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About Fermi Surfaces:
In Field Theory
A Fermi surface is the place,      , wherekF

Low energy excitations about this surface 
can be parametrized by

GR =
Z

! � vF (k � kF ) + ⌃(!, k)

GR
�1(! = 0, k = kF ) = 0

Figure 1: Multiple fermi surface singularities correspond to nested spheres (left). When the signs
of kF are opposite and the excitation spectrum is the same at both surfaces, one interpretation is
a thick shell (right).

Finally, the ratio of the excitation width to its energy is given by

�

!⇤
= tan

✓
�kF
2⌫kF

◆
, k? > 0 ,

= tan

✓
�kF
2⌫kF

� ⇡z

◆
, k? < 0 .

(133)

Di↵erent formulas hold for Fermi liquids, which have ⌫kF > 1/2; as we shall see, all our Fermi

surfaces are non-Fermi liquids, with one interesting special case approaching the marginal Fermi

liquid at ⌫kF ! 1/2.

6 Fermi surfaces in 2+1-charge black holes

To obtain the locations kF of Fermi surfaces as a function of µR ⌘ µ
1

/µ
2

for the various fermions,

we numerically solve the decoupled second-order Dirac equation (97) at ! = 0, beginning at the

horizon where we impose the positive sign exponent in (114) as a boundary condition, and searching

for values of kF that cause the source term to vanish as (127). We arbitrarily solve for the spinor

component ↵ = 1; the other component ↵ = 2 has identical results with k ! �k. We plot the

values of kF /µ2

vs. µR for the Dirac equations with Fermi surfaces in the following figures, as well

as ⌫kF , z and �/! for each case.

A few general points before we consider each fermion in turn:

• The fermions with asymptotic mass m ! 3

2L , which sit in the 4 of SO(6) and are dual to the

operators Tr F
+

�, possess no Fermi surfaces.
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Bottom up finite density physics

In Gravity Theories

About Fermi Surfaces:



In Gravity Theories

?
=

CFT

µ

O 

(i�µrµ + �µAµ � + . . .) = 0q m

Bottom up finite density physics

About Fermi Surfaces:



The top down alternative

IIB 
SUGRA 
in D=10

N=8 
gauged 

SUGRA in 
D=5

LB [e,Ai,'j ]

In Gravity Theories

About Fermi Surfaces:



Which Background?

Try the “2+1 Q” BBs N=4 SYM at (2x) finite density, T

ds2 = e

2A(r)
�
�h(r) dt2 + d~x2

�
� e

2B(r)

h(r)
dr2

a = �1(r)dt A = �2(r)dt

' = �(r)

The functions A, h, B, !1, !2, and " are cumbersome but 
explicitly known

In Gravity Theories

Fermi Surface Embeddings



What about the fermions?

Fix background, study spin-1/2 
fluctuations...

�
i�µrµ + qj�

µAj
µ �m(') + ipj(')Fj

µ⌫�
µ⌫
�
 = 0

Important: fermion properties are no 
longer arbitrary

In Gravity Theories

About Fermi Surfaces:



Fermi Surface Embeddings
In Gravity Theories

Bulk fermion fields of interest and their dual SUGRA operators:

We study the fermions that do not mix with the gravitini

SUGRA Fermion AdS Mass SO(6) Rep SYM Op

 1

2L 20

 
3

2L 4 TrF+�

Tr�Z



Fermi Surface Embeddings

Workflow

Fix 
Background

In Gravity Theories



Fermi Surface Embeddings

Workflow

Fix 
Background

Solve Dirac 
EQ at !=0

 r!1 ⇠ A(k)
p
r +B(k)r�3/2

where

�SCFT =

Z
d4xA(x)O (x)

In Gravity Theories



Fermi Surface Embeddings

Workflow

Fix 
Background

Solve Dirac 
EQ at !=0

Tune k to 
look for a 

kF

 r!1 ⇠ A(k)
p
r +B(k)r�3/2

where

�SCFT =

Z
d4xA(x)O (x)

so

GR(! = 0, k) ⇠ B(k)

A(k)

A(kF ) = 0

In Gravity Theories



Fermi Surface Embeddings

Finite frequency fluctuations

GR =
Z

! � vF (k � kF ) + ⌃(!, k)

In the extremal 2+1 system, controlled by IR AdS2:

IR dimension dictates dispersion relation, characterizes medium
If:

⌃(!, k) ⇠ ei�kF !2⌫kF

In Gravity Theories

[O]IR =
1

2
+ ⌫k

⌫kF <
1

2

with

IR CFT operator is relevant, non-Fermi liquid

⌫kF >
1

2
IR CFT operator is irrelevant, stable qp’s

⌫kF =
1

2
IR CFT operator is marginal, like “optimally doped cuprates”



Fermi Surface Embeddings

Finite frequency fluctuations

GR =
Z

! � vF (k � kF ) + ⌃(!, k)

In the extremal 2+1 system, controlled by IR AdS2:

⌃(!, k) ⇠ ei�kF !2⌫kF

In Gravity Theories

[O]IR =
1

2
+ ⌫kwith

!⇤ ⇠ (k � kF )
z where z ⌘ 1

2⌫kF

IR dimension dictates dispersion relation, characterizes medium

In these embeddings,           is less than 1/2, and the self energy dominates: ⌫kF



Figure 2: The values of kF /µ2

for case 1, Tr �
1

Z
2

and Tr �
1

Z
3

.
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Figure 3: The values of ⌫kF , z and �/! for case 1, Tr �
1

Z
2

and Tr �
1

Z
3

.

These modes have (q
1

, q
2

) = (1
2

, 2), (p
1

, p
2

) = (1
4

, 0) and (m
1

,m
2

) = (1
2

,�1

4

); kF is given in figure 2

and ⌫kF , z and �/! in figure 3.

The oscillatory region has the shape of a wavy band, as k̃
osc

/µ
2

approaches a constant value in

either limit, while k
shift

approaches zero at µR ! 0 but a finite value at µR ! 1. This fermion is

one of two with the largest total charge q
5

= 5/2, and has two Fermi surfaces for larger values of

µR; these track the oscillatory region boundary very closely. At the 3-charge point these fermions

reduce to the results of [49]. The Fermi surfaces disappear into the oscillatory region at around

µR ⇡ 0.47.

The values of ⌫k are small throughout the range, resulting in a scaling exponent z for the

excitations that never gets smaller than z & 5, and which (as it must) grows without bound as

the Fermi momenta approach the oscillatory region. The ratio �/! of excitation width also stays

small, being bounded above by �/! ⇡ 1/10 and going to zero as µR ! 1; thus in this limit the

would-be quasiparticle excitations become more and more stable.

In the full three-dimensional k-space, these two Fermi surface singularities are completed into

nested spheres. The excitation spectrum near both surfaces is the same; since the two kF solutions
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These modes have (q
1

, q
2

) = (1
2

, 2), (p
1

, p
2

) = (1
4

, 0) and (m
1
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The oscillatory region has the shape of a wavy band, as k̃
osc

/µ
2

approaches a constant value in

either limit, while k
shift

approaches zero at µR ! 0 but a finite value at µR ! 1. This fermion is

one of two with the largest total charge q
5

= 5/2, and has two Fermi surfaces for larger values of

µR; these track the oscillatory region boundary very closely. At the 3-charge point these fermions

reduce to the results of [49]. The Fermi surfaces disappear into the oscillatory region at around

µR ⇡ 0.47.

The values of ⌫k are small throughout the range, resulting in a scaling exponent z for the

excitations that never gets smaller than z & 5, and which (as it must) grows without bound as

the Fermi momenta approach the oscillatory region. The ratio �/! of excitation width also stays

small, being bounded above by �/! ⇡ 1/10 and going to zero as µR ! 1; thus in this limit the

would-be quasiparticle excitations become more and more stable.

In the full three-dimensional k-space, these two Fermi surface singularities are completed into

nested spheres. The excitation spectrum near both surfaces is the same; since the two kF solutions
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Lessons from the 2+1 Charge Zoo

• Fermion modes dual to Tr F# 
have no Fermi surface

• Fermion modes dual to 
Tr #$ may have 0 or 1 or 2 
Fermi surfaces, depending on 
their charge

Fermi Surface Embeddings



Lessons from the 2+1 Charge Zoo

• These systems are almost all 
non-Fermi liquids, but there 
exists one case resembling a 
MFL

Fermi Surface Embeddings
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Figure 12: The values of kF /µ1

for case 5, the MFL fermions Tr �
3

Z
1

and Tr �
4

Z
1

.

normalization we have the result

kF ⇡ 1

2
µ
1

, (134)

over the entire range of µR; the line kF /µ1

= 1/2 is shown explicitly. As we shall see, in the µR ! 0

limit this relationship can be shown to be exact. It is possible it is exact for the entire range of µR,

but we will not show this.

The 2+1-charge extremal backgrounds, having eliminated Q
2

to impose extremality, depend on

the length scales rH and Q
1

. The limit approaching the Coulomb branch solution is rH ! 0 with

Q
1

finite; thus there is a separation of scales, rH ⌧ Q
1

. Studying Fermi surfaces requires setting

the right boundary conditions at the horizon. Consequently, we will first study the region “zoomed

in” around rH ; keeping rH finite means Q
1

! 1. We keep k finite in this limit as well, but it

drops out of the equations. The Dirac equation for all four modes reduces to

 00(r) +
r2 + r2H

r(r2 � r2H)
 0(r)� r2

(r2 � r2H)2
 (r) , (135)

which has the solutions

 ±1/2(r) = (r2 � r2H)±
1

2 . (136)

Near the horizon, these approach

 ±1/2(r ! rH) ! [2rH(r � rH)]±
1

2 , (137)

corresponding to a value of ⌫k = 1/2. Indeed we may verify that the formula (110) for ⌫k evaluated

for this fermion in the large Q
1

limit gives ⌫k ! 1/2.

Thus to pick the ingoing/regular boundary condition, we pick the positive exponent ⌫k = +1/2.
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Figure 10: The values of kF /µ2

for case 5, Tr �
3

Z
1

and Tr �
4

Z
1

.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

0.

0.5

1.

1.5

2.

2.5

3.

3.5

4.

mR

nk z

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

mR

G

w

Figure 11: The values of ⌫kF , z and �/! for case 5, Tr �
3

Z
1

and Tr �
4

Z
1

.

leaving a cuspy O(µ3

R) deviation away from the limiting value k
osc

/µ
2

! �1/
p
2.

The total charge is q
3

= 3/2, and again there is a single Fermi surface. For this example

the Fermi surface never enters into the oscillatory region that we can discern, although it tracks

it rather closely. The Fermi momentum again goes through zero, indicating a Fermi surface of

particles transitioning to one of antiparticles. The exponent z again reaches a minimum around

z ⇡ 2, and the ratio �/! has a maximum around �/! . 0.23, going to zero as µR ! 1.

Case 5: �̄(

3

2

,� 1

2

, 1
2

)

and �̄(

3

2

, 1
2

,� 1

2

)

, dual to Tr �
3

Z
1

and Tr �
4

Z
1

.

These modes have (q
1

, q
2

) = (3
2

, 0), (p
1

, p
2

) = (�1

4

, 0) and (m
1

,m
2

) = (�1

2

, 3
4

); kF is given in

figure 10 and ⌫kF , z and �/! in figure 11.

In this case the oscillatory region vanishes for µR . 0.53 as the e↵ective mass overwhelms the

e↵ective electric coupling. The e↵ective charge is q
3

= 3/2, and there is again one Fermi surface;

as with the other two q
3

= 3/2 cases, the Fermi surface is above the oscillatory region. As µR ! 1,

the Fermi momentum appears to meet the oscillatory region. It departs from the oscillatory region

before k
osc

ceases to exist, as in case 3, and interestingly, appears to head towards kF /µ2

! 0.

This fermion is remarkable because it has q
2

= 0 and p
2

= 0; it is unaware of the Aµ gauge field.
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Fermi Surface Embeddings
Lessons from the 2+1 Charge Zoo

The 2+1-Q black holes backgrounds have 
finite entropy at zero temperature...

...Can we repeat this analysis in a more 
phenomenologically favorable 
background?



The extremal 2-Charge Solution
Background

h(r) = 1� Q4

(r2 +Q2)2 �(r) =

r
2

3

log

✓
1 +

Q2

r2

◆

B(r) = � log

r

L
� 2

3

log

✓
1 +

Q2

r2

◆
A(r) = log

r

L
+

1

3

log

✓
1 +

Q2

r2

◆

�(r) =
Q

2L

✓
1� Q2

r2 +Q2

◆ This is important!

Fermi Surface Embeddings



Fermi surfaces exist

So do novel features at finite !...
Near the horizon, bulk fermions are 

“gapped”:

 r!0 ⇠ e�
1
2r

q
Q2

2 �!2

for ! < !* bulk modes damped
for ! > !* bulk modes oscillatory, expect field theory dissipation

The extremal 2-Charge Solution

Fermi Surface Embeddings



Low Energy Excitations
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The extremal 2-Charge Solution

Fermi Surface Embeddings



Low Energy Excitations
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More like a Fermi liquid?

The extremal 2-Charge Solution

Fermi Surface Embeddings



Up and Coming
In the 2+1-Q BHs

Lots more to do...

Interesting physics abounds near the limits 
of these solutions (1 and 2-Q BHs, BTZ, etc.)

A better understanding of instabilities 
would be useful

Fermi surface behavior is ubiquitous in 
strongly coupled N=4 SYM theory
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