Int	h	~	4		~		~	5	
m	u	υ	uι	u١	σ	u	υ	П	

The UV completed solution

The holographic entanglement entropy

Summary and outlook

Entanglement entropy of holographic semi-local quantum liquids

Da-Wei Pang¹

¹Max-Planck Institut für Physik, Munich, Germany

in collaboration with J. Erdmenger and H. Zeller HoloGrav 2013 Workshop Helsinki, 05.03.2013

Introduction	The UV completed solution	The holographic entanglement entropy	Summary and outlook
Overview			

- Applying AdS/CFT to real-world physics: QCD, CMP...
- One bottom-up approach for studying AdS/CMT: the Effective Holographic Theory (EHT) (Charmousis, Gouteraux, Kim, Kiritsis and Meyer, '10).
- The central point: to truncate a string theory to a finite spectrum of low-lying states, in analogy with effective field theory.
- One concrete realization: the Einstein-Maxwell-Dilaton (EMD) system.
- The exact solutions of the EMD describe the IR asymptotic geometry.

 The EMD theory admits (d + 2)-dimensional solution with hyperscaling violation symmetry (Huijse, Sachdev and Swingle, '11).

$$ds_{d+2}^{2} = L^{2} \left(-f(r)dt^{2} + g(r)dr^{2} + \frac{1}{r^{2}} \sum_{i=1}^{d} dx_{i}^{2} \right),$$

$$f(r) = f_{0}r^{-2-2d(z-1)/(d-\theta)},$$

$$g(r) = g_{0}r^{-2+2\theta/(d-\theta)},$$
(1)

z-the dynamical exponent, θ -the hyperscaling violation parameter.

θ = d - 1, the holographic entanglement entropy (HEE) exhibits a logarithmic violation of the area law.

- The log violation of the area law signifies the existence of Fermi surfaces, although the EMD does not contain explicit fermionic degrees of freedom.
- An interesting limit: $z \to \infty, \theta \to -\infty, \eta \equiv -\theta/z > 0$ fixed (Hartnoll and Shaghoulian, '12).
- The resulting geometry: conformal to $AdS_2 \times \mathbf{R}^d$.
- Extremal RN-AdS, near horizon AdS₂ ⇔ semi-local quantum liquids (SLQL) (Iqbal, Liu and Mezei, '11).
- Our background \rightarrow more general SLQL.

What will happen for the holographic entanglement entropy in the more general semi-local background?

Introduction	Int	0	dı	14	~ti	0	n	
		U,	u	<i>.</i>	σu	v		

The UV completed solution

The holographic entanglement entropy

Summary and outlook

Outline

- 2 The UV completed solution
 - The general ansatz
 - The IR solution
 - The UV completion
- The holographic entanglement entropy
 - The strip
 - The sphere

Introduction

The UV completed solution

The holographic entanglement entropy

Summary and outlook

The general semi-local background

Recall the background with hyperscaling violation symmetry (1) and take the limit z → ∞, θ → -∞, η ≡ -θ/z > 0 fixed,

$$ds^{2} = \frac{1}{r^{2}} \left(-\frac{dt^{2}}{r^{\frac{2d}{\eta}}} + \frac{dr^{2}}{r^{2}} + \sum_{i=1}^{d} dx_{i}^{2} \right),$$
(2)

• Taking a new coordinate $\xi = r^{d/\eta} \rightarrow$,

$$ds^{2} = \frac{1}{\xi^{\frac{2\eta}{d}}} \left(-\frac{dt^{2}}{\xi^{2}} + \frac{\eta^{2} d\xi^{2}}{d^{2}\xi^{2}} + \sum_{i=1}^{d} dx_{i}^{2} \right), \quad (3)$$

conformal to $AdS_2 \times \mathbf{R}^d$.

Previous results on HEE

- 4D bulk, the boundary separation length $I = I_{crit}$ is constant for a strip and the minimal surface area diverges (Hartnoll and Shaghoulian, '12).
- Connected minimal surface only exists for separations *I* < *I*_{crit}. When *I* > *I*_{crit}, the disconnected minimal surface–two parallel hypersurfaces falling into the IR at constant separation, dominates.
- reminiscent of the HEE in confining backgrounds (Klebanov, Kutasov and Murugan, '07).
- When / is sufficiently small, the minimal hypersurface should probe the UV regime of the full geometry (Kulaxizi, Parnachev and Schalm, '12).

Why UV completion?

- Recall the spirit of EHT: it just describes the IR geometry.
- The UV regime of the full geometry is needed when *I* is small.
- UV completion: to obtain solutions which are asymptotically AdS and conformal to AdS₂ × R^d in the IR.
- Physical constraints should be imposed (Ogawa, Takayanagi and Ugajin, '11).

Introduction

The UV completed solution

The holographic entanglement entropy

Summary and outlook

The general ansatz

The ansatz for the configuration

The action

$$S = \int d^{d+2}x \sqrt{-g} [R - \frac{1}{2}(\nabla\Phi)^2 - V(\Phi) - \frac{1}{4}Z(\Phi)F_{\mu\nu}F^{\mu\nu}],$$
(4)

The ansatz for the metric and gauge field

$$ds_{d+2}^2 = \frac{L^2}{z^2} [-f(z)dt^2 + g(z)dz^2 + \sum_{i=1}^d dx_i^2], \ A_t = A_t(z), \ (5)$$

- Asymptotically AdS_{d+2} solutions with boundary $z = 0, \rightarrow f(0) = g(0) = 1$.
- Introducing the scale z_F , $z \gg z_F \rightarrow IR$, $z \ll z_F \rightarrow UV$.

Introduction	The UV completed solution	The holographic entanglement entropy	Summary and outlook	
The general ansatz				
The physical constraints				

- Plugging in the configuration into the e.o.m.s and solving for A_t, Φ², V(Φ), Z(Φ).
- Requiring that $\Phi'^2 > 0, Z(\Phi) > 0 \Rightarrow$

$$g(z)f'(z) + g'(z)f(z) \le 0,$$
 (6)

$$\begin{aligned} zg(z)f'^{2}(z) + f(z)(zf'(z)g'(z) \\ +g(z)\left(2df'(z) - 2zf''(z)\right) \leq 0, \end{aligned} \tag{7}$$

• (6, 7) are equivalent to the null energy condition (NEC) $T_{\mu\nu}N^{\mu}N^{\nu} \ge 0$. N^{μ} -unit normal vector.

Introduction	The UV completed solution	The holographic entanglement entropy	Summary and outlook
The IR solution			
The IR so	olution		

$$f(z) = kz^{-p}, \ g(z) = \frac{z_F^2}{z^2}, \ p \equiv 2d/\eta, \ k > 0,$$
 (8)

the solution

$$\Phi = \sqrt{d(p+2)} \log z, \quad A'_t(z) = \frac{A}{Z(\Phi)} \sqrt{f(z)g(z)} z^{d-2},$$
$$V(\Phi) = -\frac{(p+2d)^2 z^2}{4L^2 z_F^2}, \quad Z(\Phi) = \frac{2A^2 z_F^2 z^{2d-2}}{L^2 p(p+2d)}, \tag{9}$$

written in terms of Φ ,

$$V(\Phi) \sim e^{rac{2\Phi}{\sqrt{d(\rho+2)}}}, \quad Z(\Phi) \sim e^{rac{2(d-1)\Phi}{\sqrt{d(\rho+2)}}},$$
 (10)

Introduction	The UV completed solution	The holographic entanglement entropy	Summary and outlook		
The IR solution					
The IR solution cont'd					

The black hole solution

$$g(z) = \frac{z_F^2}{z^2 h(z)}, \quad f(z) = \frac{k}{z^p} h(z), \quad h(z) = 1 - (\frac{z}{z_H})^{d+p/2},$$
(11)

while the other field configurations remain the same.

• The temperature and the entropy density,

$$T \sim z_H^{-d/\eta}, \ s = z_H^{-d}, \ \Rightarrow \ s \sim T^\eta,$$
 (12)

The entropy density is vanishing at extremality.

The UV completion					
The UV completion					
Introduction	The UV completed solution	The holographic entanglement entropy	Summary and outlook		

Choose the following functions

$$f(z) = \frac{k}{k+z^p}, \ g(z) = \frac{z_F^2}{z^2+z_F^2},$$
 (13)

- f(0) = g(0) = 1, $f(\infty)$, $g(\infty)$ reduce to the IR results.
- $\Phi'^2 > 0$ is always satisfied.
- A sufficient but not necessary condition for $1/Z(\Phi) > 0$ is $2kd 2kp > 0 \rightarrow p < d$.

Introduction	The UV completed solution	The holographic entanglement entropy	Summary and outlook
The UV completion	1		
The plot f	or <i>V</i> (Φ)		

Figure: $V(\Phi)$ with d = 2. $k = L = z_F = 1$.

Introduction	The UV completed solution ○○○○○○●○	The holographic entanglement entropy	Summary and outlook
The UV completion			
The plot fo	$r Z(\Phi)$		

Figure: $Z(\Phi)$ with d = 2. $k = L = z_F = A = 1$.

Introduction	The UV completed solution	The holographic entanglement entropy	Summary and outlook	
The UV completion	on			
The UV behavior				

• The UV behavior $(z \rightarrow 0)$

$$\Phi \sim z, \ Z(\Phi) \sim \Phi^{2d-p},$$
 (14)

The scalar potential

$$V(\Phi) = -\frac{d(d+1)}{L^2} - \frac{d}{2L^2}\Phi^2,$$
 (15)

with mass square $m^2 = -d$.

• BF bound in AdS_{d+2} is $m^2 \ge -(d+1)^2/4 \Rightarrow$ the BF bound is not violated.

Introduction

The UV completed solution

The holographic entanglement entropy

Summary and outlook

The entangling regions

Figure: Left: strip; right: sphere. Taken from Ryu, Takayanagi, hep-th/0603001.

Only plots with d = 2 will be shown.

Introduction	The UV completed solution	The holographic entanglement entropy •oooooooo	Summary and outlook
The strip			
The strip			

Consider the strip,

$$x_1 \equiv x \in [-\frac{l}{2}, \frac{l}{2}], \ x_i \in [0, L_x], i = 2, \cdots, d,$$
 (16)

 $I \ll L_x$, the minimal surface area

$$A(\gamma) = 2L^{d}L_{x}^{d-1} \int \frac{dz}{z^{d}} \sqrt{g(z) + x^{\prime 2}},$$
 (17)

we have

$$x' = \frac{\sqrt{g(z)}(\frac{z}{z_*})^d}{\sqrt{1 - (\frac{z}{z_*})^{2d}}},$$
(18)

 z_*- the turning point where $x' \to \infty$.

Introduction	The UV completed solution	The holographic entanglement entropy	Su
	00000000	00000000	

Summary and outlook

The strip

The boundary separation length

The boundary separation length

$$\frac{l}{2} = \int_0^{z_*} dz \frac{\sqrt{g(z)}(\frac{z}{z_*})^d}{\sqrt{1 - (\frac{z}{z_*})^{2d}}},$$
(19)

• Plugging in the IR solution $g(z) = z_F^2/z^2$,

$$I \equiv I_{\rm crit} = \frac{\pi Z_F}{d} = {\rm const},$$
 (20)

• For the UV-completed metric $g(z) = z_F^2/(z^2 + z_F^2)$, see the plot

Introduction	The UV completed solution	The holographic entanglement entropy	Summary and outlook	
The strip				
The difference				

- The equation of motion also admits the trivial solution $x' = 0 \rightarrow$ disconnected hypersurface.
- The holographic entanglement entropy (Ryu and Takayanagi, '06)

$$S = \frac{A(\gamma)}{4G_N^{(d+2)}}.$$
 (21)

 Plot the differences between the finite parts of the connected minimal surface and the disconnected one ΔA = A_{finite} - A_{dis,finite}.

Which configuration will dominate?

Introduction	The UV completed solution	The holographic entanglement entropy	Summary and outlook
The strip			

Plot of the boundary separation length

Introduction	The UV completed solution	The holographic entanglement entropy	Summary and outlook
The strip			
Plot of the	difference		

Figure: The difference between the connected minimal surface and the disconnected one.

Introduction	The UV completed solution	The holographic entanglement entropy	Summary and outlook
The strip			
Remarks			

- For the boundary separation length, small *z*_{*}, *I* and *I*_{crit} have significant differences; large *z*_{*}, they almost coincide.
- For ΔA , when $I < I_{crit}$: the connected solution dominates;
- When *I* → *I*_{crit}: the difference tends to zero; the disconnected solution takes over;
- A phase transition occurs.

Introduction	The UV completed solution	The holographic entanglement entropy	Summary and outlook
The sphere			
The sphe	re		

The minimal surface area

$$A_{\rm sphere} = L^d \operatorname{Vol}(\Omega_{d-1}) \int \frac{dz}{z^d} \rho^{d-1} \sqrt{g(z) + \rho'^2}, \qquad (22)$$

• The equation of motion

$$\partial_{z} \left(\frac{\rho^{d-1} \rho'}{z^{d} \sqrt{g(z) + \rho'^{2}}} \right) = \frac{(d-1)\rho^{d-2}}{z^{d} \sqrt{g(z) + \rho'^{2}}}, \quad (23)$$

boundary conditions $\rho(0) = I$, $\rho(z_*) = 0$, z_* the turning point.

• No trivial solution $\rho' = 0$.

Plot of th	ne finite part		
The sphere			
Introduction	The UV completed solution	The holographic entanglement entropy ○○○○○○●○	Summary and outlook

Figure: The finite part of the entropy for spherical entangling region.

Introduction	The UV completed solution	The holographic entanglement entropy	Summary and outlook
The sphere			
Remarks			

• Fitting the finite part,

 $A_{\text{finite}} = -0.993627 - 0.0203008/ - 0.303885/^2 - 0.021952/^3,$ (24)

- The leading order behavior of the HEE is still governed by the area law.
- There is NO phase transition.

Introduction	The UV completed solution	The holographic entanglement entropy	Summary and outlook

Summary

- We study the HEE of holographic semi-local quantum liquids.
- The IR geometry is conformal to AdS₂ × R^d, insufficient for studying the HEE.
- The UV completed geometry is constructed.
- For the strip case, the HEE exhibits a phase transition.
- For the spherical case, no such phase transition occurs.
- Similar behavior can be observed in $d \ge 3$.

Introduction	The UV completed solution	The holographic entanglement entropy	Summary and outlook
Outlook			

- How to understand the behavior of HEE with different entangling regions?
- A third scale, supplied by the anisotropy of the strip, may play a role. (Kulaxizi, Parnachev and Schalm, '12).
- A geometric setup to check this argument: considering the annulus.
- When the inner radius vanishes → sphere; both radii large, the difference small → strip.
- Mutual information? Field theory realization?