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„Thermalization” puzzle

~
 1

0 
fm

described by hydro after < 1 fm/c

There are overwhelming evidences that relativistic heavy ion collision programs at 
RHIC and LHC created strongly coupled quark-gluon plasma (sQGP)

Successful description of experimental data is based on hydrodynamic simulations 
of an almost perfect fluid of                      starting on very early (< 1 fm/c)

Explaining ab initio this very quick applicability of hydro is a fascinating puzzle

What can the holography teach us about equilibration in similar models?

Heinz [nucl-th/0407067]

�/s = O(1/4⇥)
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Brief intro to the near-equilibrium holography



Global equilibrium

AdS-Schwarzschild black hole is described by the metric

ds

2
BH = 2dtdr � r

2

✓
1� ⇡

4
T

4

r

4

◆
dt

2 + r

2d~x

2

down to
singularity
@ r = 0

horizon

boundary
@ r =  1

eventrEH = ⇡ T

The plasma/black hole thermodynamics is given by

Thermal 
deconfined hQFT = Bulk black hole

Tµ⌫ =
1
8
⇡2N2

c T 4 diag (3, 1, 1, 1)µ⌫ , s = Area/4l2P =
1
2
N2

c ⇡2V T 3
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Going away from equilibrium

momentum

am
pl

itu
de

QFT: global equilibrium 
gravity: eternal black hole

QFT: hydrodynamics
gravity: fluid/gravity duality

QFT: linear response theory
gravity: quasinormal modes

far from equilibrium regime 

2)

1)

3)

review: Hubeny & Rangamani
1006.3675 [hep-th]
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Small amplitude perturbations and dissipation

down to
singularity
@ r = 0

horizon

boundary
@ r =  1

eventrEH = ⇡ T

Tµ⌫ =
1
8
⇡2N2

c T 4 diag (3, 1, 1, 1)µ⌫

�g
ab

(r) e�i!(k)t+i

~

k·~x

!

exponential decay with time

Quasinormal modes are small amplitude perturbations on top of BH that obey

- Dirichlet bdry conditions at the bdry
- Ingoing bdry conditions at the horizon 

The latter lead to complex frequencies    and hence dissipation    
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Quasinormal mode spectrum

Tµ⌫ =
1
8
⇡2N2

c T 4 diag (3, 1, 1, 1)µ⌫ +�T
µ⌫

(⇠ e�i!(k) t+i

~

k·~x)

Consider small amplitude perturbations (                ) on top of a holographic plasma�Tµ⌫/Nc
2 ⌧ T 4

Due to                     (and           ?)  the temperature T is the only microscopic scale� = g2YMNc ! 1

Complex       in the sound channel look like!(k)
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Figure 6: Real and imaginary parts of three lowest quasinormal frequencies as function of spatial
momentum. The curves for which →0 as →0 correspond to hydrodynamic sound mode in the dual
finite temperature N=4 SYM theory.

behavior of the lowest (hydrodynamic) frequency which is absent for Eα and Z3. For Ez and

Z1, hydrodynamic frequencies are purely imaginary (given by Eqs. (4.16) and (4.32) for small

ω and q), and presumably move off to infinity as q becomes large. For Z2, the hydrodynamic

frequency has both real and imaginary parts (given by Eq. (4.44) for small ω and q), and

eventually (for large q) becomes indistinguishable in the tower of other eigenfrequencies. As an

example, dispersion relations for the three lowest quasinormal frequencies in the sound channel

(including the one of the sound wave) are shown in Fig. 6. The tables below give numerical

values of quasinormal frequencies for = 1. Only non-hydrodynamic frequencies are shown

in the tables. The position of hydrodynamic frequencies at = 1 is = −3.250637i for the

R-charge diffusive mode, = −0.598066i for the shear mode, and = ±0.741420−0.286280i

for the sound mode. The numerical values of the lowest five (non-hydrodynamic) quasinormal

frequencies for electromagnetic perturbations are:

Transverse channel Diffusive channel

n Re Im Re Im

1 ±1.547187 −0.849723 ±1.147831 −0.559204

2 ±2.398903 −1.874343 ±1.910006 −1.758065

3 ±3.323229 −2.894901 ±2.903293 −2.891681

4 ±4.276431 −3.909583 ±3.928555 −3.943386

5 ±5.244062 −4.920336 ±4.946818 −4.965186

and for gravitational perturbations are:

Scalar channel Shear channel Sound channel

n Re Im Re Im Re Im

1 ±1.954331 −1.267327 ±1.759116 −1.291594 ±1.733511 −1.343008

2 ±2.880263 −2.297957 ±2.733081 −2.330405 ±2.705540 −2.357062

3 ±3.836632 −3.314907 ±3.715933 −3.345343 ±3.689392 −3.363863

4 ±4.807392 −4.325871 ±4.703643 −4.353487 ±4.678736 −4.367981

5 ±5.786182 −5.333622 ±5.694472 −5.358205 ±5.671091 −5.370784

– 26 –

Im!/2⇡T

Re!/2⇡T

k/2⇡T

k/2⇡T

1st

2nd

3rd

1st

2nd

3rd

!(k) ! 0          as        : slowly evolving and dissipating modes (hydrodynamic sound waves)k ! 0

all the rest: far from equilibrium (QNM) modes dampened over 

@!

@k

���
k!0

= c
sound

ttherm = O(1)/T

This is also the meaning in which         is fast: 0.5 fm/c x 350 MeV = T ttherm = 0.63 !!!

Nc ! 1

Kovtun & Starinets

[hep-th/0506184]

tRHIC
hydro
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Modern relativistic (uncharged) hydrodynamics

an EFT of the slow evolution of conserved 
currents in collective media close to equilibrium

hydrodynamics is

As any EFT it is based on the idea of the gradient expansion

DOFs: always local energy density   and local flow velocity      (              )

EOMs: conservation eqns                 for       systematically expanded in gradients

✏ uµ u⌫u
⌫ = �1

rµT
µ⌫ = 0

Tµ⌫ = ✏uµu⌫ + P (✏){ gµ⌫ + uµu⌫ }� ⌘(✏)�µ⌫ � ⇣(✏){ gµ⌫ + uµu⌫ }(r · u) + . . .

Tµ⌫

gravity reminded us that all terms allowed by symmetries can enter

perfect fluid stress tensor

(famous) shear viscosity bulk viscosity
(vanishes for CFTs)
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Fluid-gravity duality

uµ
u

µ (x)
TT (x)

dual spacetime locally looks 
like a boosted black brane

ds2 = �2uµdx
µdr � r

2

✓
1� ⇡

4
T

4

r

4

◆
uµu⌫dx

µdx⌫ + r

2 (⌘µ⌫ + uµu⌫) dx
µdx⌫ + gradient terms.

0712.2456 [hep-th]
Bhattacharyya Hubeny Minwalla Rangamani
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Fluid-gravity duality redux:
hydrodynamics is an asymptotic series
So far nothing has been known about the character of hydrodynamic expansion

Idea: take a simple flow (here the boost-invariant flow) and using the fluid-gravity 
duality generate the on-shell form of its hydrodynamic stress tensor at high orders

MPH, R. A. Janik & P. Witaszczyk

1302.0697 [hep-th]

50 100 150 200 n
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»en 1ên

at large orders
factorial growth of gradient 
contributions with order

T 00 = ✏(⌧) ⇠
1X

n=2

✏n(⌧
�2/3)n (T�1rµu

⌫ ⇠ ⌧�2/3)

First evidence that hydrodynamic expansion has zero radius of convergence!

at low orders
behavior is different
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A standard method for asymptotic series is Borel transform and Borel summation
MPH, R. A. Janik & P. Witaszczyk1302.0697 [hep-th]

        reveals singularities leading to 0 radius of convergence

What controls the fast growth of hydroS coeffs?

Closer inspection reveals that the closest one to 0 is the lowest non-hydro QNM!
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Figure 6: Real and imaginary parts of three lowest quasinormal frequencies as function of spatial
momentum. The curves for which →0 as →0 correspond to hydrodynamic sound mode in the dual
finite temperature N=4 SYM theory.
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Figure 6: Real and imaginary parts of three lowest quasinormal frequencies as function of spatial
momentum. The curves for which →0 as →0 correspond to hydrodynamic sound mode in the dual
finite temperature N=4 SYM theory.
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Holographic thermalization: a primer
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General idea behind the non-equilibrium holography

The stress tensor is read off from near-
boundary expansion of dual solution

Of interest are geometries which interpolate between far-from-equilibrium states at 
the boundary at initial time tini and thermalized ones at (some) larger time tiso

Skenderis et al. (2000)0

Minkowski spacetime

bulk of AdS

x

0 = t

tini

The criterium for (local) „thermalization” 
is that the stress tensor is to a good 
accuracy described by hydrodynamics

z=1/r

x

1

Vacuum 

AdS

Future 

horizon

Source = 0

Source = 0

Source ≠ 0

∂AdS

Source = 0

Initial 

state

Future 

horizon

∂AdS

DynamicsDynamics

(a) (b)

There are two ways of defining n-eq. states:

- shaking equilibrium via QFT sources
- defining them without invoking their origin

Let’s investigate the outcomes of the both!
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A typical holographic thermalization process

Numerical
experiment:

Theory:

Bo
un

da
ry

 (
at

 z
=

0)
Curvature (BH subtracted)

hTµ⌫i = diag

⇢
✏,

1

3
✏� 2

3
�P (t),

1

3
✏+

1

3
�P (t),

1

3
✏+

1

3
�P (t)

�

1202.0981 [hep-th] 
MPH, D. Mateos, W. van der Schee, D. Trancanelli

initial profile
for the bulk metric
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Holographic quench 3

The functions hn(r, v) are not constrained by Einstein’s
equations — their presence inside the integrands of
Eq. (11) are compensated by the subtraction of their
integrals Hn(r, v). However, since we have chosen the
upper limit of integration in Eq. (11) to be r = 1, the
functions hn(r, v) must be suitably chosen so that the
integrals (11) are convergent. The simplest choice to ac-
complish this is to set h

1

(r, v) equal to the asymptotic
expansion of ⌃(r, v)3 up to order 1/rk, for some k > 1,
and to set h

2

(r, v) equal to the asymptotic expansion of
2⇥(r, v)B0(r, v)/⌃(r, v)3/2 up to order 1/rk. In our nu-
merical solutions reported below, we use k � 4. This
choice makes the large r contribution to the integrals in
Eq. (11) quite small. As the coe�cients of the series ex-
pansions (8) only depend on b

0

(v) and b
4

(v) and their
v derivatives, this choice determines hn(r, v) in terms of
one unknown function b

4

(v).
With the subtraction functions hn specified by the

aforementioned asymptotic expansions, integrating Eq.
(12) fixes the compensating integrals Hn up to an in-
tegration constant which is an arbitrary function of v.
Integrating Eq. (13c) for A(r, v) introduces two further
(v dependent) constants of integration. The most direct
route for fixing these constants of integration is to match
the large r behavior of the expressions (13a) and (13b)
and the integrated version of Eq. (13c) to the correspond-
ing expressions obtained from the series expansions (8).
This fixes all integration constants in terms of b

0

and b
4

.
Our algorithm for solving the initial value problem

with time dependent boundary conditions is as fol-
lows. Given an initial geometry defined by B(r, v

0

),
one knows b

4

(v
0

). Integrating the constraint equation
(4e), with the fully determined asymptotic behavior (8c),
yields ⌃(r, v

0

). From this information, one can com-
pute A(r, v

0

) by integrating Eq. (13c). With A(r, v
0

),
B(r, v

0

) and ⌃(r, v
0

) known, one can then compute the
time derivative @vB(r, v

0

) from Eq. (13b) and step for-
ward in time,

B(r, v
0

+ �v) ⇡ B(r, v
0

) + @vB(r, v
0

) �v . (14)

Repeating the above process using this updated profile
of B determines ⌃ and A at time v

0

+ �v, from which
one computes @vB for the next time step. For an initial
geometry corresponding to the SYM vacuum, plus the
choice (2) of boundary data, one has

B(r,�1) = c , ⌃(r,�1) = r , A(r,�1) = r2 . (15)

An important practical matter is fixing the computa-
tion domain in r — how far into the bulk does one want
to compute the geometry? If a horizon forms, then one
may excise the geometry inside the horizon as this re-
gion is causally disconnected from the geometry outside
the horizon. Furthermore, one must excise the geome-
try to avoid singularities behind horizons [6] . To per-
form the excision, one first identifies the location of an

apparent horizon (an outermost marginally trapped sur-
face) which, if it exists, must lie inside a true horizon
[7] . We have chosen to make the incision slightly inside
the location of the apparent horizon. For the metric (3),
the location rh(v) of the apparent horizon is given by
⌃̇(rh(v), v) = 0 or, from Eq. (13a), ⇥(rh(v), v) = 0 .

Results and Discussion.—Fig. 1 shows a plot of the
energy density and transverse and longitudinal pressures
produced by the changing boundary geometry (1), with
c = 2. These quantities begin at zero in the distant past
when the system is in its vacuum state, and at late times
approach thermal equilibrium values given by

Tµ⌫
eq

= (⇡2N2

c T 4/8) diag(3, 1, 1, 1), (16)

where T is the final equilibrium temperature. Non-
monotonic behavior is seen when the boundary geometry
changes most rapidly around time zero [11].

FIG. 1: Energy density, longitudinal and transverse pressure,
all divided by N2

c

/2⇡2, as a function of time for c = 2.

Fig. 2 displays the congruence of outgoing radial null
geodesics, for c = 2. The surface coloring shows A/r2.
In the SYM vacuum (i.e., at early times) this quantity
equals 1, while at late times A/r2 = 1 � (rh/r)4. Ex-
cised from the plot is a region of the geometry behind
the apparent horizon. In the SYM vacuum, outgoing
geodesics are given by 1/r + v/2 = const., and appear as
straight lines in the early part of Fig. 2 . In the vicin-
ity of v = 0, when the boundary geometry is changing
rapidly and producing infalling gravitational radiation,
the geodesic congruence changes dramatically from the
zero temperature form to a finite temperature form. As
is evident from the figure, at late times some outgoing
geodesics do escape to the boundary, while others fall
into the bulk and never escape. Separating the ‘escap-
ing’ and ‘plunging’ geodesics is one geodesic which does
neither — this geodesic, shown as the black line in Fig. 2,
defines the true event horizon of the geometry.

Fig. 3 plots the area of the apparent and true event
horizons, again for c = 2. Nearly all growth of the ap-
parent horizon area occurs in the interval �2 < v < 0,
during which the boundary geometry is changing rapidly.

4

FIG. 2: The congruence of outgoing radial null geodesics.
The surface coloring displays A/r2. The excised region is
beyond the apparent horizon, which is shown by the dashed
green line. The geodesic shown as a solid black line is the
event horizon; it separates geodesics which escape to the
boundary from those which cannot escape.

FIG. 3: Area elements of the true event horizon and the
apparent horizon as a function of time.

|c| 1 1.5 2 2.5 3 3.5 4

⌧ T 0.23 0.31 0.41 0.52 0.65 0.79 0.94

⌧
iso

T 0.67 0.68 0.71 0.92 1.2 1.5 1.8

⌧
iso

/⌧ 3.0 2.2 1.7 1.8 1.8 1.9 1.9

TABLE I: Final equilibrium temperature T and isotropization
time ⌧

iso

(in units of T�1 or ⌧), for various values of c. The
isotropization time ⌧

iso

is the time at which the pressures
deviate from their equilibrium values by less than 10%.

In contrast, the area of the true horizon grows in the dis-
tant past long before the boundary geometry is signifi-
cantly perturbed. This is a reflection of the global nature
of event horizons — the location of the event horizon de-
pends on the entire history of the geometry. It has been
argued [8] that it is the area element of the apparent
horizon, pulled back to the boundary along v = const.
infalling null geodesics, which should be identified with
the entropy density (times 4GN ) in the dual field theory.

Table I shows, for various values of c, the final equilib-
rium temperature T and a measure of the isotropization

time ⌧
iso

. (These quantities only depend on |c|.) We
define ⌧

iso

as the time when the transverse and longi-
tudinal pressures equal their final values to within 10%.
When |c| & 2, we find that ⌧

iso

⇡ 2⌧ , while for |c| . 2,
⌧
iso

⇡ 0.7/T . Since ⌧
iso

is only a few times longer than
the time scale ⌧ over which the boundary geometry (1) is
changing, this measure of isotropization time should best
be viewed as an upper bound on isotropization times as-
sociated with plasma dynamics alone. Nevertheless, it
is interesting to note that ⌧

iso

⇡ 0.7/T corresponds to a
time of 1

2

fm/c when T = 350MeV, similar to estimates of
thermalization times inferred from hydrodynamic mod-
eling of RHIC collisions [3].
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FIG. 3: Area elements of the true event horizon and the
apparent horizon as a function of time.

|c| 1 1.5 2 2.5 3 3.5 4

⌧ T 0.23 0.31 0.41 0.52 0.65 0.79 0.94

⌧
iso

T 0.67 0.68 0.71 0.92 1.2 1.5 1.8

⌧
iso

/⌧ 3.0 2.2 1.7 1.8 1.8 1.9 1.9

TABLE I: Final equilibrium temperature T and isotropization
time ⌧

iso

(in units of T�1 or ⌧), for various values of c. The
isotropization time ⌧

iso

is the time at which the pressures
deviate from their equilibrium values by less than 10%.

In contrast, the area of the true horizon grows in the dis-
tant past long before the boundary geometry is signifi-
cantly perturbed. This is a reflection of the global nature
of event horizons — the location of the event horizon de-
pends on the entire history of the geometry. It has been
argued [8] that it is the area element of the apparent
horizon, pulled back to the boundary along v = const.
infalling null geodesics, which should be identified with
the entropy density (times 4GN ) in the dual field theory.

Table I shows, for various values of c, the final equilib-
rium temperature T and a measure of the isotropization

time ⌧
iso

. (These quantities only depend on |c|.) We
define ⌧

iso

as the time when the transverse and longi-
tudinal pressures equal their final values to within 10%.
When |c| & 2, we find that ⌧

iso

⇡ 2⌧ , while for |c| . 2,
⌧
iso

⇡ 0.7/T . Since ⌧
iso

is only a few times longer than
the time scale ⌧ over which the boundary geometry (1) is
changing, this measure of isotropization time should best
be viewed as an upper bound on isotropization times as-
sociated with plasma dynamics alone. Nevertheless, it
is interesting to note that ⌧

iso

⇡ 0.7/T corresponds to a
time of 1

2

fm/c when T = 350MeV, similar to estimates of
thermalization times inferred from hydrodynamic mod-
eling of RHIC collisions [3].
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Model: boost-invariant flow

x

0

x

1

x

1

The simplest, yet phenomenologically interesting field theory dy-
namics is the boost-invariant flow with no transverse expansion.

= =

relevant for central
rapidity region

no elliptic flow
(~ central collision)

In Bjorken scenario dynamics depends only on proper time

[Bjorken 1982]

pre-equilibrium stage
QGP
mixed phase
hadronic gas

described
by hydrodynamics

Figure 1: Description of QGP formation in heavy ion collisions. The kinematic landscape is
defined by τ =

√

(x0)2 − (x3)2 ; y = 1
2 log x

0+x
3

x0−x3 ; x⊥={x1, x2} , where the coordinates along the
light-cone are x0 ± x1, the transverse ones are {x1, x2} and τ is the proper time, y the “space-time
rapidity”.

[3]. The hydrodynamic regime has to last long enough and start soon enough after the

collision in order to explain the observed collective effects. Moreover, the smallness of the

viscosity which can be extracted from hydrodynamical simulations describing the data leads

to an almost-perfect fluid behaviour of the QGP, and thus to a short mean-free path inside

the fluid. Putting together these experimental inputs, and in order to go beyond a mererly

phenomenological description, it appears to be theoretically necessary to investigate as

much as possible the properties of a strongly-coupled Quantum-Chromodynamic plasma.

In the absence of nonperturbative methods applicable to real-time dynamics of strongly

coupled Quantum Chromodynamic (QCD) plasma, one is led to consider similar problems

from the point-of-view of the AdS/CFT correspondence, that is looking for the charac-

teristics of plasma in a gauge theory for which the AdS/CFT correspondence takes its

simplest form – the N = 4 supersymmetric Yang-Mills theory [4] which posseses a known

and tractable gravity dual.

Although the N = 4 gauge theory is supersymmetric and conformal and thus quite

different from QCD at zero temperature, both supersymmetry and scale-invariance are

broken explicitly at finite temperature and we may expect qualitative similarities with

QCD plasma for a range of temperatures above the QCD deconfinement phase transition1.

Indeed, the gauge/gravity dual calculation [5] showing, in a static setting, that the

viscosity over entropy ratio η/s is very small (equal to 1/4π) and even suggesting a universal

lower bound, is in qualitative agreement with hydrodynamic simulations of QCD plasma

and was a poweful incentive to explore further the AdS/CFT duality approach.

In order to go beyond static calculations, one has to adapt the dual AdS/CFT approach

to the relativistic kinematic framework of heavy-ion reactions, where two ultra-relativistic

heavy nuclei collide and form an expanding medium, see Fig.1. It is convenient, initially,

1There exist more refined versions of the AdS/CFT correspondence which may have more features in

common with QCD, however the gravity backgrounds are much more complicated and we will not consider

them here.

– 2 –

described by 
AdS/CFT in this scenario

and stress tensor (in conformal case) is entirely expressed in terms of energy density

with

⌧ = 0

We set strongly coupled n-eq states at         and tracked their relaxation to hydro.⌧ = 0

� =
q

(x0)2 � (x1)2

and pT (⇥) = �(⇥) +
1

2
⇥�0(⇥)pL(⇥) = ��(⇥)� ⇥�0(⇥)

hTµ
⌫i = diag{�✏(⌧), pL(⌧), pT (⌧), pT (⌧)}

ds

2 = �d⌧

2 + ⌧

2
dy

2 + dx

2
1 + dx

2
2
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Boost-invariant hydrodynamics

We define        by �(⇤) =
3

8
N2

c ⇥
2Teff (⇤)

4 and use dimensionless qty w = � Teff

Equations of hydro:

Teff

2

solution at the AdS boundary. The details will apear in a
subsequent paper [11], while in the present letter we will
concentrate on the physical questions mentioned above.

Boost-invariant plasma and hydrodynamics. The
traceless and conserved energy-momentum tensor of a
boost-invariant conformal plasma system with no trans-
verse coordinate dependence is uniquely determined in
terms of a single function ⇧T⇤⇤ ⌃ – the energy density at
mid-rapidity ⇤(⇥). The longitudinal and transverse pres-
sure are consequently given by

pL = �⇤� ⇥
d

d⇥
⇤ and pT = ⇤+

1

2
⇥
d

d⇥
⇤ . (1)

It is quite convenient to eliminate explicit dependence
on the number of colors Nc and degrees of freedom by
introducing an e�ective temperature Teff through

⇧T⇤⇤ ⌃ ⇤ ⇤(⇥) ⇤ N2
c · 3

8
�2 · T 4

eff . (2)

Let us emphasize that Teff does not imply in any way
thermalization. It just measures the temperature of a
thermal system with an identical energy density as ⇤(⇥).

All order viscous hydrodynamics amounts to present-
ing the energy-momentum tensor as a series of terms ex-
pressed in terms of flow velocities uµ and their deriva-
tives with coe⌅cients being proportional to appropriate
powers of Teff , the proportionality constants being the
transport coe⌅cients. For the case of N = 4 plasma,
the above mentioned form of Tµ⇥ is not an assumption
but a result of a derivation from AdS/CFT [7]. Hydro-
dynamic equations are just the conservation equations
 µTµ⇥ = 0, which are by construction first-order di�er-
ential equations for Teff .

In the case of boost-invariant conformal plasma this
leads to a universal form of first order dynamical equa-
tions for the scale invariant quantity

w = Teff · ⇥ (3)

namely

⇥

w

d

d⇥
w =

Fhydro(w)

w
, (4)

where Fhydro(w) is completely determined in terms of the
transport coe⌅cients of the theory1. For N = 4 plasma
at strong coupling Fhydro(w)/w is known explicitly up to
terms corresponding to 3rd order hydrodynamics [13]

2

3
+

1

9�w
+
1� log 2

27�2w2
+
15� 2�2 � 45 log 2 + 24 log2 2

972�3w3
+. . .

(5)

1
This is quite reminiscent of [12] where all-order hydrodynamics

was postulated in terms of linearized AdS dynamics.

0 0.2 0.4 0.6 0.8w

0.4

0.8

1.2

F �w⇥
w

FIG. 1. a) F (w)/w versus w for various initial data. b)
Pressure anisotropy 1 � 3pL

� and for a selected profile. Red,

blue and green curves correspond to 1st, 2nd and 3rd order
hydrodynamics respectively.

The importance of formula (4) lies in the fact that if the
plasma dynamics would be governed entirely by (even
resummed) hydrodynamics including dissipative terms
of arbitrarily high degree, then on a plot of ⇤

w
d
d⇤w ⇤

F (w)/w as a function of w trajectories for all initial con-
ditions would lie on a single curve given by Fhydro(w)/w.
If, on the other hand, genuine nonequilibrium processes
would intervene we would observe a wide range of curves
which would merge for su⌅ciently large w when thermal-
ization and transition to hydrodynamics would occur.
In Figure 1a we present this plot for 20 trajectories

corresponding to 20 di�erent initial states. It is clear
from the plot that nonhydrodynamic modes are very
important in the initial stage of plasma evolution, yet
for all the sets of initial data, for w > 0.65 the curves
merge into a single curve characteristic of hydrodynam-
ics. In Figure 1b we show a plot of pressure anisotropy
1� 3pL

⌅ ⇤ 12F (w)
w � 8 for a selected profile and compare

this with the corresponding curves for 1st, 2nd and 3rd

order hydrodynamics. We observe on this example, on
the one hand, a perfect agreement with hydrodynamics
for w > 0.63 and, on the other hand, a quite sizeable
pressure anisotropy in that regime which is nevertheless
completely explained by dissipative hydrodynamics.
In order to study the transition to hydrodynamics in

more detail, we will adopt a numerical criterion for ther-
malization which is the deviation of ⇥ d

d⇤w from the 3rd

order hydro expression (5)
�����

⇥ d
d⇤w

F 3rd order
hydro (w)

� 1

����� < 0.005. (6)

Despite the bewildering variety of the nonequilibrium
evolution, we will show below that there exist, however,
some surprising regularities in the dynamics.

Initial and final entropy. Apart from the energy-
momentum tensor components, a very important physi-
cal property of the evolving plasma system is its entropy
density S (per transverse area and unit (spacetime) ra-
pidity). In the general time-dependent case, the precise

=

2

solution at the AdS boundary. The details will apear in a
subsequent paper [11], while in the present letter we will
concentrate on the physical questions mentioned above.

Boost-invariant plasma and hydrodynamics. The
traceless and conserved energy-momentum tensor of a
boost-invariant conformal plasma system with no trans-
verse coordinate dependence is uniquely determined in
terms of a single function ⇧T⇤⇤ ⌃ – the energy density at
mid-rapidity ⇤(⇥). The longitudinal and transverse pres-
sure are consequently given by

pL = �⇤� ⇥
d

d⇥
⇤ and pT = ⇤+

1

2
⇥
d

d⇥
⇤ . (1)

It is quite convenient to eliminate explicit dependence
on the number of colors Nc and degrees of freedom by
introducing an e�ective temperature Teff through

⇧T⇤⇤ ⌃ ⇤ ⇤(⇥) ⇤ N2
c · 3

8
�2 · T 4

eff . (2)

Let us emphasize that Teff does not imply in any way
thermalization. It just measures the temperature of a
thermal system with an identical energy density as ⇤(⇥).

All order viscous hydrodynamics amounts to present-
ing the energy-momentum tensor as a series of terms ex-
pressed in terms of flow velocities uµ and their deriva-
tives with coe⌅cients being proportional to appropriate
powers of Teff , the proportionality constants being the
transport coe⌅cients. For the case of N = 4 plasma,
the above mentioned form of Tµ⇥ is not an assumption
but a result of a derivation from AdS/CFT [7]. Hydro-
dynamic equations are just the conservation equations
 µTµ⇥ = 0, which are by construction first-order di�er-
ential equations for Teff .

In the case of boost-invariant conformal plasma this
leads to a universal form of first order dynamical equa-
tions for the scale invariant quantity

w = Teff · ⇥ (3)

namely

⇥

w

d

d⇥
w =

Fhydro(w)

w
, (4)

where Fhydro(w) is completely determined in terms of the
transport coe⌅cients of the theory1. For N = 4 plasma
at strong coupling Fhydro(w)/w is known explicitly up to
terms corresponding to 3rd order hydrodynamics [13]
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This is quite reminiscent of [12] where all-order hydrodynamics

was postulated in terms of linearized AdS dynamics.
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FIG. 1. a) F (w)/w versus w for various initial data. b)
Pressure anisotropy 1 � 3pL

� and for a selected profile. Red,

blue and green curves correspond to 1st, 2nd and 3rd order
hydrodynamics respectively.

The importance of formula (4) lies in the fact that if the
plasma dynamics would be governed entirely by (even
resummed) hydrodynamics including dissipative terms
of arbitrarily high degree, then on a plot of ⇤

w
d
d⇤w ⇤

F (w)/w as a function of w trajectories for all initial con-
ditions would lie on a single curve given by Fhydro(w)/w.
If, on the other hand, genuine nonequilibrium processes
would intervene we would observe a wide range of curves
which would merge for su⌅ciently large w when thermal-
ization and transition to hydrodynamics would occur.
In Figure 1a we present this plot for 20 trajectories

corresponding to 20 di�erent initial states. It is clear
from the plot that nonhydrodynamic modes are very
important in the initial stage of plasma evolution, yet
for all the sets of initial data, for w > 0.65 the curves
merge into a single curve characteristic of hydrodynam-
ics. In Figure 1b we show a plot of pressure anisotropy
1� 3pL

⌅ ⇤ 12F (w)
w � 8 for a selected profile and compare

this with the corresponding curves for 1st, 2nd and 3rd

order hydrodynamics. We observe on this example, on
the one hand, a perfect agreement with hydrodynamics
for w > 0.63 and, on the other hand, a quite sizeable
pressure anisotropy in that regime which is nevertheless
completely explained by dissipative hydrodynamics.
In order to study the transition to hydrodynamics in

more detail, we will adopt a numerical criterion for ther-
malization which is the deviation of ⇥ d

d⇤w from the 3rd

order hydro expression (5)
�����

⇥ d
d⇤w

F 3rd order
hydro (w)

� 1

����� < 0.005. (6)

Despite the bewildering variety of the nonequilibrium
evolution, we will show below that there exist, however,
some surprising regularities in the dynamics.

Initial and final entropy. Apart from the energy-
momentum tensor components, a very important physi-
cal property of the evolving plasma system is its entropy
density S (per transverse area and unit (spacetime) ra-
pidity). In the general time-dependent case, the precise
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Characteristics of hydrodynamization

We choose                                       as a criterium for hydrodynamization. 

2

solution at the AdS boundary. The details will apear in a
subsequent paper [11], while in the present letter we will
concentrate on the physical questions mentioned above.

Boost-invariant plasma and hydrodynamics. The
traceless and conserved energy-momentum tensor of a
boost-invariant conformal plasma system with no trans-
verse coordinate dependence is uniquely determined in
terms of a single function ⇧T⇤⇤ ⌃ – the energy density at
mid-rapidity ⇤(⇥). The longitudinal and transverse pres-
sure are consequently given by

pL = �⇤� ⇥
d

d⇥
⇤ and pT = ⇤+

1

2
⇥
d

d⇥
⇤ . (1)

It is quite convenient to eliminate explicit dependence
on the number of colors Nc and degrees of freedom by
introducing an e�ective temperature Teff through

⇧T⇤⇤ ⌃ ⇤ ⇤(⇥) ⇤ N2
c · 3

8
�2 · T 4

eff . (2)

Let us emphasize that Teff does not imply in any way
thermalization. It just measures the temperature of a
thermal system with an identical energy density as ⇤(⇥).

All order viscous hydrodynamics amounts to present-
ing the energy-momentum tensor as a series of terms ex-
pressed in terms of flow velocities uµ and their deriva-
tives with coe⌅cients being proportional to appropriate
powers of Teff , the proportionality constants being the
transport coe⌅cients. For the case of N = 4 plasma,
the above mentioned form of Tµ⇥ is not an assumption
but a result of a derivation from AdS/CFT [7]. Hydro-
dynamic equations are just the conservation equations
 µTµ⇥ = 0, which are by construction first-order di�er-
ential equations for Teff .

In the case of boost-invariant conformal plasma this
leads to a universal form of first order dynamical equa-
tions for the scale invariant quantity

w = Teff · ⇥ (3)

namely

⇥

w

d

d⇥
w =

Fhydro(w)

w
, (4)

where Fhydro(w) is completely determined in terms of the
transport coe⌅cients of the theory1. For N = 4 plasma
at strong coupling Fhydro(w)/w is known explicitly up to
terms corresponding to 3rd order hydrodynamics [13]
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This is quite reminiscent of [12] where all-order hydrodynamics

was postulated in terms of linearized AdS dynamics.
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blue and green curves correspond to 1st, 2nd and 3rd order
hydrodynamics respectively.

The importance of formula (4) lies in the fact that if the
plasma dynamics would be governed entirely by (even
resummed) hydrodynamics including dissipative terms
of arbitrarily high degree, then on a plot of ⇤

w
d
d⇤w ⇤

F (w)/w as a function of w trajectories for all initial con-
ditions would lie on a single curve given by Fhydro(w)/w.
If, on the other hand, genuine nonequilibrium processes
would intervene we would observe a wide range of curves
which would merge for su⌅ciently large w when thermal-
ization and transition to hydrodynamics would occur.
In Figure 1a we present this plot for 20 trajectories

corresponding to 20 di�erent initial states. It is clear
from the plot that nonhydrodynamic modes are very
important in the initial stage of plasma evolution, yet
for all the sets of initial data, for w > 0.65 the curves
merge into a single curve characteristic of hydrodynam-
ics. In Figure 1b we show a plot of pressure anisotropy
1� 3pL

⌅ ⇤ 12F (w)
w � 8 for a selected profile and compare

this with the corresponding curves for 1st, 2nd and 3rd

order hydrodynamics. We observe on this example, on
the one hand, a perfect agreement with hydrodynamics
for w > 0.63 and, on the other hand, a quite sizeable
pressure anisotropy in that regime which is nevertheless
completely explained by dissipative hydrodynamics.
In order to study the transition to hydrodynamics in

more detail, we will adopt a numerical criterion for ther-
malization which is the deviation of ⇥ d

d⇤w from the 3rd

order hydro expression (5)
�����

⇥ d
d⇤w

F 3rd order
hydro (w)

� 1

����� < 0.005. (6)

Despite the bewildering variety of the nonequilibrium
evolution, we will show below that there exist, however,
some surprising regularities in the dynamics.

Initial and final entropy. Apart from the energy-
momentum tensor components, a very important physi-
cal property of the evolving plasma system is its entropy
density S (per transverse area and unit (spacetime) ra-
pidity). In the general time-dependent case, the precise

0.5%

3

FIG. 2. The dynamical horizon (dashed curve) and a radial
null geodesic (solid black curve) sent from the boundary (left
edge of the plot) at � = 0 into the bulk for a sample pro-
file. This curve coincides with a curve of fixed ‘Eddington-
Finkelstein’ proper time �EF = 0.

holographic dictionary for determining entropy is miss-
ing. Nevertheless in the present case due to high symme-
try, entropy seems to be defined unambiguously in terms
of 1/4GN of the dynamical horizon area element mapped
onto the boundary along ingoing radial null geodesics
[10, 14, 15]. This is also the approach that we take here.

For all of the initial profiles that we considered we ob-
served a dynamical horizon which was pierced by a radial
null geodesic starting from ⇥ = 0 on the boundary (see
Figure 2). This shows that the initial conditions had
always some entropy per unit rapidity to start with.

The main very surprising observation of our work is
that the initial entropy density measured in units of ef-
fective temperature at ⇥ = 0 is a key characterization of
the initial state which, to a large extent, determines the
features of the subsequent transition to hydrodynamics
as well as the final produced entropy. Moreover, we find
a surprisingly simple geometrical characterization of our
initial geometry at ⇥ = 0, which is directly correlated
with the initial entropy. We leave the latter issue to [11].

In the following it is convenient to introduce a dimen-
sionless entropy density s

S · Teff (0)
�2 = N2

c · 1
2
�2 · s. (7)

In order to evaluate the final entropy density at ⇥ = ⌅,
we adopted the following strategy. After observing a pas-
sage to hydrodynamics, we fitted 3rd order hydrodynamic
expression for Teff

Teff =
�

(�⇥)1/3

�
1� 1

6� (�⇥)2/3
+

�1 + log 2

36�2 (�⇥)4/3
+

+
�21 + 2�2 + 51 log 2� 24 log2 2

1944�3 (�⇥)2

⇥
(8)

to obtain the remaining single scale �. Since at ⇥ = ⌅
perfect fluid hydrodynamics applies, we can use the stan-
dard expression for entropy to get sfinal = �2 ·Teff (0)�2.

Once this has been done we can now determine the en-
tropy production sfinal � sinitial as a function of sinitial
for all the considered profiles. Despite the huge di⇥er-
ences in the evolution evident in Figure 1a, we observe
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FIG. 3. Entropy production as a function of initial entropy
for various initial conditions.

a clear functional dependence of the entropy production
on the initial entropy. The results are shown in Figure 3
together with a fit of the form

sfinal � sinitial ⇤ 1.59 · s1.55initial. (9)

Properties of thermalization. We will now proceed
to study in detail the properties of the transition from
far from equilibrium regime to hydrodynamics. We
will adopt the criterion (6), which imposes quite precise
agreement between the equations of motion coming from
third order hydrodynamics (being the most prescise de-
scription currently known) and the actual evolution of
the energy density of the plasma obtained from numeri-
cally solving the full Einstein’s equations. This criterion
is quite di⇥erent from criterions based on isotropization
of the longitudinal and transverse pressures like the one
adopted in [8]. In particular, Figure 1b shows quite a size-
able pressure anisotropy, which is nevertheless entirely
due to hydrodynamic modes.
Using the criterion (6), we determine the thermaliza-

tion times for 20 initial profiles. If we were to modify the
threshold, the thermalization time would of course shift
but in general not in a significant manner. However, it is
fair to say that thermalization is not a clear-cut event but
rather happens in some narrow range of proper times.
With this proviso we will now proceed to analyze the

following features of the thermalization time: (i) the di-
mensionless parameter w = ⇥Teff , (ii) the thermalization
time in units of initial temperature and (iii) the ratio of
the e⇥ective temperature at the time of thermalization
to the initial (e⇥ective) temperature.

In Figure 4, we show a plot of the values of w at the
time of thermalization as a function of the initial en-
tropy. We see that for a wide range of initial entropies,
the values of w at thermalization are approximately con-
stant and decrease only for initial data with very small
entropies.

Subsequently, we found unexpectedly rather clean
curves giving the dependence of the thermalization time
on the initial entropy (see Figure 5). This is very surpris-
ing taking into account the huge qualitative di⇥erences
in the evolution of the plasma when starting from the
various initial conditions.

Another important aspect is the question which part

Below are the plots of various non-equilibrium characteristics of plasma as a 
function of dimensionless entropy density defined by 

!!!

for

T (th)
eff > T (i)

eff

this qty is not
necessary small!

⌧th ⇡ 0.5fm/c

TRHIC
th = 350MeV
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Hydronization vs thermalization/isotropization

hydro

large anisotropy
at the onset of
hydrodynamics

1st, 2nd and 3rd order hydro 

Rewriting equations of hydrodynamics in a form

allows to explicitly see whether non-hydro 
modes already relaxed when curves coincide!

2

solution at the AdS boundary. The details will apear in a
subsequent paper [11], while in the present letter we will
concentrate on the physical questions mentioned above.

Boost-invariant plasma and hydrodynamics. The
traceless and conserved energy-momentum tensor of a
boost-invariant conformal plasma system with no trans-
verse coordinate dependence is uniquely determined in
terms of a single function ⇧T⇤⇤ ⌃ – the energy density at
mid-rapidity ⇤(⇥). The longitudinal and transverse pres-
sure are consequently given by

pL = �⇤� ⇥
d

d⇥
⇤ and pT = ⇤+

1

2
⇥
d

d⇥
⇤ . (1)

It is quite convenient to eliminate explicit dependence
on the number of colors Nc and degrees of freedom by
introducing an e�ective temperature Teff through

⇧T⇤⇤ ⌃ ⇤ ⇤(⇥) ⇤ N2
c · 3

8
�2 · T 4

eff . (2)

Let us emphasize that Teff does not imply in any way
thermalization. It just measures the temperature of a
thermal system with an identical energy density as ⇤(⇥).

All order viscous hydrodynamics amounts to present-
ing the energy-momentum tensor as a series of terms ex-
pressed in terms of flow velocities uµ and their deriva-
tives with coe⌅cients being proportional to appropriate
powers of Teff , the proportionality constants being the
transport coe⌅cients. For the case of N = 4 plasma,
the above mentioned form of Tµ⇥ is not an assumption
but a result of a derivation from AdS/CFT [7]. Hydro-
dynamic equations are just the conservation equations
 µTµ⇥ = 0, which are by construction first-order di�er-
ential equations for Teff .

In the case of boost-invariant conformal plasma this
leads to a universal form of first order dynamical equa-
tions for the scale invariant quantity

w = Teff · ⇥ (3)

namely

⇥

w

d

d⇥
w =

Fhydro(w)

w
, (4)

where Fhydro(w) is completely determined in terms of the
transport coe⌅cients of the theory1. For N = 4 plasma
at strong coupling Fhydro(w)/w is known explicitly up to
terms corresponding to 3rd order hydrodynamics [13]

2

3
+

1

9�w
+
1� log 2

27�2w2
+
15� 2�2 � 45 log 2 + 24 log2 2

972�3w3
+. . .

(5)

1
This is quite reminiscent of [12] where all-order hydrodynamics

was postulated in terms of linearized AdS dynamics.

0 0.2 0.4 0.6 0.8w

0.4

0.8

1.2

F �w⇥
w

FIG. 1. a) F (w)/w versus w for various initial data. b)
Pressure anisotropy 1 � 3pL

� and for a selected profile. Red,

blue and green curves correspond to 1st, 2nd and 3rd order
hydrodynamics respectively.

The importance of formula (4) lies in the fact that if the
plasma dynamics would be governed entirely by (even
resummed) hydrodynamics including dissipative terms
of arbitrarily high degree, then on a plot of ⇤

w
d
d⇤w ⇤

F (w)/w as a function of w trajectories for all initial con-
ditions would lie on a single curve given by Fhydro(w)/w.
If, on the other hand, genuine nonequilibrium processes
would intervene we would observe a wide range of curves
which would merge for su⌅ciently large w when thermal-
ization and transition to hydrodynamics would occur.
In Figure 1a we present this plot for 20 trajectories

corresponding to 20 di�erent initial states. It is clear
from the plot that nonhydrodynamic modes are very
important in the initial stage of plasma evolution, yet
for all the sets of initial data, for w > 0.65 the curves
merge into a single curve characteristic of hydrodynam-
ics. In Figure 1b we show a plot of pressure anisotropy
1� 3pL

⌅ ⇤ 12F (w)
w � 8 for a selected profile and compare

this with the corresponding curves for 1st, 2nd and 3rd

order hydrodynamics. We observe on this example, on
the one hand, a perfect agreement with hydrodynamics
for w > 0.63 and, on the other hand, a quite sizeable
pressure anisotropy in that regime which is nevertheless
completely explained by dissipative hydrodynamics.
In order to study the transition to hydrodynamics in

more detail, we will adopt a numerical criterion for ther-
malization which is the deviation of ⇥ d

d⇤w from the 3rd

order hydro expression (5)
�����

⇥ d
d⇤w

F 3rd order
hydro (w)

� 1

����� < 0.005. (6)

Despite the bewildering variety of the nonequilibrium
evolution, we will show below that there exist, however,
some surprising regularities in the dynamics.

Initial and final entropy. Apart from the energy-
momentum tensor components, a very important physi-
cal property of the evolving plasma system is its entropy
density S (per transverse area and unit (spacetime) ra-
pidity). In the general time-dependent case, the precise

similar findings in Chesler & Yaffe 0906.4426 and 1011.3562

The single most interesting result is that
hydrodynamization occurs well before 
isotropization! 

Pressure anisotropy is observed to be between

with hydrodynamics already being a valid 
description of the stress tensor dynamics.

1� 3pL
✏

⇡ 0.6 to 1.0
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Including the radial flow
3

(a) (b)

FIG. 2. (a) The radial acceleration of our nucleus model. The acceleration decreases after some time, which is mainly a
consequence of the decrease in radial pressure, due to the isotropization. Thereafter the acceleration is quite steady and mainly
localized near the boundary of the nucleus. (b) The radial acceleration of our fluctuation model. Since the bump of energy is
much smaller one can clearly see the spreading out and the decrease in acceleration. As will also be clear from figure 5, this
model reaches a lower radial speed than the model for the nucleus.

FIG. 3. The radial velocity times the energy density as a
function of proper time ⌧ and distance to the origin ⇢ for
our model of a nucleus. Note that at late times the increas-
ing velocity is almost exactly compensated by the decreasing
energy density (which is due to the longitudinal expansion).
The slope at the origin at the end of our simulation equals
0.66 GeV/fm4.

nucleus. This means that fluctuations are expected to
spread out rather quickly. Perhaps surprisingly, also the
stress tensor for the fluctuation is governed by hydrody-
namics within 0.35 fm.
4. Discussion. The main motivation for this study is
to provide a description of the far-from-equilibrium stage
of heavy-ion collisions, including non-trivial dynamics in
the transverse plane. While we kept rotational symme-
try in the transverse plane, we believe our study can be
used more generally. One reason for this is an old re-
sult in asymptotically flat space [19], recently studied
in asymptotically AdS [11], that during black hole for-
mation gravity can be well approximated by linearizing
around the final state. We therefore believe that an ini-
tial energy profile with many fluctuations could be well
approximated by superposing the result of our fluctua-
tion presented above.

Also, it should be possible to use our results for non-

FIG. 4. The di↵erence between the full non-equilibrium p⇢
and the pressure given by first order hydrodynamics. Al-
though hydrodynamics applies very quickly, the viscous con-
tribution is still large (shown by a red lines). The relatively
high values for ⇢ > 7 fm are a consequence of the very small
energy density. For the model of a fluctuation the graph is
similar, with equally quick thermalization.

central collisions. This can be seen by comparing with
[20]. There, they assume that the anisotropy is indepen-
dent of ⇢, the transverse pressures are equal and that the
velocity is approximately linear in time. Without using
any hydrodynamics, they used the conservation of the
stress tensor to arrive at the following local formula for
the transverse momentum of the stress tensor:

~s/" ⇡ �
~r?"0
2"0

(⌧ � ⌧in), (6)

where "0 is the initial energy density. This formula (see
fig. 5) works remarkably well at early times and also
lateron for the nucleus model. At later times the trans-
verse velocities of fluctuations are smaller, which is due
to the decreasing acceleration (displayed in figure 2b).
This result therefore increases confidence in the result
of [20], which can be used in less symmetric situations.
When including fluctuations, however, one should hydro-

2

gauge/gravity duality we can now determine the stress
tensor of the dual field theory [15], which has five inde-
pendent non-zero components:
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✓
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,
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✓
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6⌧4
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4
a4 + c4

◆
,

py ⌘ T

y
y = "� p⇢ � p✓, (4)

all functions of ⌧ and ⇢, where we put the number of
colors Nc = 3. The conservation of the stress tensor
implies that

@⌧a4 = �12⌧4 (⇢ (⌧@⇢f4 + a4 + b4 + c4) + ⌧ f4)� 4⇢

9⇢⌧5
,

@⌧f4 = �1

4
@⇢a4 + @⇢b4 +

b4 � c4

⇢

� f4

⌧

. (5)

Our model basically contains two scales: the initial en-
ergy density and the characteristic scale in the radial
direction. We can, however, make use of the scale in-
variance of the field theory to rescale our coordinates
such that at ⌧ = 0.6 fm the energy density at the ori-
gin equals "0 = 187GeV/fm3 [22]. We choose this com-
bination to reproduce the final multiplicities of central
heavy-ion collisions at LHC [16]. For the radial profile
we then consider two types of initial conditions, speci-
fied at some small time ⌧in ⇡ 0.12 fm [23]. The first is
a model for a head-on collision, where the shape of the
energy density is provided by the Glauber model, having
an approximate radius of 6.5 fm. The second energy den-
sity profile models one fluctuation in the initial state of
such a collision. We take a Gaussian of width 0.5 fm for
this profile (see figure 1). For both initial conditions we
assume that initially there is no radial momentum, such
that f4(⌧in, ⇢) = 0.

Importantly, we must also specify the metric functions
B(r, ⌧in, ⇢) and C(r, ⌧in, ⇢) on a full time-slice of the
bulk AdS geometry. These two functions, together with
a4, f4 and the Einstein equations, specify the complete
metric and its time derivative on a time-slice [8]. In prin-
ciple, these functions should follow from a model describ-
ing the very first weakly coupled stage after the collision,
such as the Glauber model or the Color Glass Conden-
sate. However, these models themselves contain signifi-
cant uncertainties and, more importantly, it is not clear
how to map them to this gravitational setting. Therefore
we made a simple choice, where B and C are the same
functions as in vacuum AdS, but with modified b4 and c4,
such that the longitudinal pressure py vanishes initially.

Having specified the initial and boundary conditions
we can solve Einstein’s equations numerically [24], using

FIG. 1. The initial energy density profiles at ⌧in = 0.12 fm
as a function of the distance to the origin. The blue curve
models a central heavy-ion collision; the red curve models a
fluctuation in such a collision.

essentially the same scheme as in [8]. One small di↵erence
is the required boundary conditions in the ⇢ direction,
which in this case means smoothness at the origin and at
infinity. As in [8], we added a small (3%) regulator energy
density and checked that our results do not depend on
this regulator.

3. Results. After determining the stress tensor one
can extract the radial velocity, defined by the boost af-
ter which there is no momentum flow. Figure 3 shows
this velocity times the energy density, which gives a good
measure of the momentum flow. The radial velocity, to-
gether with the stress tensor in the local rest frame, can
be used to compute the stress tensor according to hy-
drodynamics. Although initially there will not be local
equilibrium, at late times a hydrodynamic expansion is
expected to be valid. It is therefore interesting to com-
pare the actual pressures with the pressures which follow
from a hydrodynamic expansion [17, 18].

In figure 4 we plot the di↵erence of p⇢ and the cor-
responding first order hydrodynamic prediction of our
model of a nucleus. The stress tensor is excellently de-
scribed by hydrodynamics as soon as ⌧ = 0.35 fm. At
the border of our nucleus this is slightly subtler, since
the stress tensor is rather small there, and it becomes
comparable to our regulator energy density. We there-
fore cannot say too much about this, but the agreement
with hydrodynamics is also there encouraging. We note
that in previous studies [10, 11] somewhat larger ther-
malization times (with respect to the local temperature)
were found, so we expect more exotic initial conditions
in our bulk AdS to give somewhat later thermalization.

In figure 2b we plot the radial acceleration of our model
of a fluctuation. We notice the acceleration already de-
creases considerably during our simulation, in contrast
with the model for the nucleus. Also, the acceleration
increases rapidly near the origin, whereas for the nucleus
it is rather narrowly peaked near the boundary of the

3

(a) (b)

FIG. 2. (a) The radial acceleration of our nucleus model. The acceleration decreases after some time, which is mainly a
consequence of the decrease in radial pressure, due to the isotropization. Thereafter the acceleration is quite steady and mainly
localized near the boundary of the nucleus. (b) The radial acceleration of our fluctuation model. Since the bump of energy is
much smaller one can clearly see the spreading out and the decrease in acceleration. As will also be clear from figure 5, this
model reaches a lower radial speed than the model for the nucleus.

FIG. 3. The radial velocity times the energy density as a
function of proper time ⌧ and distance to the origin ⇢ for
our model of a nucleus. Note that at late times the increas-
ing velocity is almost exactly compensated by the decreasing
energy density (which is due to the longitudinal expansion).
The slope at the origin at the end of our simulation equals
0.66 GeV/fm4.

nucleus. This means that fluctuations are expected to
spread out rather quickly. Perhaps surprisingly, also the
stress tensor for the fluctuation is governed by hydrody-
namics within 0.35 fm.
4. Discussion. The main motivation for this study is
to provide a description of the far-from-equilibrium stage
of heavy-ion collisions, including non-trivial dynamics in
the transverse plane. While we kept rotational symme-
try in the transverse plane, we believe our study can be
used more generally. One reason for this is an old re-
sult in asymptotically flat space [19], recently studied
in asymptotically AdS [11], that during black hole for-
mation gravity can be well approximated by linearizing
around the final state. We therefore believe that an ini-
tial energy profile with many fluctuations could be well
approximated by superposing the result of our fluctua-
tion presented above.

Also, it should be possible to use our results for non-

FIG. 4. The di↵erence between the full non-equilibrium p⇢
and the pressure given by first order hydrodynamics. Al-
though hydrodynamics applies very quickly, the viscous con-
tribution is still large (shown by a red lines). The relatively
high values for ⇢ > 7 fm are a consequence of the very small
energy density. For the model of a fluctuation the graph is
similar, with equally quick thermalization.

central collisions. This can be seen by comparing with
[20]. There, they assume that the anisotropy is indepen-
dent of ⇢, the transverse pressures are equal and that the
velocity is approximately linear in time. Without using
any hydrodynamics, they used the conservation of the
stress tensor to arrive at the following local formula for
the transverse momentum of the stress tensor:

~s/" ⇡ �
~r?"0
2"0

(⌧ � ⌧in), (6)

where "0 is the initial energy density. This formula (see
fig. 5) works remarkably well at early times and also
lateron for the nucleus model. At later times the trans-
verse velocities of fluctuations are smaller, which is due
to the decreasing acceleration (displayed in figure 2b).
This result therefore increases confidence in the result
of [20], which can be used in less symmetric situations.
When including fluctuations, however, one should hydro-
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in = 0 radial acceleration is mainly localized

at the edge of the plasma

system hydrodynamizes around 
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for some initial conditions we would
again expect sizable pressure anisotropy

⌧
hydro

= 0.4 fm/c

1211.2218 [hep-th] van der Schee

22/31



The main problem

HUGE FREEDOM OF CHOICE

Which far from equilibrium initial condition corresponds to the experiment?

2

gauge/gravity duality we can now determine the stress
tensor of the dual field theory [15], which has five inde-
pendent non-zero components:
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all functions of ⌧ and ⇢, where we put the number of
colors Nc = 3. The conservation of the stress tensor
implies that
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Our model basically contains two scales: the initial en-
ergy density and the characteristic scale in the radial
direction. We can, however, make use of the scale in-
variance of the field theory to rescale our coordinates
such that at ⌧ = 0.6 fm the energy density at the ori-
gin equals "0 = 187GeV/fm3 [22]. We choose this com-
bination to reproduce the final multiplicities of central
heavy-ion collisions at LHC [16]. For the radial profile
we then consider two types of initial conditions, speci-
fied at some small time ⌧in ⇡ 0.12 fm [23]. The first is
a model for a head-on collision, where the shape of the
energy density is provided by the Glauber model, having
an approximate radius of 6.5 fm. The second energy den-
sity profile models one fluctuation in the initial state of
such a collision. We take a Gaussian of width 0.5 fm for
this profile (see figure 1). For both initial conditions we
assume that initially there is no radial momentum, such
that f4(⌧in, ⇢) = 0.

Importantly, we must also specify the metric functions
B(r, ⌧in, ⇢) and C(r, ⌧in, ⇢) on a full time-slice of the
bulk AdS geometry. These two functions, together with
a4, f4 and the Einstein equations, specify the complete
metric and its time derivative on a time-slice [8]. In prin-
ciple, these functions should follow from a model describ-
ing the very first weakly coupled stage after the collision,
such as the Glauber model or the Color Glass Conden-
sate. However, these models themselves contain signifi-
cant uncertainties and, more importantly, it is not clear
how to map them to this gravitational setting. Therefore
we made a simple choice, where B and C are the same
functions as in vacuum AdS, but with modified b4 and c4,
such that the longitudinal pressure py vanishes initially.

Having specified the initial and boundary conditions
we can solve Einstein’s equations numerically [24], using

FIG. 1. The initial energy density profiles at ⌧in = 0.12 fm
as a function of the distance to the origin. The blue curve
models a central heavy-ion collision; the red curve models a
fluctuation in such a collision.

essentially the same scheme as in [8]. One small di↵erence
is the required boundary conditions in the ⇢ direction,
which in this case means smoothness at the origin and at
infinity. As in [8], we added a small (3%) regulator energy
density and checked that our results do not depend on
this regulator.

3. Results. After determining the stress tensor one
can extract the radial velocity, defined by the boost af-
ter which there is no momentum flow. Figure 3 shows
this velocity times the energy density, which gives a good
measure of the momentum flow. The radial velocity, to-
gether with the stress tensor in the local rest frame, can
be used to compute the stress tensor according to hy-
drodynamics. Although initially there will not be local
equilibrium, at late times a hydrodynamic expansion is
expected to be valid. It is therefore interesting to com-
pare the actual pressures with the pressures which follow
from a hydrodynamic expansion [17, 18].

In figure 4 we plot the di↵erence of p⇢ and the cor-
responding first order hydrodynamic prediction of our
model of a nucleus. The stress tensor is excellently de-
scribed by hydrodynamics as soon as ⌧ = 0.35 fm. At
the border of our nucleus this is slightly subtler, since
the stress tensor is rather small there, and it becomes
comparable to our regulator energy density. We there-
fore cannot say too much about this, but the agreement
with hydrodynamics is also there encouraging. We note
that in previous studies [10, 11] somewhat larger ther-
malization times (with respect to the local temperature)
were found, so we expect more exotic initial conditions
in our bulk AdS to give somewhat later thermalization.

In figure 2b we plot the radial acceleration of our model
of a fluctuation. We notice the acceleration already de-
creases considerably during our simulation, in contrast
with the model for the nucleus. Also, the acceleration
increases rapidly near the origin, whereas for the nucleus
it is rather narrowly peaked near the boundary of the

??

23/31



Towards holographic heavy ion collisions
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Towards a holographic „heavy ion collision”
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Operational view:

collide holographically two lumps of matter moving at relativistic speeds

unfortunately necessarily deconfined, i.e. with  hTµ⌫i = O(N2
c )

State of the art as of March 2013: colliding gravitational shock wave solutions
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Gravitational shock wave solutions
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Poincare patch
vacuum AdS

shock wave disturbance
moving with the speed of light

Solution of Einstein’s equations with the negative CC
for any longitudinal profile h(x�)
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abstract...

1. Introduction. Gravitational holography [1–3] is a
novel approach to strongly coupled field theories and cur-
rently the only tool allowing to address questions about
their real-time dynamics. A natural area for applica-
tions of these methods is the physics of expanding QCD
medium created in heavy ion collisions at RHIC and LHC
experiments. Indeed, within the last 10 years there has
been a significant progress in understanding various prop-
erties of holographic plasmas, revealing phenomenologi-
cal similarities to the quark-gluon plasma phase above
but not far above the transition temperature (see e.g. [4]
for a review).

So far vast majority of such developments focused on
equilibrium and near-equilibrium characteristics, such as
thermodynamics or transport coe�cients. However, the
advent of numerical relativity techniques in anti-de Sitter
(AdS) spacetimes [5–9] made it possible to address ques-
tions about far-from-equilibrium relaxation processes at
strong coupling. Such studies might shed light on so far
poorly understood pre-equilibrium phase in relativistic
heavy ion collisions at current energies and therefore are
extremely interesting.

An operational way of mimicking heavy ion collisions
holographically is colliding lumps of deconfined matter
approaching each other at the speed of light [7, 10, 11].
Such setup on the gravity side corresponds to colliding
gravitational shock wave solutions.

In [7] the authors performed a numerical simulation
of the outcome of such collision in N = 4 super Yang-
Mills theory (SYM), colliding planar lumps of energy of a
gaussian extent in the longitudinal direction focusing on
particular width-to-height product. The two main find-
ings of this work was quick applicability of hydrodynam-
ics despite large spatial gradients and a significant (15%)
reduction in speed of the outgoing energy maxima.

In the current letter we explore the parameter space of
collisions of gaussian shocks in N = 4 SYM, i.e. we col-
lide shock waves of di↵erent longitudinal widths at fixed
height. We find a crossover behavior between what we
called a full stopping scenario for wide shocks and trans-
parency for thin ones. In the first case, hydrodynam-
ics describes almost the whole outcome of the collision

even before the shocks start fully overlapping and the
maxima of the energy density move afterwards with re-
duced speed. In the second scenario, shocks pass through
each other and, while altered themselves, their outermost
parts keep moving unchanged with the speed of light.
Moreover, for thin shocks it is only certain part of the
matter in between them which at intermediate times is
described by hydrodynamics. From this perspective, the
case analyzed in [7] falls somewhat closer to the full stop-
ping scenario.
An interesting byproduct of our analysis is realization

that even for collisions of the thinnest shocks we were able
to evolve, the resulting dynamics of expanding plasma
system is not boost-invariant in the sense introduced in
the seminal Bjorken paper [12].
2. Holographic setup. We are interested in colliding
gravitational shock waves of a form

ds

2 = R

2[�dx+dx�+dx
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which, for arbitrary h(x±), are solutions of the Einstein’s
equations with the negative cosmological constant. Such
a shock wave is dual to a sheet of plasma in N = 4
SYM propagating along one of the lightcone directions
x± = t± z with a stress tensor taking the form
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and the other components zero. One can think of this
setup as mimicking central relativistic heavy ion colli-
sion. In our analysis we will focus on shock waves with a
gaussian extent in the longitudinal direction
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Due to the conformal symmetry of N = 4 SYM, the
outcome of the collision will depend only on a product
of shock wave’s height and width. In [7] these quantities
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We numerically simulate collisions of planar, finite-width shock waves in anti-de Sitter space as
a model for heavy ion collisions of large nuclei. We observe a cross-over between two di↵erent
dynamical regimes as a function of the collision energy. At low energies there is significant stopping
and the entire system is well described by hydrodynamics as soon as the nuclei fully overlap. At high
energies there is no stopping and hydrodynamics only applies at su�ciently late times and far from
the receding shocks. The rapidity distribution of the energy/entropy density around mid rapidity
is approximately Gaussian with a width that increases with the collision energy, in qualitative
agreement with experimental data.

1. Introduction. Holography [1–3] has been used a suc-
cessful toy model for the study of equilibrium and near-
equilibrium aspects of the quark-gluon plasma (QGP)
created in heavy ion collision (HIC) experiments at RHIC
and LHC (see e.g. [4] for a review and [5] for a discussion
of the inherent limitations).

Extending these studies to the far-from-equilibrium
regime that takes place before hydrodynamics becomes
applicable is a challenge because it requires solving Ein-
stein’s equations in a dynamical setting, which generi-
cally must be done numerically [6–12].

In this letter we will follow the approach of Ref. [8],
in which a heavy ion collision was toy-modeled by col-
liding two infinite, planar shock waves in anti-de Sitter
space (AdS). In the dual conformal field theory (CFT)
this corresponds to colliding two infinite sheets of energy.
Despite its simplicity, we will see that this model exhibits
rich and encouraging dynamics.

The shock waves considered in [8] are translationally
invariant along the transverse plane, move at the speed
of light along the ‘beam direction’ z, and at a given time
t have a Gaussian profile along this direction given by

h(t± z) = E0 exp
⇥
�(t± z)2/2!2

⇤
. (1)

The dual stress tensor has only one non-zero component,

T±± =
�
N

2
c /2⇡

2
�
h(t± z) , (2)

where the sign depends on the direction of motion of
the shock. We thus see that E0 is the (peak) energy
density of the colliding shocks. Conformal invariance in
the dual gauge theory implies that the physics can only
depend on a single dimensionless parameter, the product

p ⌘ E1/4
0 !. Ref. [8] chose pCY ' 0.64 and found: (i) that

hydrodynamics becomes applicable very soon after the
collision, despite the presence of large spatial gradients,

and (ii) a significant stopping, meaning that the velocity
of the incoming maxima is reduced from v = 1 before the
collision to v ' 0.85 after the collision.

Once the type of ion has been chosen, the physics of
a head-on HIC is also characterized by a single parame-
ter, in this case the boost factor � = v/

p
1� v

2. Since
di↵erent HICs correspond to di↵erent values of �, it is
interesting to explore the dynamics of the holographic
model for di↵erent values of p. In particular, note that
p for a heavy ion collision scales as p / �

�1/2. This sug-
gests that HICs of increasingly higher energies may be
modeled by increasingly smaller values of p. For fixed E0
we may thus think of low- and high-energy collisions as
associated to wide and narrow shocks, respectively.

Motivated by these considerations, in this Letter we
numerically simulate collisions of gaussian shocks for sev-
eral values of p. Technically, we follow the framework
described in Ref. [8], to which we refer the reader for
details. We uncover an interesting cross-over between
two qualitatively di↵erent dynamical regimes: full stop-
ping scenario for wide shocks and transparency for nar-
row shocks. For wide shocks hydrodynamics becomes
applicable even before the two shocks fully overlap, and
it describes the entire result of the collision, including the
receding maxima. In contrast, thin shocks pass through
each other and, while altered in shape, they keep mov-
ing outwards at the speed of light. In this case there is
a region of negative energy density trailing right behind
the receding maxima, and it is only certain part of the
matter in between them that at su�ciently late times
is described by hydrodynamics. From this perspective,
the case analyzed in [8] falls somewhat closer to the full
stopping scenario.

For each value of p that we consider, we compute the
rapidity distribution of the energy/entropy density in the

�

e = E1/4
0 �
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FIG. 1: Energy density E/µ4 as a function of time v and
longitudinal coordinate z.

disjoint support. Although this is not exactly true for our
Gaussian profiles, the residual error in Einstein’s equa-
tions is negligible when the separation of the incoming
shocks is more than a few times the shock width.

To find the initial data relevant for our metric ansatz
(1), we solve (numerically) for the di↵eomorphism trans-
forming the single shock metric (8) from Fe↵erman-
Graham to Eddington-Finkelstein coordinates. In par-
ticular, we compute the anisotropy function B± for each
shock and sum the result, B = B

+

+ B�. We choose the
initial time v

0

so the incoming shocks are well separated
and the B± negligibly overlap above the apparent hori-
zon. The functions a

4

and f
2

may be found analytically,

a
4

= � 4

3

[h(v
0

+z)+h(v
0

�z)] , f
2

= h(v
0

+z)�h(v
0

�z).
(10)

A complication with this initial data is that the metric
functions A and F become very large deep in the bulk,
degrading convergence of their spectral representations.
To ameliorate the problem, we slightly modify the initial
data, subtracting from a

4

a small positive constant �.
This introduces a small background energy density in
the dual quantum theory. Increasing � causes the regions
with rapid variations in the metric to be pushed inside
the apparent horizon, out of the computational domain.

We chose a width w = 0.75/µ for our shocks. The
initial separation of the shocks is �z = 6.2/µ. We chose
� = 0.014 µ4, corresponding to a background energy den-
sity 50 times smaller than the peak energy density of the
shocks. We evolve the system for a total time equal to
the inverse of the temperature associated with the back-
ground energy density, T

bkgd

= 0.11 µ.

Results and discussion.— Figure 1 shows the energy
density E as a function of time v and longitudinal position
z. On the left, one sees two incoming shocks propagating
toward each other at the speed of light. After the colli-
sion, centered on v = 0, energy is deposited throughout
the region between the two receding energy density max-
ima. The energy density after the collision does not re-
semble the superposition of two unmodified shocks, sepa-
rating at the speed of light, plus small corrections. In par-
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FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.

ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10�4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = �0.23/µ, where Pk has its
maximum, it is roughly 5 times larger than P?. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, Pk is more than 3 times
larger than P?.

The fluid/gravity correspondence [17] implies that at
su�ciently late times the evolution of Tµ⌫ will be de-
scribed by hydrodynamics. To test the validly of hydro-
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toward each other at the speed of light. After the colli-
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semble the superposition of two unmodified shocks, sepa-
rating at the speed of light, plus small corrections. In par-

 

 

0 2 4 6
0

2

4

6

−0.1

0

0.1

0.2

µv

µz

Thursday, November 11, 2010

FIG. 2: Energy flux S/µ4 as a function of time v and longi-
tudinal coordinate z.

−2 0 2 4 6

0

0.25

0.5

0.75

0 1 2 3 4 5 6

0

0.05

0.1

0.15

0.2

 

 

P?/µ4

P||/µ4

hydro

µv µv

µz = 0 µz = 3

Wednesday, November 10, 2010

FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.
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Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10�4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = �0.23/µ, where Pk has its
maximum, it is roughly 5 times larger than P?. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, Pk is more than 3 times
larger than P?.

The fluid/gravity correspondence [17] implies that at
su�ciently late times the evolution of Tµ⌫ will be de-
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� = 0.014 µ4, corresponding to a background energy den-
sity 50 times smaller than the peak energy density of the
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the inverse of the temperature associated with the back-
ground energy density, T
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toward each other at the speed of light. After the colli-
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positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10�4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
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Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = �0.23/µ, where Pk has its
maximum, it is roughly 5 times larger than P?. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, Pk is more than 3 times
larger than P?.

The fluid/gravity correspondence [17] implies that at
su�ciently late times the evolution of Tµ⌫ will be de-
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15% slow-down of  T00 maxima

is it the full story?
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again, significant stopping:
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no stopping:
T00 maxima move with           

hydro kicks in soon after the
outer parts of incoming shocks meet 

hydro applicable only at mid-
rapidities and late enough!!!

more like the old Landau picture
more like what seems to be 
happening at RHIC and LHC

v ⇡ 1v ⇡ 0.85

T00 < 0 !!!
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The dynamics is not boost-invariant in the sense introduced by Bjorken
but nevertheless with decreasing e the rapidity distribution flattens out.
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Interesting developments due to applying numerical GR techniques. 

Two reoccurring themes

fast applicability
of hydro

large anisotropy
at the onset of
hydrodynamics

Discussed developments led to a new term: hydrodynamization!

Future: towards more realistic holographic heavy ion collisions...
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FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.

ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10�4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = �0.23/µ, where Pk has its
maximum, it is roughly 5 times larger than P?. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, Pk is more than 3 times
larger than P?.

The fluid/gravity correspondence [17] implies that at
su�ciently late times the evolution of Tµ⌫ will be de-
scribed by hydrodynamics. To test the validly of hydro-
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