Outline N	Notivation	Improved Holographic QCD	Results	Conclusions
		000000	0000000	

Energy-momentum tensor correlators in holography and perturbative QCD

Martin Krššák

Bielefeld University

March 7, 2013

based on

K. Kajantie, M. Krššák., A. Vuorinen, arXiv:1302.1432 [hep-ph]. K. Kajantie, M. Krššák, M. Vepsäläinen, A. Vuorinen, Phys. Rev. D **84**, 086004, arXiv:1104.5352[hep-ph].

4 3 6 4 3 6 6

Outline	Motivation	Improved Holographic QCD	Results	Conclusions
		000000	0000000	

Motivation

Improved Holographic QCD

- Introduction
- Thermodynamics
- Energy momentum correlators in Yang-Mills Theory
- Holographic correlators

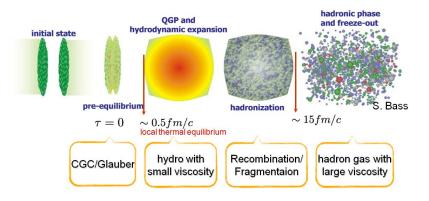
Results

- A few computational details
- Shear channel
- Bulk channel
- Large- ω limit
- Euclidean correlators and lattice QCD

Conclusions

医子宫 医下

	Motivation	Improved Holographic QCD	Results 00000000	Conclusions
Motiva	tion			



• Standard lore: RHIC data suggest that strongly coupled quark gluon plasma behaves as an almost ideal liquid with $\eta/s < 0.2$. How to understand this and describe the system?

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Perturbative QCD (weakly coupled): $\frac{\eta}{s} \propto g^4 \gg 1$
- Lattice calculations: indications of small value, but hard to make quantitative conclusions
- AdS/CFT correspondence: for two derivative models universal prediction $\frac{\eta}{s} = \frac{1}{4\pi} \approx 0.08$ classical argument for holographic description of QGP
- Obvious question: how close is $\mathcal{N} = 4$ SYM to the real world QCD with broken conformality?
 - bulk viscosity is trivial in $\mathcal{N}=4$ SYM, while in the real world QCD it has non-zero value.
 - If we want to understand strongly coupled QGP using holography, need to be able to break conformal invariance and SUSY!

 Outline
 Motivation
 Improved Holographic QCD
 Results
 Conclusions

 ••••••••
 •••••••
 •••••••
 ••••••••
 ••••••••

Improved Holographic QCD

- IHQCD is a non-conformal bottom-up model, designed to mimic properties of large-N_c Yang-Mills theory (U. Gursoy, E. Kiritsis, F. Nitti: 0707.1349, 0707.1324)
- Start with background black hole metric
- Start with background black hole metric

$$ds^{2} = b^{2}(z) \left[-f(z)dt^{2} + d\mathbf{x}^{2} + dz^{2}f^{-1}(z) \right],$$

z- radial coordinate (boundary at z = 0, BH horizon at $z = z_h$)

• ...and dilaton gravity action

$$S=rac{1}{16\pi G_5}\int d^5x\sqrt{-g}\left[R-rac{4}{3}g^{\mu
u}\partial_\mu\phi\partial_
u\phi+V(\phi)
ight],\quad\lambda(z)=e^{\phi(z)}.$$

• Conformal invariance broken through introduction of nontrivial potential $V(\phi)$ for the dilaton field

$$\beta = \frac{d\lambda}{db}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation	Improved Holographic QCD	Results	Conclusions
	000000		

To model YM theory, choose potential $V(\lambda)$ according to

$$V(\lambda) = \frac{12}{\mathcal{L}^2} \left[1 + \frac{88}{27}\lambda + \frac{4619}{729}\lambda^2 \frac{\sqrt{1 + \ln(1 + \lambda)}}{(1 + \lambda)^{2/3}} \right], \quad \text{with}$$

- Coefficients determined by matching holographic beta function to 2-loop perturbative one (in large- N_c YM).
- Requiring the model to possess a linear glueball spectrum (confinement criterion)
- Requiring background to be asymptotically AdS

$$b(z)
ightarrow {{\cal L}\over z}, \qquad z
ightarrow 0.$$

Finally, use Einstein equations to numerically determine b(z), f(z), $\lambda(z)$

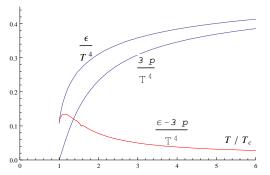
$$\dot{W} = 4bW^2 - \frac{1}{f}(W\dot{f} + \frac{1}{3}bV), \qquad \dot{b} = -b^2W,$$

$$\dot{\lambda} = \frac{3}{2}\lambda\sqrt{b\dot{W}}, \qquad \qquad \ddot{f} = 3\dot{f}bW.$$

Outline	Motivation	Improved Holographic QCD	Results	Conclusions
		000000	0000000	

Thermodynamics

To quantitatively study the predictions of IHQCD, look at thermodynamic quantities, such as energy density or interaction measure



• Last free parameter of the model fixed by matching pressure to weakly coupled large- N_c YM theory

$$\frac{\mathcal{L}^3}{4\pi G_5} = \frac{4N_c^2}{45\pi^2}$$

	Motivation	Improved Holographic C		sults DOOOOOO	Conclusions
Energy	momentum c	orrelators in	Yang-Mills	Theory	

In this talk: inspect correlation functions of YM energy momentum tensor

$$T_{\mu\nu}(x) = \theta_{\mu\nu}(x) + \frac{1}{4}\delta_{\mu\nu}\theta(x),$$

$$\theta_{\mu\nu}(x) = \frac{1}{4}\delta_{\mu\nu}F^{a}_{\rho\sigma}F^{a}_{\rho\sigma} - F^{a}_{\mu\alpha}F^{a}_{\nu\alpha},$$

$$\theta(x) = \frac{\beta(g)}{2g}F^{a}_{\rho\sigma}F^{a}_{\rho\sigma}.$$

In particular, retarded Green's functions in momentum space

$$G_s^R(\omega, k=0) = -i \int d^4 x e^{i\omega t} \theta(t) \left\langle [T_{12}(t, \vec{x}), T_{12}(0, 0)] \right\rangle,$$
$$G_b^R(\omega, k=0) = -i \int d^4 x e^{i\omega t} \theta(t) \left\langle \left[\frac{1}{3} T_{\mu\mu}(t, \vec{x}), \frac{1}{3} T_{\nu\nu}(0, 0) \right] \right\rangle.$$

• • = • • = •

utline	Motivation	Improved Holographic QCD	Results	Conclusions
		0000000	0000000	
M	otivation: in hydrodyr	namic limit energy momen	tum tensor of vis	scous

Motivation: in hydrodynamic limit, energy momentum tensor of viscous liquid

$$\begin{aligned} T_{\mu\nu} &= \epsilon u_{\mu} u_{\nu} + p P_{\mu\nu} + \sigma_{\mu\nu}, \\ \sigma_{\mu\nu} &= P_{\mu}^{\ \alpha} P_{\nu}^{\ \beta} \left[\eta \left(\partial_{\alpha} u_{\beta} + \partial_{\beta} u_{\alpha} - \frac{2}{3} g_{\alpha\beta} \partial_{\lambda} u^{\lambda} \right) + \zeta g_{\alpha\beta} \partial_{\lambda} u^{\lambda} \right], \end{aligned}$$

where η and ζ are the ${\bf shear}$ and ${\bf bulk}$ viscosities, respectively.

To connect viscosities with correlators

• Define shear and bulk spectral densities

$$\rho_{s/b}(\omega) = \operatorname{Im} G^{R}_{s/b}(\omega, k = 0),$$

• ...and use Kubo formula to express the viscosities as the corresponding IR limits

$$\eta = \lim_{\omega \to 0} \frac{\rho_s(\omega)}{\omega}, \qquad \qquad \zeta = \lim_{\omega \to 0} \frac{\rho_b(\omega)}{\omega}$$

Of interest: not only transport coefficients, but *comparison of spectral* densities and Euclidean correlators with lattice and pQCD, particular = 1

Outline	Motivation	Improved Holographic QCD	Results	Conclusions
		0000000	0000000	

Holographic shear correlator

To determine the shear spectral density within IHQCD< follow the standard calculation (S. S. Gubser, S. S. Pufu, F. D. Rocha arXiv:0806.0407)

Introducing perturbations to background metric

$$g_{12}=\epsilon h_{12},$$

② Expanding resulting Einstein equations up to 1st order in ϵ

$$\ddot{h}_{12} + rac{d}{dz}\log(b^3f)\dot{h}_{12} + rac{\omega^2}{f^2}h_{12} = 0,$$

and solve with an infalling boundary condition at the horizon.Evaluating full action on the AdS boundary

$$\rho_{s}(\omega) = \frac{1}{4\pi} s(T) \frac{\omega}{|h_{12}(z \to 0)|^{2}},$$

where s(T) is the entropy

• • = • • = •

Outline	Motivation	Improved Holographic QCD	Results	Conclusions
		000000	0000000	

Holographic bulk correlator

- Consequence of the broken conformal invariance in IHQCD: non-zero bulk viscosity
- To obtain spectral density of the bulk correlator $\langle T_{ii}, T_{jj} \rangle$ introduce metric perturbations

$$g_{ii} = b^2 \left(1 + \epsilon h_{ii}\right),$$

• And use the fact that at k = 0

$$\langle T_{\mu\mu},\,T_{\nu\nu}\rangle = \langle T_{ii},\,T_{jj}\rangle + \text{(contact terms)}.$$

• Again, Einstein equations lead to diff. equation for h_{ii}

$$\ddot{h}_{ii} + \frac{d}{dz} \log(b^3 f X^2) \dot{h}_{ii} + \left(\frac{\omega^2}{f^2} - \frac{\dot{f} \dot{X}}{fX}\right) h_{ii} = 0, \quad X = \frac{\beta}{3\lambda},$$

• ... giving the bulk spectral density in the form

$$\rho(\omega) = \frac{1}{4\pi} s(T) 6X^2(z_h) \frac{\omega}{|h_{ii}(z \to 0)|^2}$$

	Motivation	Improved Holographic QCD 0000000	Results •••••••	Conclusions
A few	computationa	l details		

- Due to complicated logarithmic structure of potential $V(\lambda)$, numerical methods necessary to obtain the full correlators (implemented within Mathematica)
- Numerically stable results achieved for (almost) arbitrary temperatures $T \ge T_c$ and for frequencies up to several thousand T_c by
 - Imposing purely infalling boundary conditions at the horizon through a high order analytic expansion,

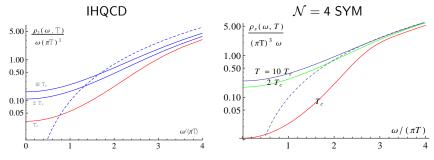
$$h(z \to z_h) = (z - z_h)^{i\omega/\hat{f}_h} [1 + d_1(z - z_h) + d_2(z - z_h)^2 + d_3(z - z_h)^3],$$

- Using Einstein equations to minimize number of derivatives of background functions f, b and λ in the diff. equations to be solved
- In the high frequency limit, WKB approximation can be used to obtain analytic understanding.

・ 「「・ ・ 」 ・ ・ ・ ・ ・ ・

	Motivation	Improved Holographic QCD	Results	Conclusions
Shear s	pectral densi			

The shear spectral function in units of $\mathcal{L}^3/(4\pi\,G_5)$ both in IHQCD and $\mathcal{N}=4$ SYM

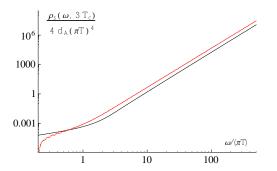


K. Kajantie, M. Vepsalainen, arXiv:1011.5570.

• • = • • = •

Shear spectral density

Comparison with perturbative QCD prediction at high energies, with $T = 3T_c$ (pQCD: Y. Zhu and A. Vuorinen, arXiv:1212.3818 [hep-ph].)



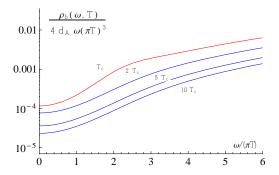
• Functional behaviour of both results $\propto \omega^4$ at large ω ; however, as expected overall normalizations do not agree

$$\frac{\rho_s^{pQCD}(\omega \to \infty, T)}{\rho_s^{IHQCD}(\omega \to \infty, T)} = \frac{9}{4}$$

化压力 化压力

Outline	Motivation	Improved Holographic QCD	Results	Conclusions
Bulk s	pectral density	1		

IHQCD bulk spectral density at various temperatures

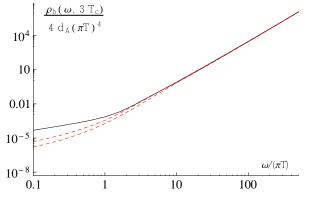


- Slow convergence numerically more challenging in large- ω region
- Bulk viscosity decreases with increasing temperature (as expected, in conformal limit $\zeta = 0$)

Outline	Motivation	Improved Holographic QCD	Results	Conclusions
		000000	00000000	

Bulk spectral density

Comparison with perturbative QCD prediction at high energies, with $\mathcal{T}=3\mathcal{T}_c$

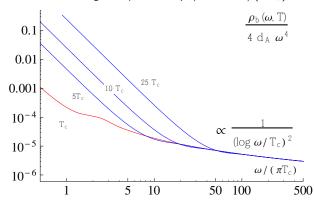


pQCD: M. Laine, A. Vuorinen and Y. Zhu, arXiv:1108.1259 [hep-ph].

• In large- ω region find perfect numerical matching

	Motivation	Improved Holographic QCD	Results ○○○○○●○○	Conclusions
Large-u	limit			

Closer look at large frequencies: ρ_b/ω^4 vs. $\omega/(\pi T_c)$



Outline	Motivation	Improved Holographic QCD	Results	Conclusions
Large-u) limit			

• Numerical fact: in large- ω region,

$$rac{
ho_b(\omega
ightarrow\infty,\,T)}{\omega^4}
ightarrowrac{1}{(\log\omega/T_c)^2},$$

• In pQCD, this behavior understood as coming from running of g, cf.

$$T^{\mu}_{\mu}=rac{eta({f g})}{2g}F^{a}_{\mu
u}F^{a}_{\mu
u}\,,$$

where

$$rac{eta(g)}{2g} \propto g^2 \propto \ rac{1}{(\log \omega/T_c)},$$

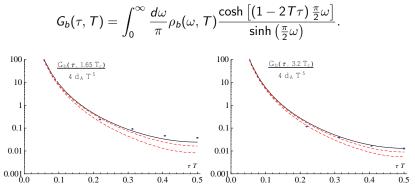
 In contrast, in our holographic calculation both β(g) and g are independent of ω — logarithmic behavior entirely from h_{ii}(z → 0)

 Outline
 Motivation
 Improved Holographic QCD
 Results
 Conclusions

 0000000
 0000000
 0000000
 0000000
 0000000

Euclidean correlators and lattice QCD

Simplest quantity to measure on the lattice: Euclidean imaginary time correlator



lattice: H. B. Meyer, JHEP 1004 (2010) 099 [arXiv:1002.3343 [hep-lat]].

• Lattice seems to favour IHQCD over pQCD, though difference decreases with increasing temperature

(E)

	Motivation	Improved Holographic QCD	Results	Conclusions
Conclus	ions			

- We have used IHQCD to calculate correlators in both shear and bulk channels of large- N_c Yang-Mills theory
 - Results subsequently compared with both pQCD and lattice QCD predictions
- In shear channel, a strong effect of non-conformality observed for temperatures close to T_c
- $\bullet\,$ Bulk channel results fundamentally new: in ${\cal N}=4$ SYM, result vanishes due to conformal invariance
- For large ω , functional behavior of spectral densities in IHQCD agrees with perturbative predictions
 - In bulk case, perfect numerical agreement with pQCD in the UV
- Lattice data for Euclidean imaginary time correlators better described by IHQCD than NLO pQCD

< 回 > < 回 > < 回 > …

-