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Motivation

quark gluon plasma

@ produced in heavy collisions at RHIC and LHC
@ behaves as a strongly coupled liquid

e thermalization process not well understood

goals

@ gain insight into the thermalization process
e modification of production rates of photons/dileptons

@ which modes thermalize first: top-down or bottom-up ?

@ dependence on coupling strength

strategy

e SYM where strong and weak coupling regimes are accessible
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Thermalization scenarios

bottom up scenario

e at weak coupling

@ scattering processes

e 1n the early stages many soft gluons are emitted which then thermalize the
system (Baier et al (2001))

@ driven by instabilities

@ Instabilities isotropize the momentum distributions more rapidly than
scattering processes (Kurkela, Moore (2011))

top down scenario
@ at strong coupling
e UV modes thermalize first

@ 1n AdS calculations, follows naturally from causality
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Photon emission 1n heavy 1on collisions
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photons are emitted at all stages of the collision

e 1nitial hard scattering processes: quark anti-quark annihilation:
@ on-shell photon or virtual photon — dilepton pair
e strongly coupled out of equilibrium phase: no quasiparticle picture

e additional (uninteresting) emissions from charged hadron decays
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Probing the plasma

probing the plasma

@ once produced photons/dileptons stream through the plasma almost
unaltered

e provide observational window in the thermalization process of the plasma

quantity of interest
o spectral density : x4 = —2Im(IT"")% (ko)

@ number of photons emitted with given momentum

fluctuation dissipation theorem
I, (w) = —2np(w)Im(IT7)f (W) = np(w)x(w)

production rate
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Photon emission in equilibrium SYM plasma
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perturbative result

e increasing the coupling: slope at k=0 decreases, hydro peak
broadens and moves right

strong coupling result

@ decreasing coupling from A\ = oo: peak sharpens and moves left
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Out of equilibrium

@ equilibrium picture in SYM fairly complete

@ how does photon/dilepton production get modified out of
equilibrium

@ can one access thermalization at finite coupling ?
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The falling shell setup

AdS AdS-bh Danielsson, Keski-Vakkuri,
\ . / Kruczenski (1999)
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matching condition

Israel junction condition

@ extrinsic curvatures match across the shell
[Kij] — [K]gi; =0,  [Ky]=K;; — K

(¥

@ can be also adapted for other fields

Fourier transformation
e discontinuity in the time coordinate

dt— f_+ — Wty w\/%
. ”f_ Vim = /dte m/dte f
e 1dentification: _=wq/ V Im

- e = A By (@), c_
E,—(W—)|us = meg—(W+)|us- c.

Ct+ lug

matching condition:

quasistatic approximation:

@ energy scale of interest >> characteristic time scale of shell’s motion
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equation of motion

equation of motion for transverse electric field

/ ~2 ~2

ol T e E, = F,
+ 7 + uf2 ; t

& =w/2rT), §=q/2rT) T=""

e this equation i1s solved numerically by the ansatz:

Ein (u,0,4) = (1 =u)T 2y (u)

out out

retarded correlator

c_ E’
N2T?2 E'(u, Q) N2T? L+ =7
H — C 1 ? — C H orm in
(w;q) s o Tw.0) g Mtherm e B
Ct in
C_
e reproduce thermal case: lim — — 0

Ts—TH C_|_

@ behaviour of ¢_/cy crucial for out of equilibrium dynamics
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Photon & dilepton spectral density
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photon spectral density for rs/rmm =1.1,1.01,1.001  dilepton spectral density for rs/rn =1.01 and q=0,1,2

@ out of equilibrium effect: oscillations around thermal value

@ as the shell approaches the horizon equilibrium 1s reached
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Thermalization at infinite coupling: photons

@ relative deviation from thermal
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e thermalization: increase in frequency and decrease in amplitude

e top down thermalization: highly energetic modes are closer to equ. value
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Thermalization depending on the virtuality
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e thermalization depends on the virtuality
@ photons are last to thermalize

@ same conclusion was reached in other models of thermalization
(Arnold et al; Chesler and Teaney)
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Photon production rate
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photon production rate for r¢/rn=1.1, 1.01, 1.001

e enhancement of production rate

@ hydro peak broadens and moves right
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Photon production rate
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photon production rate for r¢/rn=1.1, 1.01, 1.001

e enhancement of production rate

@ hydro peak broadens and moves right

e combining the two allows to study thermalization at finite coupling !
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Finite coupling corrections

. 0 !
action: SiiB = Sy + Stin,
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@ solving Einsteins equations
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Gubser et al; Pawelczyk, Theisen (1998)
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Finite coupling corrections

equation of motion

e after all the contractions are worked out the eom for a transverse electric field takes
the simple form

U (u) — V(u)¥(u) =0 Hassanain, Schvellinger

e making the ansatz

e 1nside solution (pure AdS) stays the same (Banks, Green (1998)), but relation between

frequencies gets corrected
W

T fm = flus) K" (us),

e all the corrections have to be taken into account, e.g

wW_ =

C—_:CoJrWCl

@ spectral density
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Photon production rate at finite coupling
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emission rate for rs/rhn=1.01 and A = oo, 120, 80, 40 rate for rs/rn=1.1,1.01,1.001 and A = 100

e behaviour very similar to thermal limit
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Thermalization at finite coupling

relative deviation from thermal limit

0015 £

0010 |

0.005'

R 0.000|

~0.005-

-0.010'

-0.015

w/T

R for ro/rn=1.01 and X\ = oo, 500, 300

e behaviour of relative deviation changes at large frequency
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Thermalization at finite coupling

relative deviation from thermal limit

005 i\
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R for ro/rn=1.01 and X = 150, 100, 75
e behaviour of relative deviation changes at large frequency

e decreasing the coupling: change happens at lower frequency

e 1indicates a change of the thermalization pattern from top-down towards bottom-
up ?
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Thermalization at finite coupling
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@ behaviour of the fields near the horizon is crucial

e originates from the Schroedinger potential

WKB approximation

X (@) ~ W3 (1—|— .
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Thermalization at finite coupling
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@ behaviour of the fields near the horizon is crucial

e originates from the Schroedinger potential

WKB approximation
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@ so far: only photons that get emitted from the plasma

@ what about plasma constituents themselves ?
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Future directions I: (T,..Tug)

Relative deviation of the shear channel: (7,,7,)
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e finite coupling effects are weaker
e for large energies relative deviation becomes constant

@ can be seen from the behaviour of c¢_/cy
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Future directions II: QNM analysis

QNM for R current correlator at infinite coupling
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e flow of the 1maginary part of the first QNM:

Im wy = 27T (—1 + )\%)
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Conclusion

thermalization at infinite coupling

e enhancement of production rate
e top down thermalization

@ depends on virtuality: on-shell photons are last to thermalize

thermalization at finite coupling

e enhancement of production rate

e 1ndication of thermalization pattern changing from top down towards
bottom up

open questions

e why does the causality argument not apply

@ go beyond quasistatic approximation

@ can one include finite coupling corrections in more involved models of
holographic thermalization
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