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e Outlook
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NLtroduction

There are two roads to the theoretical description of nature:

e [argeted model building driven by experimental data

e EXxploration of theoretical possibilities

In QFT the second approach was pioneered by Wilson:

e Specify the symmetry

e Find all theories that are scale invariant (SITs) and respect that symmetry.

e Map the neighborhood of each SIT, by using a local chart of low dimen-
sion scaling operators, and determine the local RG flows.

e Fill in the global set of RG Flows, connecting the network of SITs.

The QC landscape, Elias Kiritsis
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Symmetries |

e In HEP the basic symmetry required is Poincaré invariance that together
with scaling leads (usually) to conformal invariance.

In non-relativistic frameworks (condensed matter) several reductions are
possible

e Give up Boosts

e Give up translation invariance

e Give up rotations

e Allowing Lifshitz scaling symmetries

e Allowing more complex symmetries like Schrodinger symmetries.

The QC landscape, Elias Kiritsis
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Fi1Xed poINnt theories I

The main "atoms” in the QFT “lego-game” are the Fixed point theories
(Scale invariant Theories) for a given symmetry universality class.

e At weak coupling, such theories can be searched for perturbatively. There
are VERY FEW examples beyond free-field theories.

e At strong coupling, only very special symmetries (like extended supersym-
metry) or the large-N,. expansion can provide a few more examples. (2d is
an exception)

& All in all, we know VERY FEW Scale invariant Theories in three and
more dimensions.

e Since the AdS/CFT correspondence entered the game, many more be-
came known: they are large N, theories at strong coupling.

e Despite this, we know only a drop in the ocean of SITs.



e [0 go further and map the neighborhood of SITs, we must “solve” them.

e For the first step we need the scaling dimensions.

e For the next step we need OPE coefficients.

e Once we have them we can locally map the neighborhood and draw a
flow chart.

& The final step , following RG a finite distance away is only possible at
weak coupling and in some cases which can be argued on the basis of
symmetries and other special info.

The QC landscape, Elias Kiritsis
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Classitication orf QC Theories I

e The programm: Classification of SI theories (The Wilsonian approach in
AdS/CFT).

e The strategy is to use Effective Holographic Theories (the analogue of

effective FT in the holographic case) in order to explore all possible QC

holographic scale invariant theories with given symmetries.
Charmousis+ Gouteraux+Kim—+E.K.+Meyer

To do this we must
1. Select the operators expected to be important for the dynamics

2. Write an effective (gravitational) holographic action that captures the
(IR) dynamics by parametrizing the IR asymptotics of interactions .

3. Find the scaling solutions describing extremal saddle points, with given
symmetries. Built the T'— O bh solutions around them



4. Study the physics around each acceptable saddle point.

e T his strategy has been applied sporadically so far and started bearing
fruit:

e It dealt with various symmetry classes, including Poincaré invariance,
Lifshitz symmetries, hyperscaling violation and more general Bianchi-type

symmetries.
Charmousis+ Gouteraux+Kim—+E.K.+Meyer
Perlmutter, Gouteraux+E.K.
Huisje+Sachdev+Swingle
Dong-+Harrison+Kachru+ Torroba+Wang
lizuka+Kachru+Kundu-+Narayan-+Sircar+ Trivedi
Donos+ Gauntlett, Donos+ Gauntlett+Pantelidou
Hartnoll4+Huijse, Hartnoll+Shaghoulian, Donos-+Hartnoll
lizuka+Kachru+Kundu-+Narayan-Sircar+ Trivedi4+Wang
lizuka+Maeda

The QC landscape, Elias Kiritsis
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| he Ingredients In the classification |

& We look for QC theories at finite density (single U(1)). We will be for
concreteness in 241 boundary dimensions. The results are general.

e [he minimum number of fields that will be needed in this context are
two:

& The (conserved) stress tensor 1), dual to a graviton g, in the bulk.
& The (conserved) U(1) current J, dual to a gauge field A, in the bulk.

e [ he physics in that case is captured by the Reissner-Nordstrom bh and
this has been studied in detail.

® Even this simplest of cases provided for surprises, namely the emergent semilocal criti-
cality in the IR (at finite density) associated to the AdS> x R™ geometry.



® T he next step is include the most important scalar operator, dual to a bulk scalar ¢.

The holographic theories become richer and are described by an Einstein-Maxwell-Dilaton
theory.

e [ here are several options that appear in such a case:

e [ he symmetry: we focus on rotations 4+ 2-d translations 4scaling: Hy-
perscaling geometries:

5 dr? —dt? + da?

z4d5ﬁ : ds< = 5
T
dr? — dt?
AdS;x R? 1 ds? =T 4 da?
T
dt?  dr? 4+ dz?
7 _ Lifshitz - g2 — M7 drt T di

e With violation of hyperscaling

dt2 n dr? + dz?2
TQZ T2
Associated always with a running scalar, towards the edge of field space.

(0,2) — Lifshitz  : ds? =¥ | —

The QC landscape, Elias Kiritsis
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Fractionalized vS Conhesive phases I

e Event horizons < deconfined phases < fractionalised dofs.
Witten

e fractionalization (condensed matter) = deconfinement (high energy physics)

e [ he characteristic of the presence of a horizon is the presence of gapless
(low energy modes)

e there are separate contributions to the boundary charge density (Hartnoll)

10



Ad54

"2~

AdS52xR2

Fractionalised phase : Tll_>ngo *F ~Q #*0
Cohesive phase ; lim *F ~ 0
T—00

The holographic Luttinger theorem is valid in cohesive phases only (Hartnoll).

e Note that the two statements:

the current is irrelevant in the IR, (when the U(1) symmetry is broken) and

the flux is zero in the IR,
ARE NOT equivalent.

The QC landscape, Elias Kiritsis
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Broken vs unbroken symmetry |

e The U(1l) symmetry is unbroken (= the U(1) gauge boson is massless in
the bulk). The relevant EMD theory is

So= [ d*ev/=g R - %&bz ~ Z($)F2 + V(¢)

e The U(1) symmetry is broken (= the U(1) gauge boson is massive in
the bulk).

There are two types of breakings of the U(1) symmetry:
& Explicit: non-trivial coupling for a charged operator in the UV.
& Spontaneous: no coupling to a charged operator, only a vev.

e Local criticality in the IR does not distinguish between the two.

11



The simplest relevant action involves a complex (charged) scalar W,

G|V Z(IWI)FQ

R — DV 4+ V(W) —

S = M2/d4x\/—g

with the standard covariant derivative as

DMW — au\lf + Z(]A'UJ\U

Fixing the phase of W = Xe’i@ to zero, and redefining the Kinetic terms so
that the new scalar ¢ is canonically normalized we obtain

Z($) o _ W(9) Az] |

Sy = MQ/d4IE\/— [R— ~(8¢)2 +V(¢) — 4 5

e In the UV
e W (¢) = 0: normal phase, U(1) unbroken

e W (p)#£ 0: U(1) broken (spontaneously or explicitly)

11-



e In the IR

e Suppose

Vepp(9) = VI($) — Z(B)F2 = W($)A%,  dV,pp(¢)/délgy, =0
= solutions with hyperscaling

e In the IR, suppose that the scalar has a runaway behaviour. Define

~ = Infimum{yg € R: lim e 709Z(¢) > 0}
¢p—r00

e = Infimum{eg € R: lim e 0°W(4) > 0}
Pp—r00

6 = Infimum{dg € R: lim e 0%V () > 0}
P—r00
In the deep IR the scalar couplings can be (almost always) approximated
by exponentials

V(¢) ~ Voe'?,  Z(¢) ~ Zoge??,  W(d) ~ Woe®, ¢ — oo
= hyperscaling violation (6 #= 0)

The QC landscape, Elias Kiritsis
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Generalized QC DOINts |

e There are three critical exponents (z,60,¢) that characterize the scaling
of the theories with a U(1) symmetry

& The Lifshitz exponent z defined via the scaling of space-time coordinates

(Taway) — )\(T,QZ,y) ) t — >\Z t

& The hyperscale-violation exponent 6 defined from the transformation of
the metric

ds®> — A ds?
e In all hyperscaling violating solutions known
V ds® —V ds?

This comes from the fact that R - ds? should scale the same way as V.

e This also explains why 6§ = 0 if V is a constant (constant scalars).

12



& The U(1) hyperscale-violation exponent ( is defined from the gauge field
one form

A= Adt — XS A

& An alternative but equivalent definition is that the charge density Q and
chemical potential p transform as

po— A, Q — MSQ

e The theories with U(1) breaking have three parameters

W)
o Z(B)V (9)

vy o, 0

that allow (z,6,() to be independent.

The QC landscape, Elias Kiritsis
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Classification of symmetry-breaking QC points |

e Solve the equations in the critical regime by enumerating cases depending
on the three basic terms:

1. Vector Kinetic term
2. Vector mass term
3. Potential term

e [ he rest of the terms come from the metric and the kinetic term of the
scalar. They all scale as O(r—2) for scaling solutions.

e By choosing a subset of these terms to vanish in the critical solution, and
solving the rest of the equations we find all possible scaling solutions.

e There are 23 — 1 cases to consider.

13



e \VWe may study scaling deformations around each solution and learn about
its stability or instability.

e Doing this, one finds many possible IR fixed points that are only deter-
mined by the asymptotic (IR) behavior of potentials.

e Whether they can actually appear as endpoint of RG flows in a given
theory is a different question.

e As we usually solve from the IR, one should start running up from all
possible IR scaling theories.

e In may cases, analyses till now were incomplete as there are more than
one possible (vevs) per coupling indicating “competing” solutions.

e All of this happens even in the simplest of EHTs with a single scalar.

The QC landscape, Elias Kiritsis
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Examples In simple cases:. zero density |

e Consider an EMD at zero charge density. Then the landscape of critical
points is determined by:

& Finite critical points ¢«: V/(¢«) = 0. If V/(¢«) >0 — UV fixed point.
If V(¢«) <0 — IR fixed point.

The geometry at ¢ = ¢« is AdSp+1. UV fixed points are repulsive while IR
ones attractive.

& Infinite critical points ¢oc (Where limy_,, V — c0).
The geometry is hyperscaling-violating AdSp+1 as ¢ runs to ¢~. T he fixed
points are attractive or repulsive as a function of the whole diagram.

The QC landscape, Elias Kiritsis
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Examples In simple cases:. Tinite density |

Consider a potential with a single minimum for simplicity.

e IR fixed points with AdS> x RP~1, constant ¢ = ¢« extremizing

Vopp=VI(¢) — Z(¢$)F?
e IR fixed points violating hyperscaling with as ¢ runs to ¢oc and a gauge

field that has non-trivial IR flux.

e IR fixed points violating hyperscaling with as ¢ runs to ¢oc and a gauge
field that has trivial IR flux.

The QC landscape, Elias Kiritsis
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Hyperscaling (constant scalar), neutral IR I

= [dbav=g[R - 0% — Z(9)F? — W($)A2 + V(9)]

Verp(9) =V(9) — Z(9)F* —W($)A%,  dVop(¢)/dglg, = O
e Neutral fixed point: Q = 0 at leading order = AdS,; (cohesive)
2
~ (2= _ 3 |1 W
5Ar—>oor A AILX_Q_I_JZL_I_ y/m > 2

If A4 >3, Ais dual to an irrelevant operator: scale invariance is unbroken

If 2 < A4 <3, Ais dual to a relevant operator: flow to some (charged) fixed point,
Gubser+Nellore’09

5 ~ 378 A= g (1 +/1- 4L§V*”>

r—00

If VI < 0, d¢ is an irrelevant perturbation, while it becomes relevant (and complex) for
V>0 (V" >9/4L?)

The QC landscape, Elias Kiritsis
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Hyperscaling (constant scalar), charged IR I

e Charged fixed point (¢ = ¢«): Q #= 0 at leading order

e W, =0 = AdS, x R?: fractionalised phase

Two possibly irrelevant deformations (W, = 0):

1 vy
p1 = —1, 5225(1—\/1—4)\), A==

B> is irrelevant (relevant) if A< 0 (A > 0).

Loz v
Vi ViZe | Zo V2

e W, # 0 = Lifshitz (z > 1): cohesive phase

Irrelevant deformations (V] = W] = Z, = 0):

51:%(,24—2—\/20—2024—922), Bo =

z—|—2(1_

5 1—4))

LQV// + lLQQQW// lZQQQZ//
<0 iff > 2, <0 iff A<0, A= 2 2 L
. P G+oy

The QC landscape, Elias Kiritsis
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Hyperscaling violating (running scalar), neutral IR \

V(¢) ~ Voe ™% Z(¢) ~ Zge™®, W (¢) ~ Woe?

e Neutral, (cohesive) IR (z=1): to leading order Z, W ¢—> O (power series
— 00

solution)

4.2 Q(L?dr2—4ﬁ2ﬁ—d£2
sT=r

0 252

02 — 1

L?=(0—-3)(0—-2)/Vo,sotheIRisr — +oc if§<Oorr—0ifd>3

e Note that the symmetry gets restored in the IR solution.

e | woO irrelevant deformations

The QC landscape, Elias Kiritsis
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Hyperscaling violating (running), Charged IR (1) I

V() ~ Voe %%, Z(¢) ~ Zo??, W(¢) ~ Woe,
e Charged, fractionalised fixed point: @ # 0 but W ¢—> 0
—00

dt?  L2dr?2 4 dz? 0
dSQ:T@[_Tzz‘I' TTQ—I- w]'l‘a gb:g“’]?“—'— Z,HZF("}/,(S)

Ay=Qr'"72 12(0,2), Q(,2)

e Allowed parameter range:

IR:r—0: [2<6<3,z>1], [0>3,2<1],
240
IR: r—> 400 : [6ZL0,2z>1], 0<0<2, z>%

Always two irrelevant, real deformations, d¢ = ¢g and B(6, z) in the allowed
range.

The QC landscape, Elias Kiritsis
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Hyperscaling violating (running), Charged IR (II) I

V(®) ~ Voe 9, Z(¢) ~ Zoe?®, W() ~ Woe®, ¢~ gm s o

e Charged, cohesive fixed point: @ #* 0, exact solution:

dt?  L2dr2 4+ diz?

W,
d82:7"0 + ,',,2 ’ 627_57 (Z707<>NF<7757 O)

,r.QZ

ZoVo

One marginally irrelevant mode d¢p = ¢q.

20



Plots of the allowed parameter space (0, z) for various values of the exponent §. The upper
left corner is the region where the IR is r —+ 400, the lower right where it is r — 0. In red,
we depict the region where [_ is a real irrelevant deformation; in blue, the region where

it is real and relevant; in green, the region where it is complex and relevant. In this case,

the geometry is dynamically unstable.

The QC landscape, Elias Kiritsis
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QC lines |

e [ he hyperscaling violating solutions correspond to quantum critical crit-
ical lines with continuous parameter ¢q.

e To leading order in 1/N,., the physics is independent of the continuous
parameter ¢q.

e [ his is equivalent to the statement that they contain a hyperscaling-
violating scale ¢, and therefore no dimensionless parameter.

e The situation at O(1/N?2) is expected to generate a bona fide line of
points.

& The argument: map ¢ to internal torus volume.

& At tree level string theory is volume independent (this is also true to
O(N2) in QFT a la Eguchi-Kawai).

& At one string loop, volume dependence will appear: the dimensionless
parameter will be é

The QC landscape, Elias Kiritsis
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Quantum ftractionalisation transitions

uv

IR

0=20
Bifurcating point g
0+0 0+0
Cohesive phase Fractionalised phase

Hartnoll4+Huijse’'11, Adam-+Crampton+Sonner+Withers '12, Goutéraux+E.K '12

Scale invariant fixed point (6 = 0) with a relevant deformation. To reach this point, the
flow must be fine tuned. Away from the critical value, the flow picks up the relevant
deformation and lands into hyperscaling violation fixed points: a quantum critical line.
The line originates from an extra scaling symmetry: ¢ — ¢ + ¢9, Q — e %Q

The QC landscape, Elias Kiritsis
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temperature (K)

100 200 300 400
antiferromagnet ____—

strange metal

pseudogap
Fermi Liquid

0.1 0.2 0.3
hole doping

Critical lines vs critical points In Cuprates |

BaFe,(As,.P),
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e Quantum phase transition at T=0

e Critical cone above.

“
\

. Quantum

Y, critical

. .
Classical \ ’
spin “ d

waves \ '

\ I

4

Dilute
triplon
gas

L Trl ¥ =

H: - el ” : E '.,' Ol -~ el >
—
9e

g
Sadchdev+Keimer
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= 100
50 - !
0 - - . - . - .
018 0.2 022 024 026 028 0.3 0.32
Hole doping p

j|'§9§: Anomalous Criticality in the Electrical Resistivity of Las_,Sr,CuQy4.
9 R. A. Cooper et al., Science 323, 603 (2009).
The QC landscape, Elias Kiritsis
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QC systems with Schrondiger symmetry |

Kim+E.K.+Panagopoulos

e Consider the simplest example: AdS-Schwarzschild Black hole in light-
cone coordinates boosted by an arbitrary boost.

2 o 2
2= D=L (4ty2 - (14 ())datda + (1= F)ER(da ) + da? + dy? +

r 4p2 f(r)
e T his realizes z = 2 non-relativistic Schrodinger symmetry in 2 spatial
dimensions.

ds

Golberger (08), Barbon+Fuertes(08), Maldacena-Martelli+ Tachikawa (08)
e One can compute the conductivities using the Karch-O'Bannon formalism

applied in this context

Kim+Yamada (10)
The conductivity in the absence of magnetic field (but with light-cone
electric field) reads

P0 5 7 mlTh 5 64+/2(JT)?
— ; A(t) =1t + 1 + t ; L= — JO == = .
e AL VaoB, T (Wbcos® 0)2(2bE,)?
t2A(t) /A1)

Kim+E.K.+Panagopoulos

24



When the “drag” term dominates

pwt\/tQ—I— 14 ¢4

showing a transition from linear to quadratic behavior.
dIng(T) f d InT

200

160

50

022 024 026 0.28
1 WEs Hole doping p

0o 0.5 1.0 1.5 20 2.5

Lay_,Sr,CuO4 in R. A. Cooper et al., Science 323, 603 (2009).

e [ his transition can be achieved by decreasing the light-cone electric field,
Ey. It interpolates between AdS and z=2 Lifshitz scaling.

24-



e By parametrizing p = a17T + a>T? we obtain

15
e 1
E
[ ]
S
=
= 05
~
< 0.006 I
S 0.004
-
= I
—. 0.002

0

The QC landscape,

[ v e e ' A
- I B
- l
“oll
o % J‘ri ;
_qudg“ll S =
L ==y 4
' 1 ?'!'
5 : R -
! ]
! = S g
| .' | i | -L:—"EF:._
f i B f e =
N |
- 1 |
i 1
i ]
= T s 7._'.17 _'_é___;._'_.___! S — _:_-. =
- - ]_‘ — :-—- - " =
R By, o5 &7 o E 4 i A e ok ke
0.15 0.2 0.25 0.3 0.35

Hole doping p

a1 ~ \Ep and po = constant.

Lay_.Sr,CuO4 in R. A. Cooper et al., Science 323, 603 (2009).

Elias Kiritsis
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ResSIStIVITY at non-zero magnetic Tield I

At finite magnetic field

VFL T2 + 4 FLOF-(1) N
oV = o , o = o9
F-(1) F-(1)
2 By
Fi = \/(82+t4) +t*FB 4+t , B= SV,

. . _ Bb
e [ he scaling variable B = Ty

data

seems to be in agreement with experimental

TlyBaxCuOeys in A. W. Tyler et al., Phys. Rev. B 57, R278 (1998).

e [ he inverse Hall angle is defined as the ratio between Ohmic conductivity

and Hall conductivity as
oYY

cCot®y =
H e

25



dIn Cot®g f d InT

dIn Cot®g f d InT

020F

015p

-
oiof
oost
I:II:":I 1 1 1 1 1] 1 (1 1 1 1 1 1
00,0000 00001 00002 0.0003 0.0004 i 1 2 3 4 5
B 1/4 Ex

Left: Temperature (T) and magnetic field (B) dependence of the exponent of

xrxr

cotey =
H oY

in the low T, low B regions.

Right: the effective power dependence of cot ©y at small magnetic field, as a function of temperature and

1/VEp.
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Mackenzie et al. Phys. Rev. B 53, 5848 (1996).
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T he Hall Conductivity Ry = % is constant in the two different regimes

B=0
(linear and quadratic)
o
RH ~ ~ Eb
08.]2
and decreases with doping.
as 7:‘ : ' .
Tiv v v Y p=0.10 ﬁ a e P=D-12
qu I . el " Jp=o,115 ;:?“1;
3:;4 :’ .y O ) ‘| 7 i 4 f=
o . 5
2t ﬂfx!r/’*::./ N z 0.14
1—m§?1 p=0.15 E
o ::::}:E:::} :}:::1}_:/{:{:_;/ E 0.16
N b e s e Jzote S 017
:‘o:i/‘ =
3 ﬂc"::-;)&/:/v\v - > 0.19
i3 *’KXfi/ % 020
= 0.22
o : e i 0 20 40 &0 80 100
= . P e, B = o Temperature (K

BizSro_yLa,CuOeys from F. F. Balakirev et al., NATURE 424 (2003) 912; Phys. Rev. Lett. 102, 017004
(2009).
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e The magnetoresistance
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e \We find that the modified Kohler rule

~ A
K = (cot @H)Q—p ~ temperature independent
P

is valid in regions (linear+quadratic), as demanded by data,
J. M. Harris et al., Phys. Rev. Lett, 75, 1391 (1995).

e \We also find that the Kohler rule

JAN
K = p2=F ~ temperature independent

P
IS approximately valid in the same regions.

This is not supported by the data at high temperatures but is valid at low
temperatures.

The QC landscape, Elias Kiritsis
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e \We have used the concept of EHT to classify QC points in EMD theories
with or without unbroken symmetry

e [his is a part of an EHT program that is currently extended to more
general situations: more symmetries, CP-odd interactions, more scalars
and U(1)'s etc.

e We characterize all QC geometries with U(1) operator in terms of three
critical exponents (z,6, ()

e [ he behaviors we find are rich and calculable. They are the first step
into completing a phase diagram.

e [ he method is general and applicable to all gravitational theories.

e [ he observables, like current-current correlators, as well as condensate
correlators should be computed.

e General results characterizing the critical exponents may be derived (work
in progress)

The QC landscape, Elias Kiritsis
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