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About Fermi Surfaces:
In Field Theory

A Fermi surface is the place, kr, where
Cr =0/ =lka) =0 °

Low energy excitations about this surface
can be parametrized by




About Fermi Surfaces:
In Gravity Theories

Bottom up finite density physics
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About Fermi Surfaces:

In Gravity Theories

Bottom up finite density physics
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About Fermi Surfaces:
In Gravity Theories

The top down alternative
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Fermi Surface Embeddings

In Gravity Theories
Which Background?
Try the “2+1 Q” BBs N=4 SYM at (2x) finite density, T
ds? = 24(n) (—h(r)dt® + dz°) A dr?
h(r)

a = &(r)dt A = &y (r)dt

o = ¢(r)
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The functions A, h, B, @1, ®2, and ¢ are cumbersome but
explicitly known



About Fermi Surfaces:

In Gravity Theories

What about the fermions?

Fix background, study spin-1/2
fluctuations...
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Important: fermion properties are no
longer arbitrary



Fermi Surface Embeddings

In Gravity Theories
Bulk fermion fields of interest and their dual SUGRA operators:
SUGRA Fermion AdS Mass SO(6) Rep SYM Op
1

We study the fermions that do not mix with the gravitini



Fermi Surface Embeddings

In Gravity Theories
Workflow
4 )
Fix
Background
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Fermi Surface Embeddings

In Gravity Theories
Worktlow
- D r 2 o
Fix Solve Dirac| ¥r—o ™ A(k)V'r + B(k)r
Background (’ EQ at w=0 where
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Fermi Surface Embeddings

In Gravity Theories
Workftlow
- D r 2 o
Fix Solve Dirac| ¥r—roc ™ A(k)V'r + B(k)r
Background (’ EQ at w=0 where
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Fermi Surface Embeddings

In Gravity Theories

Finite frequency fluctuations

G A
BT 0 —vr(k — k) + 2(w, k)

In the extremal 2+1 system, controlled by IR AdS2:

1

Y(w, k) ~ e VhE w?PRE  with Oig = 5 i A

IR dimension dictates dispersion relation, characterizes medium

it

Vip < IR CFT operator is relevant, non-Fermi liquid

g IR CFT operator is irrelevant, stable qp’s

Vkp —

IR CFT operator is marginal, like “optimally doped cuprates”
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Fermi Surface Embeddings

In Gravity Theories

Finite frequency fluctuations

G A
BT 0 —vr(k — k) + 2(w, k)

In the extremal 2+1 system, controlled by IR AdS2:

1

Y(w, k) ~ e VhE w?PRE  with Oig = 5 i A

IR dimension dictates dispersion relation, characterizes medium

In these embeddings, Vk is less than 1/2, and the self energy dominates:

1
Wy ™ (k A kF)Z where e 2ku




Fermi Surface Embeddings

Lessons from the 2+1 Charge Zoo
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e Fermion modes dual to Tr FA
have no Fermi surface

* Fermion modes dual to

Tr AZ may have 0 or 1 or 2
Fermi surtaces, depending on
their charge



Fermi Surface Embeddings

Lessons from the 2+1 Charge Zoo
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Fermi Surface Embeddings

Lessons from the 2+1 Charge Zoo

The 2+1-Q black holes backgrounds have
finite entropy at zero temperature...

...Can we repeat this analysis in a more
phenomenologically favorable
background?



Fermi Surface Embeddings

The extremal 2-Charge Solution

Background
2 2
A(r)zlogZJr;lg(lJrQ) B(?“)Z—log;—glog(lﬂtfi)
& B
Q* 2 :
h(r)=1— (r2 + Q2)2 o(r) = \/;bg (1 3 %)
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This is important!




Fermi Surface Embeddings

The extremal 2-Charge Solution

Fermi surfaces exist

So do novel features at finite ...

Near the horizon, bulk fermions are

for w < w”* bu

for w > w”* bul

“gapped”:
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k modes damped

k modes oscillatory, expect field theory dissipation



Fermi Surface Embeddings

The extremal 2-Charge Solution

Low Energy Excitations




Fermi Surface Embeddings

The extremal 2-Charge Solution

Low Energy Excitations

w

More like a Fermi liquid?



Up and Coming

In the 2+1-Q BHs

Fermi surface behavior is ubiquitous in
strongly coupled N=4 SYM theory

Interesting physics abounds near the limits
of these solutions (1 and 2-Q BHs, BTZ, etc.)

A better understanding of instabilities
would be usetul

[Lots more to do...
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