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Overview

@ Applying AdS/CFT to real-world physics: QCD, CMP...

@ One bottom-up approach for studying AAS/CMT: the
Effective Holographic Theory (EHT) (Charmousis,
Gouteraux, Kim, Kiritsis and Meyer, '10).

@ The central point; to truncate a string theory to a finite
spectrum of low-lying states, in analogy with effective field
theory.

@ One concrete realization: the Einstein-Maxwell-Dilaton
(EMD) system.

@ The exact solutions of the EMD describe the IR asymptotic
geometry.



Overview cont'd

@ The EMD theory admits (d + 2)—dimensional solution with
hyperscaling violation symmetry (Huijse, Sachdev and
Swingle, '11).
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z-the dynamical exponent, #-the hyperscaling violation
parameter.

@ 0 =d — 1, the holographic entanglement entropy (HEE)
exhibits a logarithmic violation of the area law.



Overview cont'd

@ The log violation of the area law signifies the existence of
Fermi surfaces, although the EMD does not contain explicit
fermionic degrees of freedom.

@ Aninteresting limit: z — o0, — —oc0, n = —0/z > 0 fixed
(Hartnoll and Shaghoulian, '12).

@ The resulting geometry: conformal to AdS, x RY.

@ Extremal RN-AdS, near horizon AdS, < semi-local
quantum liquids (SLQL) (Igbal, Liu and Mezei, '11).

@ Our background — more general SLQL.

What will happen for the holographic entanglement entropy in
the more general semi-local background?
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Introduction

The general semi-local background

@ Recall the background with hyperscaling violation
symmetry (1) and take the limit z — oo, 8 — —oc,
n=—60/z > 0 fixed,

ds? = riz (-dtz ar? de ) @

rn

@ Taking a new coordinate ¢ = rd/7 —,
1 dt2  p?dé? d
2 _ _ 2
ds® = gzd_n ( 62 + d2§2 + Iz_; dx| ’ (3)

conformal to AdS, x RY.




Introduction

Previous results on HEE

@ 4D bulk, the boundary separation length | = I; is constant
for a strip and the minimal surface area diverges (Hartnoll
and Shaghoulian, ’12).

@ Connected minimal surface only exists for separations
| < lerit. When | > |, the disconnected minimal
surface—two parallel hypersurfaces falling into the IR at
constant separation, dominates.

@ reminiscent of the HEE in confining backgrounds
(Klebanov, Kutasov and Murugan, '07).

@ When | is sufficiently small, the minimal hypersurface
should probe the UV regime of the full geometry (Kulaxizi,
Parnachev and Schalm, '12).



Introduction

Why UV completion?

@ Recall the spirit of EHT: it just describes the IR geometry.
@ The UV regime of the full geometry is needed when | is
small.

@ UV completion: to obtain solutions which are
asymptotically AdS and conformal to AdS, x RY in the IR.

@ Physical constraints should be imposed (Ogawa,
Takayanagi and Ugajin, '11).



The UV completed solution
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The general ansatz

The ansatz for the configuration

@ The action

S = /dd”xﬁ[R — %(VCD)Z —V(®) - %Z(cb)FWFW],

(4)

@ The ansatz for the metric and gauge field

L2 d
dsiip = 2—2[—f(z)dt2+g(z)d22+z dx?], Ar =Ai(z), (5)
i—1

@ Asymptotically AdSq_» solutions with boundary z = 0, —
f(0) =9(0) =1.
@ Introducing the scale zg, z > 7z — IR, z < zg — UV.



The UV completed solution
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The general ansatz

The physical constraints

@ Plugging in the configuration into the e.o.m.s and solving
for Ay, 2,V (), Z(d).
@ Requiring that 2 > 0,Z(¢) > 0 =

9(2)f'(z) +9'(2)f(z) <0, (6)
29(2)f*(z) +1(z)(zf'(2)g'(2)
+9(z) (2df'(z) — 22t"(z)) <0, (7)

@ (6, 7) are equivalent to the null energy condition (NEC)
T,wN#NY > 0. N#-unit normal vector.



The UV completed solution
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The IR solution

The IR solution

f(z)=kz7P, g(z)=-5, p=2d/n, k>0, (8)

the solution

¢ =./d(p+2)logz, A(z)= %vf(z)g(z)zd_za

2 252 2A2 25,2d-2
v(cp):_w’ Z(0) = zpet ©)
41272 L2p(p + 2d)
written in terms of ¢,
20 2(d—1)¢

V(®) ~ eVitid | Z(d) ~ eVikeid), (10)



The UV completed solution
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The IR solution

The IR solution contd

@ The black hole solution

9(z) = 2 f(z) = hh(Z) h(z) =1 — (=) +P/2
z%h(z)’ zP ’ zy ’
(11)
while the other field configurations remain the same.
@ The temperature and the entropy density,
—d _
Tz s=279 = s~T7, (12)

@ The entropy density is vanishing at extremality.



The UV completed solution
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The UV completion

The UV completion

@ Choose the following functions

k Zf

f(z) = ——, 9(2) = ——

k +zP (13)

@ f(0) =g(0) =1, f(c0),g(c0) reduce to the IR results.
@ 92 > 0is always satisfied.

@ A sufficient but not necessary condition for 1/Z (®) > 0 is
2kd —2kp >0 — p <d.



The UV completed solution
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The UV completion

The plot for V()
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Figure: V(®)withd =2. k=L=z = 1.



The UV completed solution
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The UV completion

The plot for Z (@)
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Figure: Z(¢)withd =2. k=L=z =A=1.



The UV completed solution
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The UV completion

The UV behavior

@ The UV behavior (z — 0)
®~z, Z(P)~ P, (14)
@ The scalar potential
V()= ————— — 02 (15)
with mass square m? = —d.

@ BF bound in AdSy 5 is m? > —(d +1)?/4 = the BF
bound is not violated.



The holographic entanglement entropy

The entangling regions

Figure: Left: strip; right: sphere. Taken from Ryu, Takayanagi,
hep-th/0603001.

Only plots with d = 2 will be shown.



The holographic entanglement entropy
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The strip

The strip

Consider the strip,

XlEXE[_Z’E]’ Xi € [0,Lx],i =2,---,d, (16)

| < Ly, the minimal surface area
_ dz
ALY =218t [ 5 fa(@) +x2, a7)

, VI@)(F)
x = YIERZ)

z,— the turning point where x’ — oco.

we have

(18)



The holographic entanglement entropy
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The strip

The boundary separation length

@ The boundary separation length

/ dz VIRE) (19)
)2d

@ Plugging in the IR solution g(z) = z2/z2,

| = lerit = Wdﬁ = const (20)

@ For the UV-completed metric g(z) = z2/(z? + z2), see the
plot



The holographic entanglement entropy
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The strip

The difference

@ The equation of motion also admits the trivial solution
x" = 0 — disconnected hypersurface.

@ The holographic entanglement entropy (Ryu and
Takayanagi, '06)
A(v)
S=—>"-. (21)
4G$+”

@ Plot the differences between the finite parts of the
connected minimal surface and the disconnected one
AA = Asinite — Adis finite-

Which configuration will dominate?



The holographic entanglement entropy
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The strip

Plot of the boundary separation length
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Figure: blue—UV completed; red—IR.



The holographic entanglement entropy
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The strip

Plot of the difference

Figure: The difference between the connected minimal surface and
the disconnected one.



The holographic entanglement entropy
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The strip

REINEISS

@ For the boundary separation length, small z,, | and It
have significant differences; large z,, they almost coincide.

@ For AA, when | < Igit: the connected solution dominates;

@ When | — lqit: the difference tends to zero; the
disconnected solution takes over;

@ A phase transition occurs.



The sphere

The holographic entanglement entropy
[ Jele)

The sphere

@ The minimal surface area

dz 4.1 /.~ .
Asphere: LdVOI(Qd—l) Z_dpd ! g(z) +p'%, (22)

@ The equation of motion

5 pi1y _ (1) 23)
z4\/9(z) +p2) z9/9(z) + p?’

boundary conditions p(0) =1, p(z.) =0,
z, the turning point.

@ No trivial solution p’ = 0.



The holographic entanglement entropy
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The sphere

Plot of the finite part
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Figure: The finite part of the entropy for spherical entangling region.



The holographic entanglement entropy
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The sphere

REINEISS

@ Fitting the finite part,

Asinie = —0.993627—0.02030081 —0.30388512—0.021952I3,
(24)
@ The leading order behavior of the HEE is still governed by
the area law.

@ There is NO phase transition.



Summary and outlook

Summary

@ We study the HEE of holographic semi-local quantum
liquids.

@ The IR geometry is conformal to AdS, x RY, insufficient for
studying the HEE.

@ The UV completed geometry is constructed.

@ For the strip case, the HEE exhibits a phase transition.
@ For the spherical case, no such phase transition occurs.
@ Similar behavior can be observed ind > 3.



Summary and outlook

Outlook

@ How to understand the behavior of HEE with different
entangling regions?

@ A third scale, supplied by the anisotropy of the strip, may
play a role. (Kulaxizi, Parnachev and Schalm, '12).

@ A geometric setup to check this argument: considering the
annulus.

@ When the inner radius vanishes — sphere; both radii large,
the difference small — strip.

@ Mutual information? Field theory realization?
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