Entanglement entropy of holographic semi-local quantum liquids

Da-Wei Pang ${ }^{1}$

${ }^{1}$ Max-Planck Institut für Physik, Munich, Germany
in collaboration with J. Erdmenger and H. Zeller HoloGrav 2013 Workshop Helsinki, 05.03.2013

Overview

- Applying AdS/CFT to real-world physics: QCD, CMP...
- One bottom-up approach for studying AdS/CMT: the Effective Holographic Theory (EHT) (Charmousis, Gouteraux, Kim, Kiritsis and Meyer, '10).
- The central point: to truncate a string theory to a finite spectrum of low-lying states, in analogy with effective field theory.
- One concrete realization: the Einstein-Maxwell-Dilaton (EMD) system.
- The exact solutions of the EMD describe the IR asymptotic geometry.

Overview cont'd

- The EMD theory admits $(d+2)$-dimensional solution with hyperscaling violation symmetry (Huijse, Sachdev and Swingle, '11).

$$
\begin{align*}
& d s_{d+2}^{2}=L^{2}\left(-f(r) d t^{2}+g(r) d r^{2}+\frac{1}{r^{2}} \sum_{i=1}^{d} d x_{i}^{2}\right) \\
& f(r)=f_{0} r^{-2-2 d(z-1) /(d-\theta)} \\
& g(r)=g_{0} r^{-2+2 \theta /(d-\theta)} \tag{1}
\end{align*}
$$

z-the dynamical exponent, θ-the hyperscaling violation parameter.

- $\theta=d-1$, the holographic entanglement entropy (HEE) exhibits a logarithmic violation of the area law.

Overview cont'd

- The log violation of the area law signifies the existence of Fermi surfaces, although the EMD does not contain explicit fermionic degrees of freedom.
- An interesting limit: $z \rightarrow \infty, \theta \rightarrow-\infty, \eta \equiv-\theta / z>0$ fixed (Hartnoll and Shaghoulian, '12).
- The resulting geometry: conformal to $A d S_{2} \times \mathbf{R}^{d}$.
- Extremal RN-AdS, near horizon $A d S_{2} \Leftrightarrow$ semi-local quantum liquids (SLQL) (lqbal, Liu and Mezei, '11).
- Our background \rightarrow more general SLQL.

What will happen for the holographic entanglement entropy in the more general semi-local background?

Outline

(1) Introduction
(2) The UV completed solution

- The general ansatz
- The IR solution
- The UV completion

3 The holographic entanglement entropy

- The strip
- The sphere

4 Summary and outlook

The general semi-local background

- Recall the background with hyperscaling violation symmetry (1) and take the limit $z \rightarrow \infty, \theta \rightarrow-\infty$, $\eta \equiv-\theta / z>0$ fixed,

$$
\begin{equation*}
d s^{2}=\frac{1}{r^{2}}\left(-\frac{d t^{2}}{r^{\frac{2 d}{\eta}}}+\frac{d r^{2}}{r^{2}}+\sum_{i=1}^{d} d x_{i}^{2}\right) \tag{2}
\end{equation*}
$$

- Taking a new coordinate $\xi=r^{d / \eta} \rightarrow$,

$$
\begin{equation*}
d s^{2}=\frac{1}{\xi^{\frac{2 \eta}{d}}}\left(-\frac{d t^{2}}{\xi^{2}}+\frac{\eta^{2} d \xi^{2}}{d^{2} \xi^{2}}+\sum_{i=1}^{d} d x_{i}^{2}\right) \tag{3}
\end{equation*}
$$

conformal to $A d S_{2} \times \mathbf{R}^{d}$.

Previous results on HEE

- 4D bulk, the boundary separation length $I=I_{\text {crit }}$ is constant for a strip and the minimal surface area diverges (Hartnoll and Shaghoulian, '12).
- Connected minimal surface only exists for separations $I<I_{\text {crit }}$. When $I>I_{\text {crit }}$, the disconnected minimal surface-two parallel hypersurfaces falling into the IR at constant separation, dominates.
- reminiscent of the HEE in confining backgrounds (Klebanov, Kutasov and Murugan, '07).
- When / is sufficiently small, the minimal hypersurface should probe the UV regime of the full geometry (Kulaxizi, Parnachev and Schalm, '12).

Why UV completion?

- Recall the spirit of EHT: it just describes the IR geometry.
- The UV regime of the full geometry is needed when / is small.
- UV completion: to obtain solutions which are asymptotically AdS and conformal to $A d S_{2} \times \mathbf{R}^{d}$ in the IR.
- Physical constraints should be imposed (Ogawa, Takayanagi and Ugajin, '11).

The ansatz for the configuration

- The action

$$
\begin{equation*}
S=\int d^{d+2} x \sqrt{-g}\left[R-\frac{1}{2}(\nabla \Phi)^{2}-V(\Phi)-\frac{1}{4} Z(\Phi) F_{\mu \nu} F^{\mu \nu}\right], \tag{4}
\end{equation*}
$$

- The ansatz for the metric and gauge field

$$
\begin{equation*}
d s_{d+2}^{2}=\frac{L^{2}}{z^{2}}\left[-f(z) d t^{2}+g(z) d z^{2}+\sum_{i=1}^{d} d x_{i}^{2}\right], \quad A_{t}=A_{t}(z), \tag{5}
\end{equation*}
$$

- Asymptotically $A d S_{d+2}$ solutions with boundary $z=0, \rightarrow$ $f(0)=g(0)=1$.
- Introducing the scale $z_{F}, z \gg z_{F} \rightarrow \mathrm{IR}, z \ll z_{F} \rightarrow \mathrm{UV}$.

The physical constraints

- Plugging in the configuration into the e.o.m.s and solving for $A_{t}, \Phi^{\prime 2}, V(\Phi), Z(\Phi)$.
- Requiring that $\phi^{\prime 2}>0, Z(\Phi)>0 \Rightarrow$

$$
\begin{align*}
& g(z) f^{\prime}(z)+g^{\prime}(z) f(z) \leq 0, \\
& z g(z) f^{\prime 2}(z)+f(z)\left(z f^{\prime}(z) g^{\prime}(z)\right. \\
& +g(z)\left(2 d f^{\prime}(z)-2 z f^{\prime \prime}(z)\right) \leq 0, \tag{7}
\end{align*}
$$

- $(6,7)$ are equivalent to the null energy condition (NEC) $T_{\mu \nu} N^{\mu} N^{\nu} \geq 0$. N^{μ}-unit normal vector.

The IR solution

The IR solution

$$
\begin{equation*}
f(z)=k z^{-p}, \quad g(z)=\frac{z_{F}^{2}}{z^{2}}, \quad p \equiv 2 d / \eta, \quad k>0 \tag{8}
\end{equation*}
$$

the solution

$$
\begin{align*}
& \Phi=\sqrt{d(p+2)} \log z, \quad A_{t}^{\prime}(z)=\frac{A}{Z(\Phi)} \sqrt{f(z) g(z)} z^{d-2} \\
& V(\Phi)=-\frac{(p+2 d)^{2} z^{2}}{4 L^{2} z_{F}^{2}}, \quad Z(\Phi)=\frac{2 A^{2} z_{F}^{2} z^{2 d-2}}{L^{2} p(p+2 d)} \tag{9}
\end{align*}
$$

written in terms of Φ,

$$
\begin{equation*}
V(\Phi) \sim e^{\frac{2 \phi}{\sqrt{\partial(p+2)}}}, \quad Z(\Phi) \sim e^{\frac{2(d-1) \phi}{\sqrt{(p(p+2)}}}, \tag{10}
\end{equation*}
$$

The IR solution cont'd

- The black hole solution

$$
\begin{equation*}
g(z)=\frac{z_{F}^{2}}{z^{2} h(z)}, \quad f(z)=\frac{k}{z^{p}} h(z), \quad h(z)=1-\left(\frac{z}{z_{H}}\right)^{d+p / 2}, \tag{11}
\end{equation*}
$$

while the other field configurations remain the same.

- The temperature and the entropy density,

$$
\begin{equation*}
T \sim z_{H}^{-d / \eta}, \quad s=z_{H}^{-d}, \Rightarrow s \sim T^{\eta}, \tag{12}
\end{equation*}
$$

- The entropy density is vanishing at extremality.

The UV completion

- Choose the following functions

$$
\begin{equation*}
f(z)=\frac{k}{k+z^{p}}, \quad g(z)=\frac{z_{F}^{2}}{z^{2}+z_{F}^{2}} \tag{13}
\end{equation*}
$$

- $f(0)=g(0)=1, f(\infty), g(\infty)$ reduce to the IR results.
- $\phi^{\prime 2}>0$ is always satisfied.
- A sufficient but not necessary condition for $1 / Z(\Phi)>0$ is $2 k d-2 k p>0 \rightarrow p<d$.

The UV completion

The plot for $V(\Phi)$

Figure: $V(\Phi)$ with $d=2 . k=L=z_{F}=1$.

The UV completion

The plot for $Z(\Phi)$

Z(Φ)

Figure: $Z(\Phi)$ with $d=2 . k=L=z_{F}=A=1$.

The UV behavior

- The UV behavior $(z \rightarrow 0)$

$$
\begin{equation*}
\Phi \sim z, \quad Z(\Phi) \sim \Phi^{2 d-p} \tag{14}
\end{equation*}
$$

- The scalar potential

$$
\begin{equation*}
V(\Phi)=-\frac{d(d+1)}{L^{2}}-\frac{d}{2 L^{2}} \Phi^{2} \tag{15}
\end{equation*}
$$

with mass square $m^{2}=-d$.

- BF bound in $A d S_{d+2}$ is $m^{2} \geq-(d+1)^{2} / 4 \Rightarrow$ the BF bound is not violated.

The entangling regions

(b)

Figure: Left: strip; right: sphere. Taken from Ryu, Takayanagi, hep-th/0603001.

Only plots with $d=2$ will be shown.

The strip

The strip

Consider the strip,

$$
\begin{equation*}
x_{1} \equiv x \in\left[-\frac{l}{2}, \frac{l}{2}\right], \quad x_{i} \in\left[0, L_{x}\right], i=2, \cdots, d, \tag{16}
\end{equation*}
$$

$l \ll L_{x}$, the minimal surface area

$$
\begin{equation*}
A(\gamma)=2 L^{d} L_{x}^{d-1} \int \frac{d z}{z^{d}} \sqrt{g(z)+x^{\prime 2}}, \tag{17}
\end{equation*}
$$

we have

$$
\begin{equation*}
x^{\prime}=\frac{\sqrt{g(z)}\left(\frac{z}{z_{*}}\right)^{d}}{\sqrt{1-\left(\frac{z}{z_{*}}\right)^{2 d}}}, \tag{18}
\end{equation*}
$$

$z_{*}-$ the turning point where $x^{\prime} \rightarrow \infty$.

The strip

The boundary separation length

- The boundary separation length

$$
\begin{equation*}
\frac{1}{2}=\int_{0}^{z_{*}} d z \frac{\sqrt{g(z)}\left(\frac{z}{z_{*}}\right)^{d}}{\sqrt{1-\left(\frac{z}{z_{*}}\right)^{2 d}}}, \tag{19}
\end{equation*}
$$

- Plugging in the IR solution $g(z)=z_{F}^{2} / z^{2}$,

$$
\begin{equation*}
I \equiv I_{\text {crit }}=\frac{\pi z_{F}}{d}=\text { const, } \tag{20}
\end{equation*}
$$

- For the UV-completed metric $g(z)=z_{F}^{2} /\left(z^{2}+z_{F}^{2}\right)$, see the plot

The difference

- The equation of motion also admits the trivial solution $x^{\prime}=0 \rightarrow$ disconnected hypersurface.
- The holographic entanglement entropy (Ryu and Takayanagi, '06)

$$
\begin{equation*}
S=\frac{A(\gamma)}{4 G_{N}^{(d+2)}} . \tag{21}
\end{equation*}
$$

- Plot the differences between the finite parts of the connected minimal surface and the disconnected one $\Delta A=A_{\text {finite }}-A_{\text {dis, finite }}$.

Which configuration will dominate?

The strip

Plot of the boundary separation length

Figure: blue-UV completed; red-IR.

The strip

Plot of the difference

Figure: The difference between the connected minimal surface and the disconnected one.

Remarks

- For the boundary separation length, small z_{*}, I and $I_{\text {crit }}$ have significant differences; large z_{*}, they almost coincide.
- For ΔA, when $I<I_{\text {crit }}$: the connected solution dominates;
- When $I \rightarrow I_{\text {crit }}$: the difference tends to zero; the disconnected solution takes over;
- A phase transition occurs.

The sphere

The sphere

- The minimal surface area

$$
\begin{equation*}
A_{\text {sphere }}=L^{d} \operatorname{Vol}\left(\Omega_{d-1}\right) \int \frac{d z}{z^{d}} \rho^{d-1} \sqrt{g(z)+\rho^{\prime 2}}, \tag{22}
\end{equation*}
$$

- The equation of motion

$$
\begin{equation*}
\partial_{z}\left(\frac{\rho^{d-1} \rho^{\prime}}{z^{d} \sqrt{g(z)+\rho^{\prime 2}}}\right)=\frac{(d-1) \rho^{d-2}}{z^{d} \sqrt{g(z)+\rho^{\prime 2}}}, \tag{23}
\end{equation*}
$$

boundary conditions $\rho(0)=I, \rho\left(z_{*}\right)=0$,
z_{*} the turning point.

- No trivial solution $\rho^{\prime}=0$.

Plot of the finite part

$A_{\text {finite }}$

Figure: The finite part of the entropy for spherical entangling region.

Remarks

- Fitting the finite part,
$A_{\text {finite }}=-0.993627-0.0203008 /-0.303885 /^{2}-0.021952 / 3$,
- The leading order behavior of the HEE is still governed by the area law.
- There is NO phase transition.

Summary

- We study the HEE of holographic semi-local quantum liquids.
- The IR geometry is conformal to $A d S_{2} \times \mathbf{R}^{d}$, insufficient for studying the HEE.
- The UV completed geometry is constructed.
- For the strip case, the HEE exhibits a phase transition.
- For the spherical case, no such phase transition occurs.
- Similar behavior can be observed in $d \geq 3$.

Outlook

- How to understand the behavior of HEE with different entangling regions?
- A third scale, supplied by the anisotropy of the strip, may play a role. (Kulaxizi, Parnachev and Schalm, '12).
- A geometric setup to check this argument: considering the annulus.
- When the inner radius vanishes \rightarrow sphere; both radii large, the difference small \rightarrow strip.
- Mutual information? Field theory realization?

