ,

Aµ = Āt

(

δtµ + ǫaµ
)

,

φ = φ̄+ ǫϕ .

where the barred fields refer to the hvLif background.

• We will employ radial gauge, i.e. hrµ = 0.

• We consider purely radial perturbations. These satisfy
scale invariant equations.

• Types of perturbations:

◦ tensor perturbations: hxy, hxx − hyy,

◦ vector perturbations: hti, ai with i = x, y,

◦ scalar perturbations: hxx + hyy, htt, ϕ, at, ar,

with respect to the isometry group of the x− y plane.
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Perturbations

• The radial perturbations are described by a set of
coupled second order differential equations with
constant coefficients. This can be written as a set of
first order differential equations of the form

r
d

dr
hi = Mi

jhj .

• We demand that the eigenvalues of the matrix M are
real.

• All eigenvalues except two are manifestly real. These
are

1

2

(

2 + z − θ ±
√
σ

α(z − 1)

)

.
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Perturbations

σ = 4α6 + 4α4
(

−3θ2 + 3z2 + 2θ(z + 2)− 7z + 4
)

+α2
[

12θ4 + 2θ(z − 1)
(

5z2 + z − 14
)

− 16θ3(z + 2)

+θ2((62− 11z)z − 3) + (z − 1)2(z(9z − 20) + 20)
]

−4(θ − 2)θ2(−θ + z + 1)
(

−θ2 + θ + θz + (z − 3)z + 2
)

• Taking 0 ≤ θ ≤ 1 (area law entanglement with
logarithmic violations for θ = 1) and z ≥ 1 + θ/2 (NEC)
does not guarantee that σ > 0. It is sufficient to impose
furthermore one of the following three restrictions:

z ≥ 2 , θ ≥ 0.10558 , α2 ≥ 0.0058351 .

• Hence σ > 0 for θ = 1 and z = 3/2. We therefore do
not expect a BF-type instability, which corresponds to a
complex eigenvalue.
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Scalar probe fields

• The linearized perturbations suggest a natural
Lagrangian for a probe field. This is found by taking the
couplings for a scalar perturbation to the background
fields and setting the coupling constants free.

• Consider the following Lagrangian for a probe scalar
field χ on the hvLif background

L =
√
−ḡ

(

−1

2
(∂χ)2 +

[

cRR̄ +
cF
4
eaφ̄F̄ 2 +

cA
2
ebφ̄Ā2 − cφ

2
e(b−a)φ̄

]

χ2

)

• The equation of motion for the scalar field is

−r2z∂2
t χ+ r2∂2

xχ+ r2∂2
yχ+ r2∂2

rχ− (1+ z− θ)r∂rχ−m2
χχ = 0 ,

which is invariant under Lifshitz scaling.
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Scalar probe fields

• The probe mass parameter is

m2
χ = cR

(

3(θ − 2)2 + 4z2 + (8− 6θ)z
)

+ cF 2(z − 1)

(

z +
bα

2

)

+

(

cA
2(z − 1)

z + bα
2

+ cφ

)

e−
θφ0
α .

• Keeping only the radial dependence, the solution to the
equation of motion is

χ(r) = C+r
1

2
(2+z−θ+

√
(2+z−θ)2+4m2

χ)+C−r
1

2
(2+z−θ−

√
(2+z−θ)2+4m2

χ) .

• The BF bound for the scalar field is m2
χ ≥ − (2+z−θ)2

4
.

• This is a direct generalization of the AdS result for
z = 1, θ = 0.
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Summary & Outlook

• 4D hvLif space-times with θ = 1: entanglement entropy
shows logarithmic violations to the area law and
thermal entropy sees an effective 1D system with
dynamical exponent z: dual to a co-dimension one
Fermi surface?

• For z = 3/2 these space-times are IR regular. They are
supported by Lagrangians containing vector fields with
negative m2, but there are no BF type instabilities
when m2 < 0.

• A natural class of probe fields has been found (not the
usual Klein–Gordon particles).

• Next: compute fermionic correlation functions and test
the holographic Fermi surface idea further.
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