
1-



ESF Holograv workshop: “Applied Holography”

7 Martiou 2013

Quantum criticality at finite
density, hyperscale violation and

symmetry breaking.

Elias Kiritsis

University of Crete APC, Paris

2-

http://www.hip.fi/holograv13/
http://hep.physics.uoc.gr/~kiritsis/
http://hep.physics.uoc.gr
http://www.apc.univ-paris7.fr


Bibliography

Based on ongoing work with

B. Gouteraux, (Nordita)

and published recent work with

B. Gouteraux (Nordita) arXiv:1212.2625 [hep-th]

B. Gouteraux (Nordita) arXiv:1107.2116 [hep-th]

B. S. Kim and C. Panagopoulos (Crete) arXiv:1012.3464 [cond-mat.str-el]

C. Charmousis, B. Gouteraux (Orsay), B. S. Kim and R. Meyer (Crete)
. arXiv:1005.4690 [hep-th]

Related work:

J. Gath, J. Hartong, N. A. Obers and R. Monteiro, (NBI)
arXiv:1212.3263 [hep-th].

The QC landscape, Elias Kiritsis

3

http://arxiv.org/abs/arXiv:1212.2625
http://arxiv.org/abs/arXiv:1107.2116
http://arxiv.org/abs/arXiv:1012.3464
http://arxiv.org/abs/1005.4690
http://arxiv.org/abs/1212.3263


Plan

• Introduction

• Towards mapping the QC landscape

• The arena: Einstein-Maxwell-Dilaton EH theories.

• Generalized Criticality and hyperscaling violations

• Symmetry breaking IR asymptotics and Critical lines

• Outlook

The QC landscape, Elias Kiritsis

4



Introduction

There are two roads to the theoretical description of nature:

• Targeted model building driven by experimental data

• Exploration of theoretical possibilities

In QFT the second approach was pioneered by Wilson:

• Specify the symmetry

• Find all theories that are scale invariant (SITs) and respect that symmetry.

• Map the neighborhood of each SIT, by using a local chart of low dimen-

sion scaling operators, and determine the local RG flows.

• Fill in the global set of RG Flows, connecting the network of SITs.

The QC landscape, Elias Kiritsis
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Symmetries

• In HEP the basic symmetry required is Poincaré invariance that together

with scaling leads (usually) to conformal invariance.

In non-relativistic frameworks (condensed matter) several reductions are

possible

• Give up Boosts

• Give up translation invariance

• Give up rotations

• Allowing Lifshitz scaling symmetries

• Allowing more complex symmetries like Schrödinger symmetries.

The QC landscape, Elias Kiritsis
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Fixed point theories

The main ”atoms” in the QFT “lego-game” are the Fixed point theories

(Scale invariant Theories) for a given symmetry universality class.

• At weak coupling, such theories can be searched for perturbatively. There

are VERY FEW examples beyond free-field theories.

• At strong coupling, only very special symmetries (like extended supersym-

metry) or the large-Nc expansion can provide a few more examples. (2d is

an exception)

♠ All in all, we know VERY FEW Scale invariant Theories in three and

more dimensions.

• Since the AdS/CFT correspondence entered the game, many more be-

came known: they are large Nc theories at strong coupling.

• Despite this, we know only a drop in the ocean of SITs.
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• To go further and map the neighborhood of SITs, we must “solve” them.

• For the first step we need the scaling dimensions.

• For the next step we need OPE coefficients.

• Once we have them we can locally map the neighborhood and draw a

flow chart.

♠ The final step , following RG a finite distance away is only possible at

weak coupling and in some cases which can be argued on the basis of

symmetries and other special info.

The QC landscape, Elias Kiritsis
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Classification of QC theories

• The programm: Classification of SI theories (The Wilsonian approach in

AdS/CFT).

• The strategy is to use Effective Holographic Theories (the analogue of

effective FT in the holographic case) in order to explore all possible QC

holographic scale invariant theories with given symmetries.
Charmousis+Gouteraux+Kim+E.K.+Meyer

To do this we must

1. Select the operators expected to be important for the dynamics

2. Write an effective (gravitational) holographic action that captures the

(IR) dynamics by parametrizing the IR asymptotics of interactions .

3. Find the scaling solutions describing extremal saddle points, with given

symmetries. Built the T → 0 bh solutions around them
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4. Study the physics around each acceptable saddle point.

• This strategy has been applied sporadically so far and started bearing

fruit:

• It dealt with various symmetry classes, including Poincaré invariance,

Lifshitz symmetries, hyperscaling violation and more general Bianchi-type

symmetries.
Charmousis+Gouteraux+Kim+E.K.+Meyer

Perlmutter, Gouteraux+E.K.

Huisje+Sachdev+Swingle

Dong+Harrison+Kachru+Torroba+Wang

Iizuka+Kachru+Kundu+Narayan+Sircar+Trivedi

Donos+Gauntlett, Donos+Gauntlett+Pantelidou

Hartnoll+Huijse, Hartnoll+Shaghoulian, Donos+Hartnoll

Iizuka+Kachru+Kundu+Narayan+Sircar+Trivedi+Wang

Iizuka+Maeda
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The ingredients in the classification

♠ We look for QC theories at finite density (single U(1)). We will be for

concreteness in 2+1 boundary dimensions. The results are general.

• The minimum number of fields that will be needed in this context are

two:

♠ The (conserved) stress tensor Tµν dual to a graviton gµν in the bulk.

♠ The (conserved) U(1) current Jµ dual to a gauge field Aµ in the bulk.

• The physics in that case is captured by the Reissner-Nordstrom bh and

this has been studied in detail.

• Even this simplest of cases provided for surprises, namely the emergent semilocal criti-

cality in the IR (at finite density) associated to the AdS2 ×Rn geometry.
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• The next step is include the most important scalar operator, dual to a bulk scalar ϕ.

The holographic theories become richer and are described by an Einstein-Maxwell-Dilaton

theory.

• There are several options that appear in such a case:

• The symmetry: we focus on rotations + 2-d translations +scaling: Hy-
perscaling geometries:

AdS4 : ds2 =
dr2 − dt2 + dx⃗2

r2

AdS2 ×R2 : ds2 =
dr2 − dt2

r2
+ dx⃗2

z− Lifshitz : ds2 = −
dt2

r2z
+

dr2 + dx⃗2

r2

• With violation of hyperscaling

(θ, z)− Lifshitz : ds2 = rθ
[
−
dt2

r2z
+

dr2 + dx⃗2

r2

]
Associated always with a running scalar, towards the edge of field space.

The QC landscape, Elias Kiritsis
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Fractionalized vs cohesive phases

• Event horizons ⇔ deconfined phases ⇔ fractionalised dofs.
Witten

• fractionalization (condensed matter) = deconfinement (high energy physics)

• The characteristic of the presence of a horizon is the presence of gapless

(low energy modes)

• there are separate contributions to the boundary charge density (Hartnoll)
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Fractionalised phase : lim
r→∞

∫
⋆F ≃ Q ̸= 0

Cohesive phase : lim
r→∞

∫
⋆F ≃ 0

The holographic Luttinger theorem is valid in cohesive phases only (Hartnoll).

• Note that the two statements:

the current is irrelevant in the IR, (when the U(1) symmetry is broken) and

the flux is zero in the IR,
ARE NOT equivalent.

The QC landscape, Elias Kiritsis
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Broken vs unbroken symmetry

• The U(1) symmetry is unbroken (= the U(1) gauge boson is massless in

the bulk). The relevant EMD theory is

S0 =
∫

d4x
√
−g

[
R−

1

2
∂ϕ2 − Z(ϕ)F2 + V (ϕ)

]
• The U(1) symmetry is broken (= the U(1) gauge boson is massive in

the bulk).

There are two types of breakings of the U(1) symmetry:

♠ Explicit: non-trivial coupling for a charged operator in the UV.

♠ Spontaneous: no coupling to a charged operator, only a vev.

• Local criticality in the IR does not distinguish between the two.
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The simplest relevant action involves a complex (charged) scalar Ψ,

S = M2
∫

d4x
√
−g

[
R−

G(|Ψ|)
2

|DΨ|2 + Ṽ (|Ψ|)−
Z̃(|Ψ|)

4
F2
]

with the standard covariant derivative as

DµΨ = ∂µΨ+ iqAµΨ .

Fixing the phase of Ψ = χeiθ to zero, and redefining the kinetic terms so

that the new scalar ϕ is canonically normalized we obtain

SM = M2
∫

d4x
√
−g

[
R−

1

2
(∂ϕ)2 + V (ϕ)−

Z(ϕ)

4
F2 −

W (ϕ)

2
A2
]
.

• In the UV

• W (ϕ) = 0: normal phase, U(1) unbroken

• W (ϕ) ̸= 0: U(1) broken (spontaneously or explicitly)
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• In the IR

• Suppose

Veff(ϕ) = V (ϕ)− Z(ϕ)F2 −W (ϕ)A2 , dVeff(ϕ)/dϕ|ϕ⋆ = 0

⇒ solutions with hyperscaling

• In the IR, suppose that the scalar has a runaway behaviour. Define

γ = Infimum{γ0 ∈ R : lim
ϕ→∞

e−γ0ϕZ(ϕ) > 0}

ϵ = Infimum{ϵ0 ∈ R : lim
ϕ→∞

e−ϵ0ϕW (ϕ) > 0}

δ = Infimum{δ0 ∈ R : lim
ϕ→∞

e−δ0ϕV (ϕ) > 0}

In the deep IR the scalar couplings can be (almost always) approximated
by exponentials

V (ϕ) ∼ V0e
δϕ, Z(ϕ) ∼ Z0e

γϕ, W (ϕ) ∼ W0e
ϵϕ, ϕ → ∞

⇒ hyperscaling violation (δ ̸= 0)

The QC landscape, Elias Kiritsis
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Generalized QC points

• There are three critical exponents (z, θ, ζ) that characterize the scaling

of the theories with a U(1) symmetry

♠ The Lifshitz exponent z defined via the scaling of space-time coordinates

(r, x, y) → λ(r, x, y) , t → λz t

♠ The hyperscale-violation exponent θ defined from the transformation of

the metric

ds2 → λθ ds2

• In all hyperscaling violating solutions known

V ds2 → V ds2

This comes from the fact that R · ds2 should scale the same way as V .

• This also explains why θ = 0 if V is a constant (constant scalars).
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♠ The U(1) hyperscale-violation exponent ζ is defined from the gauge field
one form

A ≡ Atdt → λζ A

♠ An alternative but equivalent definition is that the charge density Q and
chemical potential µ transform as

µ → λ−z µ , Q → λ−ζ Q

• The theories with U(1) breaking have three parameters

γ , δ , lim
ϕ→∞

W (ϕ)

Z(ϕ)V (ϕ)

that allow (z, θ, ζ) to be independent.

The QC landscape, Elias Kiritsis
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Classification of symmetry-breaking QC points

• Solve the equations in the critical regime by enumerating cases depending

on the three basic terms:

1. Vector kinetic term

2. Vector mass term

3. Potential term

• The rest of the terms come from the metric and the kinetic term of the

scalar. They all scale as O(r−2) for scaling solutions.

• By choosing a subset of these terms to vanish in the critical solution, and

solving the rest of the equations we find all possible scaling solutions.

• There are 23 − 1 cases to consider.
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• We may study scaling deformations around each solution and learn about

its stability or instability.

• Doing this, one finds many possible IR fixed points that are only deter-

mined by the asymptotic (IR) behavior of potentials.

• Whether they can actually appear as endpoint of RG flows in a given

theory is a different question.

• As we usually solve from the IR, one should start running up from all

possible IR scaling theories.

• In may cases, analyses till now were incomplete as there are more than

one possible ⟨vevs⟩ per coupling indicating “competing” solutions.

• All of this happens even in the simplest of EHTs with a single scalar.

The QC landscape, Elias Kiritsis
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Examples in simple cases: zero density

• Consider an EMD at zero charge density. Then the landscape of critical

points is determined by:

♠ Finite critical points ϕ∗: V ′(ϕ∗) = 0. If V ′′(ϕ∗) > 0 → UV fixed point.

If V ′′(ϕ∗) < 0 → IR fixed point.

The geometry at ϕ = ϕ∗ is AdSp+1. UV fixed points are repulsive while IR

ones attractive.

♠ Infinite critical points ϕ∞ (where limϕ→ϕ∞ V → ∞).

The geometry is hyperscaling-violating AdSp+1 as ϕ runs to ϕ∞. The fixed

points are attractive or repulsive as a function of the whole diagram.

The QC landscape, Elias Kiritsis
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Examples in simple cases: finite density

Consider a potential with a single minimum for simplicity.

• IR fixed points with AdS2 ×Rp−1, constant ϕ = ϕ∗ extremizing

Veff = V (ϕ)− Z(ϕ)F2

• IR fixed points violating hyperscaling with as ϕ runs to ϕ∞ and a gauge

field that has non-trivial IR flux.

• IR fixed points violating hyperscaling with as ϕ runs to ϕ∞ and a gauge

field that has trivial IR flux.

The QC landscape, Elias Kiritsis
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Hyperscaling (constant scalar), neutral IR

S =
∫

d4x
√
−g

[
R− ∂ϕ2 − Z(ϕ)F2 −W (ϕ)A2 + V (ϕ)

]

Veff(ϕ) = V (ϕ)− Z(ϕ)F2 −W (ϕ)A2 , dVeff(ϕ)/dϕ|ϕ⋆ = 0

• Neutral fixed point: Q = 0 at leading order ⇒ AdS4 (cohesive)

δA ∼
r→∞ r(2−∆A), ∆A =

3

2
+

√√√√1

4
+

L2
⋆W⋆

Z⋆
> 2

If ∆A > 3, A is dual to an irrelevant operator: scale invariance is unbroken

If 2 < ∆A < 3, A is dual to a relevant operator: flow to some (charged) fixed point,
Gubser+Nellore’09

δϕ ∼
r→∞ r(3−∆ϕ), ∆ϕ =

3

2

(
1+

√
1− 4L2

⋆V
′′
⋆

)

If V ′′
⋆ < 0, δϕ is an irrelevant perturbation, while it becomes relevant (and complex) for

V ′′
⋆ > 0 (V ′′

⋆ > 9/4L2
⋆)

The QC landscape, Elias Kiritsis
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Hyperscaling (constant scalar), charged IR

• Charged fixed point (ϕ = ϕ∗): Q ̸= 0 at leading order

• W⋆ = 0 ⇒ AdS2 ×R2: fractionalised phase

Two possibly irrelevant deformations (W ′
⋆ = 0):

β1 = −1, β2 =
1

2

(
1−

√
1− 4λ

)
, λ =

V ′′
⋆

V⋆
+

W ′′
⋆

V⋆Z⋆
+

Z ′′
⋆

Z⋆
−

2V ′
⋆
2

V⋆
2

β2 is irrelevant (relevant) if λ < 0 (λ > 0).

• W⋆ ̸= 0 ⇒ Lifshitz (z > 1): cohesive phase

Irrelevant deformations (V ′
⋆ = W ′

⋆ = Z ′
⋆ = 0):

β1 =
1

2

(
z +2−

√
20− 20z +9z2

)
, β2 =

z +2

2

(
1−

√
1− 4λ

)
β1 < 0 iff z > 2 , β2 < 0 iff λ < 0 , λ =

L2V ′′
⋆ + 1

2
L2Q2W ′′

⋆ + 1
2
z2Q2Z ′′

⋆

(z +2)2
.

The QC landscape, Elias Kiritsis
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Hyperscaling violating (running scalar), neutral IR

V (ϕ) ∼ V0e
−δϕ, Z(ϕ) ∼ Z0e

γϕ, W (ϕ) ∼ W0e
ϵϕ

• Neutral, (cohesive) IR (z=1): to leading order Z,W −→
ϕ→∞

0 (power series

solution)

ds2 = rθ
(
L2dr2 − dt2 +dx⃗2

r2

)
+ · · · , ϕ =

θ

δ
log r + · · · , θ =

2δ2

δ2 − 1

L2 = (θ − 3)(θ − 2)/V0, so the IR is r → +∞ if θ < 0 or r → 0 if θ > 3

• Note that the symmetry gets restored in the IR solution.

• Two irrelevant deformations

The QC landscape, Elias Kiritsis
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Hyperscaling violating (running), Charged IR (I)

V (ϕ) ∼ V0e
−δϕ, Z(ϕ) ∼ Z0e

γϕ, W (ϕ) ∼ W0e
ϵϕ,

• Charged, fractionalised fixed point: Q ̸= 0 but W −→
ϕ→∞

0

ds2 = rθ
[
−
dt2

r2z
+

L2dr2 +dx⃗2

r2

]
+ · · · , ϕ =

θ

δ
ln r + · · · z, θ = F (γ, δ)

At = Qrθ−z−2, L2(θ, z), Q(θ, z)

• Allowed parameter range:

IR : r → 0 : [2 < θ ≤ 3 , z > 1] , [θ > 3 , z < 1] ,

IR : r → +∞ : [θ ≤ 0 , z > 1] ,
[
0 < θ < 2 , z >

2+ θ

2

]
.

Always two irrelevant, real deformations, δϕ = ϕ0 and β(θ, z) in the allowed
range.

The QC landscape, Elias Kiritsis
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Hyperscaling violating (running), Charged IR (II)

V (ϕ) ∼ V0e
−δϕ, Z(ϕ) ∼ Z0e

γϕ, W (ϕ) ∼ W0e
ϵϕ, ϕ ∼

θ

δ
ln r → ∞

• Charged, cohesive fixed point: Q ̸= 0, exact solution:

ds2 = rθ
[
−
dt2

r2z
+

L2dr2 +dx⃗2

r2

]
, ϵ = γ − δ , (z, θ, ζ) ∼ F

(
γ, δ,

W0

Z0V0

)

One marginally irrelevant mode δϕ = ϕ0.
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Plots of the allowed parameter space (θ, z) for various values of the exponent δ. The upper

left corner is the region where the IR is r → +∞, the lower right where it is r → 0. In red,

we depict the region where β− is a real irrelevant deformation; in blue, the region where

it is real and relevant; in green, the region where it is complex and relevant. In this case,

the geometry is dynamically unstable.

The QC landscape, Elias Kiritsis
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QC lines

• The hyperscaling violating solutions correspond to quantum critical crit-
ical lines with continuous parameter ϕ0.

• To leading order in 1/Nc, the physics is independent of the continuous
parameter ϕ0.

• This is equivalent to the statement that they contain a hyperscaling-
violating scale ℓ, and therefore no dimensionless parameter.

• The situation at O(1/N2
c ) is expected to generate a bona fide line of

points.

♠ The argument: map ℓ to internal torus volume.

♠ At tree level string theory is volume independent (this is also true to
O(N2

c ) in QFT à la Eguchi-Kawai).

♠ At one string loop, volume dependence will appear: the dimensionless
parameter will be ℓ

ℓs
.

The QC landscape, Elias Kiritsis
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Quantum fractionalisation transitions

Hartnoll+Huijse’11, Adam+Crampton+Sonner+Withers ’12, Goutéraux+E.K ’12

Scale invariant fixed point (θ = 0) with a relevant deformation. To reach this point, the

flow must be fine tuned. Away from the critical value, the flow picks up the relevant

deformation and lands into hyperscaling violation fixed points: a quantum critical line.

The line originates from an extra scaling symmetry: ϕ → ϕ+ ϕ0, Q → e#ϕ0Q

The QC landscape, Elias Kiritsis
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Critical lines vs critical points in Cuprates
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H =
∑
⟨ij⟩ Jij S⃗i · S⃗j

J, J/g → Jij , g > 1

Sadchdev+Keimer

• Quantum phase transition at T=0

• Critical cone above.

23-



d log ρ
d logT : Anomalous Criticality in the Electrical Resistivity of La2−xSrxCuO4.

R. A. Cooper et al., Science 323, 603 (2009).
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QC systems with Schröndiger symmetry

.
Kim+E.K.+Panagopoulos

• Consider the simplest example: AdS-Schwarzschild Black hole in light-
cone coordinates boosted by an arbitrary boost.

ds2 =
ℓ2

r2

[
(1− f(r))

4b2
(dx+)2 − (1 + f(r))dx+dx− + (1− f(r))b2(dx−)2 + dx2 + dy2 +

dr2

f(r)

]
• This realizes z = 2 non-relativistic Schrödinger symmetry in 2 spatial

dimensions.
Golberger (08), Barbon+Fuertes(08), Maldacena+Martelli+Tachikawa (08)

• One can compute the conductivities using the Karch-O’Bannon formalism

applied in this context
Kim+Yamada (10)

The conductivity in the absence of magnetic field (but with light-cone
electric field) reads

ρ =
ρ0√

J2

t2A(t)
+ t3√

A(t)

, A(t) = t2 +
√

1+ t4 , t =
πℓTb√
2bẼb

, J2 =
64

√
2⟨J+⟩2

(Ñ b cos3 θ)2(2bẼb)3
.

Kim+E.K.+Panagopoulos
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When the “drag” term dominates

ρ ∼ t

√
t2 +

√
1+ t4

showing a transition from linear to quadratic behavior.

La2−xSrxCuO4 in R. A. Cooper et al., Science 323, 603 (2009).

• This transition can be achieved by decreasing the light-cone electric field,

Eb. It interpolates between AdS and z=2 Lifshitz scaling.
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.

• By parametrizing ρ = a1T + a2T
2 we obtain α1 ∼

√
Eb and ρ2 = constant.

La2−xSrxCuO4 in R. A. Cooper et al., Science 323, 603 (2009).

The QC landscape, Elias Kiritsis
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Resistivity at non-zero magnetic field

At finite magnetic field

σyy = σ0

√
F+(t)J2 + t4

√
F+(t)F−(t)

F−(t)
, σyz = σ̄0

B
F−(t)

F± =

√(
B2 + t4

)2
+ t4 ∓ B2 + t4 , B =

B̃b

2bẼb

• The scaling variable B = B̃b
2bẼb

seems to be in agreement with experimental

data
T l2Ba2CuO6+δ in A. W. Tyler et al., Phys. Rev. B 57, R278 (1998).

• The inverse Hall angle is defined as the ratio between Ohmic conductivity

and Hall conductivity as

cotΘH =
σyy

σyz

25



Left: Temperature (T ) and magnetic field (B) dependence of the exponent of

cotΘH ≡
σxx

σxy

in the low T , low B regions.

Right: the effective power dependence of cotΘH at small magnetic field, as a function of temperature and

1/
√
Eb.
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The resistivity and cotΘH are correlated at low temperatures in T l2Ba2CuO6+δ
Mackenzie et al. Phys. Rev. B 53, 5848 (1996).
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Plot of the resistivity and inverse Hall angle, in the model, for the low-temperature regime with small

magnetic field. Note that the inverse Hall angle has been scaled by a constant factor a = Bb/(32
√
2⟨J+⟩.

This plot is to be compared with left figure from McKenzie et al. Phys. Rev. B 53, 5848 (1996).
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The Hall Conductivity RH =
ρyz
B

∣∣∣∣
B=0

is constant in the two different regimes

(linear and quadratic)

RH ≃
σ̄0

σ20J
2
∼ Eb

and decreases with doping.

Bi2Sr2−xLaxCuO6+δ from F. F. Balakirev et al., NATURE 424 (2003) 912; Phys. Rev. Lett. 102, 017004

(2009).
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• The magnetoresistance

∆ρ

ρ
=

ρyy(B)− ρyy(0)

ρyy(0)

N. E. Hussey et al., Phys. Rev. Lett, 76, 122 (1996).
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• We find that the modified Köhler rule

K̃ = (cotΘH)2
∆ρ

ρ
≃ temperature independent

is valid in regions (linear+quadratic), as demanded by data,
J. M. Harris et al., Phys. Rev. Lett, 75, 1391 (1995).

• We also find that the Köhler rule

K = ρ2
∆ρ

ρ
≃ temperature independent

is approximately valid in the same regions.

This is not supported by the data at high temperatures but is valid at low

temperatures.

The QC landscape, Elias Kiritsis
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Outlook

• We have used the concept of EHT to classify QC points in EMD theories
with or without unbroken symmetry

• This is a part of an EHT program that is currently extended to more
general situations: more symmetries, CP-odd interactions, more scalars
and U(1)’s etc.

• We characterize all QC geometries with U(1) operator in terms of three
critical exponents (z, θ, ζ)

• The behaviors we find are rich and calculable. They are the first step
into completing a phase diagram.

• The method is general and applicable to all gravitational theories.

• The observables, like current-current correlators, as well as condensate
correlators should be computed.

• General results characterizing the critical exponents may be derived (work
in progress)

The QC landscape, Elias Kiritsis
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